Effects of Differing Monomer Compositions on Properties of P(3HB-co-4HB) Synthesized by Aneurinibacillus sp. H1 for Various Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.2.69/ 0.0/0.0/19_073/0016948
Ministry of Education Youth and Sports
PubMed
35631889
PubMed Central
PMC9146627
DOI
10.3390/polym14102007
PII: polym14102007
Knihovny.cz E-zdroje
- Klíčová slova
- Aneurinibacillus sp. H1, P(3HB-co-4HB), active ingredients release, crystallinity, mechanical properties, polyhydroxyalkanoates (PHA), surface morphology,
- Publikační typ
- časopisecké články MeSH
Films prepared from poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymers produced by Aneurinibacillus sp. H1 using an automatic film applicator were homogeneous and had a defined thickness, which allowed a detailed study of physicochemical properties. Their properties were compared with those of a poly (3-hydroxybutyrate) homopolymer film prepared by the same procedure, which proved to be significantly more crystalline by DSC and XRD. Structural differences between samples had a major impact on their properties. With increasing 4-hydroxybutyrate content, the ductility and release rate of the model hydrophilic active ingredient increased significantly. Other observed properties, such as the release of the hydrophobic active substance, the contact angle with water and ethylene glycol, or the surface morphology and roughness, were also affected by the composition. The identified properties predetermine these copolymers for wide use in areas such as biomedicine or smart biodegradable packaging for food or cosmetics. The big advantage is the possibility of fine-tuning properties simply by changing the fermentation conditions.
Zobrazit více v PubMed
Meereboer K.W., Misra M., Mohanty A.K. Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem. 2020;22:5519–5558. doi: 10.1039/D0GC01647K. DOI
Koller M., Mukherjee A. A New Wave of Industrialization of PHA Biopolyesters. Bioengineering. 2022;9:74. doi: 10.3390/bioengineering9020074. PubMed DOI PMC
Pernicova I., Novackova I., Sedlacek P., Kourilova X., Kalina M., Kovalcik A., Koller M., Nebesarova J., Krzyzanek V., Hrubanova K., et al. Introducing the newly isolated bacterium aneurinibacillus sp. H1 as an auspicious thermophilic producer of various polyhydroxyalkanoates (PHA) copolymers-1. Isolation and characterization of the bacterium. Polymers. 2020;12:1235. doi: 10.3390/polym12061235. PubMed DOI PMC
Philip S., Keshavarz T., Roy I. Polyhydroxyalkanoates: Biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 2007;82:233–247. doi: 10.1002/jctb.1667. DOI
Huong K.H., Sevakumaran V., Amirul A.A. P(3HB-co-4HB) as high value polyhydroxyalkanoate: Its development over recent decades and current advances. Crit. Rev. Biotechnol. 2021;41:474–490. doi: 10.1080/07388551.2020.1869685. PubMed DOI
Shen L., Worrell E. Handbook of Recycling. Elsevier; Amsterdam, The Netherlands: 2014. Plastic Recycling; pp. 179–190.
Luo Z., Wu Y.-L., Li Z., Loh X.J. Recent Progress in Polyhydroxyalkanoates-Based Copolymers for Biomedical Applications. Biotechnol. J. 2019;14:1900283. doi: 10.1002/biot.201900283. PubMed DOI
Sosa-Hernández J.E., Villalba-Rodríguez A.M., Romero-Castillo K.D., Zavala-Yoe R., Bilal M., Ramirez-Mendoza R.A., Parra-Saldivar R., Iqbal H.M. Poly-3-hydroxybutyrate-based constructs with novel characteristics for drug delivery and tissue engineering applications—A review. Polym. Eng. Sci. 2020;60:1760–1772. doi: 10.1002/pen.25470. DOI
Schmitz P., Janocha S. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2000. Films.
Vodicka J., Wikarska M., Trudicova M., Junglova Z., Pospisilova A., Kalina M., Slaninova E., Obruca S., Sedlacek P. Degradation of P(3HB-co-4HB) Films in Simulated Body Fluids. Polymers. 2022. Forthcoming . PubMed PMC
Obruca S., Benesova P., Oborna J., Marova I. Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate) production from oils by Cupriavidus necator. Biotechnol. Lett. 2014;36:775–781. doi: 10.1007/s10529-013-1407-z. PubMed DOI
Sedlacek P., Pernicova I., Novackova I., Kourilova X., Kalina M., Kovalcik A., Koller M., Nebesarova J., Krzyzanek V., Hrubanova K., et al. Introducing the newly isolated bacterium Aneurinibacillus sp. H1 as an auspicious thermophilic producer of various polyhydroxyalkanoates (PHA) copolymers-2. Material study on the produced copolymers. Polymers. 2020;12:1235. doi: 10.3390/polym12061298. PubMed DOI PMC
Zhu C., Chiu S., Nakas J.P., Nomura C.T. Bioplastics from waste glycerol derived from biodiesel industry. J. Appl. Polym. Sci. 2013;130:1–13. doi: 10.1002/app.39157. DOI
Tsuge T., Hyakutake M., Mizuno K. Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus. Appl. Microbiol. Biotechnol. 2015;99:6231–6240. doi: 10.1007/s00253-015-6777-9. PubMed DOI
Urbieta M.S., Donati E.R., Chan K.G., Shahar S., Sin L.L., Goh K.M. Thermophiles in the genomic era: Biodiversity, science, and applications. Biotechnol. Adv. 2015;33:633–647. doi: 10.1016/j.biotechadv.2015.04.007. PubMed DOI
Meiron T.S., Saguy I.S. Wetting properties of food packaging. Food Res. Int. 2006;40:653–659. doi: 10.1016/j.foodres.2006.11.010. DOI
Karbowiak T., Debeaufort F., Voilley A. Importance of surface tension characterization for food, pharmaceutical and packaging products: A review. Crit. Rev. Food Sci. Nutr. 2006;46:391–407. doi: 10.1080/10408390591000884. PubMed DOI
Ou W., Qiu H., Chen Z., Xu K. Biodegradable block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymers. Biomaterials. 2011;32:3178–3188. doi: 10.1016/j.biomaterials.2011.01.031. PubMed DOI
Chen Z., Cheng S., Xu K. Block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxyhexanoate-co-3-hydroxyoctanoate) Biomaterials. 2009;30:2219–2230. doi: 10.1016/j.biomaterials.2008.12.078. PubMed DOI
Sharma P., Ahuja A., Izrayeel A.M.D., Samyn P., Rastogi V.K. Physicochemical and thermal characterization of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) films incorporating thyme essential oil for active packaging of white bread. Food Control. 2022;133:108688. doi: 10.1016/j.foodcont.2021.108688. DOI
Volova T.G., Golubev A.I., Nemtsev I.V., Lukyanenko A.V., Dudaev A.E., Shishatskaya E.I. Laser processing of polymer films fabricated from phas differing in their monomer composition. Polymers. 2021;13:1553. doi: 10.3390/polym13101553. PubMed DOI PMC
Busscher H.J., van Pelt A.W.J., de Jong H.P., Arends J. Effect of spreading pressure on surface free energy determinations by means of contact angle measurements. J. Colloid Interface Sci. 1983;95:23–27. doi: 10.1016/0021-9797(83)90067-X. DOI
Volova T., Kiselev E., Nemtsev I., Lukyanenko A., Sukovatyi A., Kuzmin A., Ryltseva G., Shishatskaya E. Properties of degradable polyhydroxyalkanoates with different monomer compositions. Int. J. Biol. Macromol. 2021;182:98–114. doi: 10.1016/j.ijbiomac.2021.04.008. PubMed DOI
Doi Y., Segawa A., Kunioka M. Biosynthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Alcaligenes eutrophus. Int. J. Biol. Macromol. 1990;12:106–111. doi: 10.1016/0141-8130(90)90061-E. PubMed DOI
Chanprateep S., Buasri K., Muangwong A., Utiswannakul P. Biosynthesis and biocompatibility of biodegradable poly(3-hydroxybutyrate- co-4-hydroxybutyrate) Polym. Degrad. Stab. 2010;95:2003–2012. doi: 10.1016/j.polymdegradstab.2010.07.014. DOI
Saito Y., Doi Y. Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Comamonas acidovorans. Int. J. Biol. Macromol. 1994;16:99–104. doi: 10.1016/0141-8130(94)90022-1. PubMed DOI
Huong K.H., Azuraini M.J., Aziz N.A., Amirul A.A.A. Pilot scale production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) biopolymers with high molecular weight and elastomeric properties. J. Biosci. Bioeng. 2017;124:76–83. doi: 10.1016/j.jbiosc.2017.02.003. PubMed DOI
Huong K.H., Elina K.A.R., Amirul A.A. Production of high molecular weight poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by Cupriavidus malaysiensis USMAA1020 utilising substrate with longer carbon chain. Int. J. Biol. Macromol. 2018;116:217–223. doi: 10.1016/j.ijbiomac.2018.04.148. PubMed DOI
Gunasekaran P., Rajasekaran G., Han E.H., Chung Y.H., Choi Y.J., Yang Y.J., Lee J.E., Kim H.N., Lee K., Kim J.S., et al. Cationic Amphipathic Triazines with Potent Anti-bacterial, Anti-inflammatory and Anti-atopic Dermatitis Properties. Sci. Rep. 2019;9:1292. doi: 10.1038/s41598-018-37785-z. PubMed DOI PMC
Narahashi T., Yamada M., Frazier D.T. Cationic Forms of Local Anaesthetics block Action Potentials from Inside the Nerve Membrane. Nature. 1969;223:748–749. doi: 10.1038/223748a0. PubMed DOI
Greenspan P., Fowler S.D. Spectrofluorometric studies of the lipid probe, nile red. J. Lipid Res. 1985;26:781–789. doi: 10.1016/S0022-2275(20)34307-8. PubMed DOI