Introducing the Newly Isolated Bacterium Aneurinibacillus sp. H1 as an Auspicious Thermophilic Producer of Various Polyhydroxyalkanoates (PHA) Copolymers-1. Isolation and Characterization of the Bacterium
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA19-20697S
Grantová Agentura České Republiky
PhD talent
Brno City Municipality
LM2015062 Czech-BioImaging
MEYS CR
CZ.02.1.01/0.0/0.0/16_013/0001775
European Regional Development Fund
665860
European Union's Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie
PubMed
32485983
PubMed Central
PMC7362256
DOI
10.3390/polym12061235
PII: polym12061235
Knihovny.cz E-zdroje
- Klíčová slova
- Aneurinibacillus sp., P(3HB-co-3HV-co-4HB), P(3HB-co-4HB), polyhydroxyalkanoates, thermophiles,
- Publikační typ
- časopisecké články MeSH
Extremophilic microorganisms are considered being very promising candidates for biotechnological production of various products including polyhydroxyalkanoates (PHA). The aim of this work was to evaluate the PHA production potential of a novel PHA-producing thermophilic Gram-positive isolate Aneurinibacillus sp. H1. This organism was capable of efficient conversion of glycerol into poly(3-hydroxybutyrate) (P3HB), the homopolyester of 3-hydroxybutyrate (3HB). In flasks experiment, under optimal cultivation temperature of 45 °C, the P3HB content in biomass and P3HB titers reached 55.31% of cell dry mass and 2.03 g/L, respectively. Further, the isolate was capable of biosynthesis of PHA copolymers and terpolymers containing high molar fractions of 3-hydroxyvalerate (3HV) and 4-hydroxybutyrate (4HB). Especially 4HB contents in PHA were very high (up to 91 mol %) when 1,4-butanediol was used as a substrate. Based on these results, it can be stated that Aneurinibacillus sp. H1 is a very promising candidate for production of PHA with tailored material properties.
Faculty of Chemistry Brno University of Technology Purkynova 118 612 00 Brno Czech Republic
Faculty of Science University of South Bohemia Branisovska 31 370 05 Ceske Budejovice Czech Republic
Zobrazit více v PubMed
Zeldes B.M., Keller M.W., Loder A.J., Straub C.T., Adams M.W.W., Kelly R.M. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Front. Microbiol. 2015;6:1209. doi: 10.3389/fmicb.2015.01209. PubMed DOI PMC
Ranawat P., Rawat S. Stress response physiology of thermophiles. Arch. Microbiol. 2017;199:391–414. PubMed
Chen G.-Q., Jiang X.-R. Next generation industrial biotechnology based on extremophilic bacteria. Curr. Opin. Biotechnol. 2018;50:94–100. PubMed
Obruca S., Sedlacek P., Koller M., Kucera D., Pernicova I. Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnol. Adv. 2018;36:856–870. doi: 10.1016/j.biotechadv.2017.12.006. PubMed DOI
Koller M., Maršálek L., Miranda de Sousa Dias M., Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol. 2017;37:24–38. doi: 10.1016/j.nbt.2016.05.001. PubMed DOI
Sudesh K., Abe H., Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Prog. Polym. Sci. 2000;25:1503–1555. doi: 10.1016/S0079-6700(00)00035-6. DOI
Kunioka M., Tamaki A., Doi Y. Crystalline and thermal properties of bacterial copolyesters: Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) Macromolecules. 1989;22:694–697. doi: 10.1021/ma00192a031. DOI
Koller M. Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): Auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules. 2018;23:362. doi: 10.3390/molecules23020362. PubMed DOI PMC
Koller M. Chemical and biochemical engineering approaches in manufacturing Polyhydroxyalkanoate (PHA) biopolyesters of tailored structure with focus on the diversity of building blocks. Chem. Biochem. Eng. Q. 2019;32:413–438. doi: 10.15255/CABEQ.2018.1385. DOI
Koller M. Switching from petro-plastics to microbial polyhydroxyalkanoates (PHA): The biotechnological escape route of choice out of the plastic predicament? Eur. Biotechnol. J. 2019;3:32–44.
Dietrich K., Dumont M.-J., Del Rio L.F., Orsat V. Sustainable PHA production in integrated lignocellulose biorefineries. New Biotechnol. 2019;49:161–168. PubMed
Favaro L., Basaglia M., Casella S. Improving polyhydroxyalkanoate production from inexpensive carbon sources by genetic approaches: A review. Biofuel Bioprod. Biorefin. 2019;13:208–227. doi: 10.1002/bbb.1944. DOI
Ibrahim M.H., Willems A., Steinbüchel A. Isolation and characterization of new poly (3HB)-accumulating star-shaped cell aggregates-forming thermophilic bacteria. J. Appl. Microbiol. 2010;109:1579–1590. doi: 10.1111/j.1365-2672.2010.04786.x. PubMed DOI
Pantazaki A.A., Tambaka M.G., Langlois V., Guerin P., Kyriakidis D.A. Polyhydroxyalkanoate (PHA) biosynthesis in Thermus thermophilus: Purification and biochemical properties of PHA synthase. Mol. Cell. Biochem. 2003;254:173–183. doi: 10.1023/A:1027373100955. PubMed DOI
Sheu D.S., Chen W.M., Yang J.Y., Chang R.C. Thermophilic bacterium Caldimonas taiwanensis produces poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from starch and valerate as carbon sources. Enzyme Microb. Technol. 2009;44:289–294.
Pernicova I., Novackova I., Sedlacek P., Kourilova X., Koller M., Obruca S. Application of osmotic challenge for enrichment of microbial consortia in polyhydroxyalkanoates producing thermophilic and thermotolerant bacteria and their subsequent isolation. Int. J. Biol. Macromol. 2020;144:698–704. PubMed
Nováková D., Švec P., Zeman M., Busse H.-J., Mašlaňová I., Pantůček R., Králová S., Krištofová L., Sedláček I. Pseudomonas leptonychotis sp. nov., isolated from weddell seals in Antarctica. Int. J. Syst. Evol. Microbiol. 2020;70:302–308. PubMed
Obruca S., Sedlacek P., Mravec F., Krzyzanek V., Nebesarova J., Samek O., Kucera D., Benesova P., Hrubanova K., Milerova M., et al. The presence of PHB granules in cytoplasm protects non-halophilic bacterial cells against the harmful impact of hypertonic environments. New Biotechnol. 2017;39:68–80. doi: 10.1016/j.nbt.2017.07.008. PubMed DOI
Obruca S., Benesova P., Oborna J., Marova I. Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate) production from oils by Cupriavidus necator. Biotechnol. Lett. 2014;36:775–781. PubMed
Novackova I., Kucera D., Porizka J., Pernicova I., Sedlacek P., Koller M., Kovalcik A., Obruca S. Adaptation of Cupriavidus necator to levulinic acid for enhanced production of P(3HB-co-3HV) copolyesters. Biochem. Eng. J. 2019;151:107350.
Johnston B., Radecka I., Hill D., Chiellini E., Ilieva V.I., Sikorska W., Musioł M., Ziȩba M., Marek A.A., Keddie D., et al. The microbial production of Polyhydroxyalkanoates from waste polystyrene fragments attained using oxidative degradation. Polymers. 2018;10:957. doi: 10.3390/polym10090957. PubMed DOI PMC
Fadzil F.I.M., Mizuno S., Hiroe A., Nomura C.T., Tsuge T. Low Carbon concentration feeding improves medium-chain-length polyhydroxyalkanoate production in Escherichia coli strains with defective β-oxidation. Front. Bioeng. Biotechnol. 2018;6:178. doi: 10.3389/fbioe.2018.00178. PubMed DOI PMC
Pernicova I., Kucera D., Nebesarova J., Kalina M., Novackova I., Koller M., Obruca S. Production of polyhydroxyalkanoates on waste frying oil employing selected Halomonas strains. Bioresour. Technol. 2019;292:122028. PubMed
Ye J., Hu D., Yin J., Huang W., Xiang R., Zhang L., Wang X., Han J., Chen G.-Q. Stimulus response-based fine-tuning of polyhydroxyalkanoate pathway in Halomonas. Metab. Eng. 2020;57:85–95. doi: 10.1016/j.ymben.2019.10.007. PubMed DOI
Singh A.K., Srivastava J.K., Chandel A.K., Sharma L., Mallick N., Singh S.P. Biomedical applications of microbially engineered polyhydroxyalkanoates: An insight into recent advances, bottlenecks, and solutions. Appl. Microbiol. Biotechnol. 2019;103:2007–2032. PubMed
Kumar P., Patel S.K.S., Lee J.-K., Kalia V.C. Extending the limits of Bacillus for novel biotechnological applications. Biotechnol. Adv. 2013;31:1543–1561. doi: 10.1016/j.biotechadv.2013.08.007. PubMed DOI
Kumar P., Kim B.S. Valorization of polyhydroxyalkanoates production process by co-synthesis of value-added products. Bioresour. Technol. 2018;269:544–556. doi: 10.1016/j.biortech.2018.08.120. PubMed DOI
Kumar P., Ray S., Patel S.K.S., Lee J.-K., Kalia V.C. Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Int. J. Biol. Macromol. 2015;78:9–16. doi: 10.1016/j.ijbiomac.2015.03.046. PubMed DOI
Shida O., Takagi H., Kadowaki K., Komagata K. Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int. J. Syst. Bacteriol. 1996;46:939–946. doi: 10.1099/00207713-46-4-939. PubMed DOI
Xiao Z., Zhang Y., Xi L., Huo F., Zhao J.-Y., Li J. Thermophilic production of polyhydroxyalkanoates by a novel Aneurinibacillus strain isolated from Gudao oilfield, China. J. Basic Microb. 2015;55:1125–1133. doi: 10.1002/jobm.201400843. PubMed DOI
Mravec F., Obruca S., Krzyzanek V., Sedlacek P., Hrubanova K., Samek O., Kucera D., Benesova P., Nebesarova J. Accumulation of PHA granules in Cupriavidus necator as seen by confocal fluorescence microscopy. FEMS Microbiol. Lett. 2016;363:fnw094. doi: 10.1093/femsle/fnw094. PubMed DOI
Kucera D., Pernicová I., Kovalcik A., Koller M., Mullerova L., Sedlacek P., Mravec F., Nebesarova J., Kalina M., Marova I., et al. Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. Bioresour. Technol. 2018;256:552–556. doi: 10.1016/j.biortech.2018.02.062. PubMed DOI
Sadykov M.R., Ahn J.-S., Widhelm T.J., Eckrich V.M., Endres J.L., Driks A., Rutkowski G.E., Wingerd K.L., Bayles K.W. Poly(3-hydroxybutyrate) fuels the tricarboxylic acid cycle and de novo lipid biosynthesis during Bacillus anthracis sporulation. Mol. Microbiol. 2017;104:793–803. PubMed
Valappil S.P., Misra S.K., Boccaccini A.R., Keshavarz T., Bucke C., Roy I. Large-scale production and efficient recovery of PHB with desirable material properties, from the newly characterised Bacillus cereus SPV. J. Biotechnol. 2007;132:251–258. doi: 10.1016/j.jbiotec.2007.03.013. PubMed DOI
Ciriminna R., Pina C.D., Rossi M., Pagliaro M. Understanding the glycerol market. Eur. J. Lipid Sci. Technol. 2014;116:1432–1439.
Mohandas S.P., Balan L., Jayanath G., Anoop B.S., Philip R., Cubelio S.S., Bright Singh I.S. Biosynthesis and characterization of polyhydroxyalkanoate from marine Bacillus cereus MCCB 281 utilizing glycerol as carbon source. Int. J. Biol. Macromol. 2018;119:380–392. doi: 10.1016/j.ijbiomac.2018.07.044. PubMed DOI
Gahlawat G., Soni S.K. Valorization of waste glycerol for the production of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by Cupriavidus necator and extraction in a sustainable manner. Bioresour. Technol. 2017;243:492–501. doi: 10.1016/j.biortech.2017.06.139. PubMed DOI
Zain N.F.M., Abdullah W.N.W., Shun T.J., Keong L.C., Samian M.R. Optimization of polyhydroxyalkanoate (PHA) production by Burkholderia cepacia BPT1213 utilizing waste glycerol as the sole carbon source. Malaysian J. Microbiol. 2018;14:164–171.
Hermann-Krauss C., Koller M., Muhr A., Fasl H., Stelzer F., Braunegg G. Archaeal production of polyhydroxyalkanoate (PHA) co- and terpolyesters from biodiesel industry-derived by-products. Archaea. 2013;2013:129268. doi: 10.1155/2013/129268. PubMed DOI PMC
Hsiao L.-J., Lee M.-C., Chuang P.-J., Kuo Y.-Y., Lin J.-H., Wu T.-M., Li S.-Y. The production of poly(3-hydroxybutyrate) by thermophilic Caldimonas manganoxidans from glycerol. J. Polym. Res. 2018;25:85. doi: 10.1007/s10965-018-1486-6. DOI
Ibrahim M.H., Steinbüchel A. High-cell-density cyclic fed-batch fermentation of a poly (3-hydroxybutyrate)-accumulating thermophile, Chelatococcus sp. strain MW10. Appl. Environ. Microbiol. 2010;76:7890–7895. doi: 10.1128/AEM.01488-10. PubMed DOI PMC
Vigneswari S., Vijaya S., Majid M.I.A., Sudesh K., Sipaut C.S., Azizan M.N.M., Amirul A.A. Enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer with manipulated variables and its properties. J. Ind. Microbiol. Biotechnol. 2009;36:547–556. doi: 10.1007/s10295-009-0525-z. PubMed DOI
Huong K.-H., Mohd Yahya A.R., Amirul A.A. Pronounced synergistic influence of mixed substrate cultivation on single step copolymer P(3HB-co-4HB) biosynthesis with a wide range of 4HB monomer composition. J. Chem. Technol. Biotechnol. 2014;89:1023–1029. doi: 10.1002/jctb.4195. DOI
Lee W.-H., Azizan M.N.M., Sudesh K. Efects of culture conditions on the composition of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) synthesized by Comamonas acidovorans. Polym. Degrad. Stab. 2004;84:129–134. doi: 10.1016/j.polymdegradstab.2003.10.003. DOI
Kucera D., Novackova I., Pernicova I., Sedlacek P., Obruca S. Biotechnological Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate-co-3-hydroxyvalerate) terpolymer by Cupriavidus sp. DSM 19379. Bioengineering. 2019;6:74. doi: 10.3390/bioengineering6030074. PubMed DOI PMC
Degradation of P(3HB-co-4HB) Films in Simulated Body Fluids