Effects of Differing Monomer Compositions on Properties of P(3HB-co-4HB) Synthesized by Aneurinibacillus sp. H1 for Various Applications

. 2022 May 13 ; 14 (10) : . [epub] 20220513

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35631889

Grantová podpora
CZ.02.2.69/ 0.0/0.0/19_073/0016948 Ministry of Education Youth and Sports

Films prepared from poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymers produced by Aneurinibacillus sp. H1 using an automatic film applicator were homogeneous and had a defined thickness, which allowed a detailed study of physicochemical properties. Their properties were compared with those of a poly (3-hydroxybutyrate) homopolymer film prepared by the same procedure, which proved to be significantly more crystalline by DSC and XRD. Structural differences between samples had a major impact on their properties. With increasing 4-hydroxybutyrate content, the ductility and release rate of the model hydrophilic active ingredient increased significantly. Other observed properties, such as the release of the hydrophobic active substance, the contact angle with water and ethylene glycol, or the surface morphology and roughness, were also affected by the composition. The identified properties predetermine these copolymers for wide use in areas such as biomedicine or smart biodegradable packaging for food or cosmetics. The big advantage is the possibility of fine-tuning properties simply by changing the fermentation conditions.

Zobrazit více v PubMed

Meereboer K.W., Misra M., Mohanty A.K. Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem. 2020;22:5519–5558. doi: 10.1039/D0GC01647K. DOI

Koller M., Mukherjee A. A New Wave of Industrialization of PHA Biopolyesters. Bioengineering. 2022;9:74. doi: 10.3390/bioengineering9020074. PubMed DOI PMC

Pernicova I., Novackova I., Sedlacek P., Kourilova X., Kalina M., Kovalcik A., Koller M., Nebesarova J., Krzyzanek V., Hrubanova K., et al. Introducing the newly isolated bacterium aneurinibacillus sp. H1 as an auspicious thermophilic producer of various polyhydroxyalkanoates (PHA) copolymers-1. Isolation and characterization of the bacterium. Polymers. 2020;12:1235. doi: 10.3390/polym12061235. PubMed DOI PMC

Philip S., Keshavarz T., Roy I. Polyhydroxyalkanoates: Biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 2007;82:233–247. doi: 10.1002/jctb.1667. DOI

Huong K.H., Sevakumaran V., Amirul A.A. P(3HB-co-4HB) as high value polyhydroxyalkanoate: Its development over recent decades and current advances. Crit. Rev. Biotechnol. 2021;41:474–490. doi: 10.1080/07388551.2020.1869685. PubMed DOI

Shen L., Worrell E. Handbook of Recycling. Elsevier; Amsterdam, The Netherlands: 2014. Plastic Recycling; pp. 179–190.

Luo Z., Wu Y.-L., Li Z., Loh X.J. Recent Progress in Polyhydroxyalkanoates-Based Copolymers for Biomedical Applications. Biotechnol. J. 2019;14:1900283. doi: 10.1002/biot.201900283. PubMed DOI

Sosa-Hernández J.E., Villalba-Rodríguez A.M., Romero-Castillo K.D., Zavala-Yoe R., Bilal M., Ramirez-Mendoza R.A., Parra-Saldivar R., Iqbal H.M. Poly-3-hydroxybutyrate-based constructs with novel characteristics for drug delivery and tissue engineering applications—A review. Polym. Eng. Sci. 2020;60:1760–1772. doi: 10.1002/pen.25470. DOI

Schmitz P., Janocha S. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2000. Films.

Vodicka J., Wikarska M., Trudicova M., Junglova Z., Pospisilova A., Kalina M., Slaninova E., Obruca S., Sedlacek P. Degradation of P(3HB-co-4HB) Films in Simulated Body Fluids. Polymers. 2022. Forthcoming . PubMed PMC

Obruca S., Benesova P., Oborna J., Marova I. Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate) production from oils by Cupriavidus necator. Biotechnol. Lett. 2014;36:775–781. doi: 10.1007/s10529-013-1407-z. PubMed DOI

Sedlacek P., Pernicova I., Novackova I., Kourilova X., Kalina M., Kovalcik A., Koller M., Nebesarova J., Krzyzanek V., Hrubanova K., et al. Introducing the newly isolated bacterium Aneurinibacillus sp. H1 as an auspicious thermophilic producer of various polyhydroxyalkanoates (PHA) copolymers-2. Material study on the produced copolymers. Polymers. 2020;12:1235. doi: 10.3390/polym12061298. PubMed DOI PMC

Zhu C., Chiu S., Nakas J.P., Nomura C.T. Bioplastics from waste glycerol derived from biodiesel industry. J. Appl. Polym. Sci. 2013;130:1–13. doi: 10.1002/app.39157. DOI

Tsuge T., Hyakutake M., Mizuno K. Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus. Appl. Microbiol. Biotechnol. 2015;99:6231–6240. doi: 10.1007/s00253-015-6777-9. PubMed DOI

Urbieta M.S., Donati E.R., Chan K.G., Shahar S., Sin L.L., Goh K.M. Thermophiles in the genomic era: Biodiversity, science, and applications. Biotechnol. Adv. 2015;33:633–647. doi: 10.1016/j.biotechadv.2015.04.007. PubMed DOI

Meiron T.S., Saguy I.S. Wetting properties of food packaging. Food Res. Int. 2006;40:653–659. doi: 10.1016/j.foodres.2006.11.010. DOI

Karbowiak T., Debeaufort F., Voilley A. Importance of surface tension characterization for food, pharmaceutical and packaging products: A review. Crit. Rev. Food Sci. Nutr. 2006;46:391–407. doi: 10.1080/10408390591000884. PubMed DOI

Ou W., Qiu H., Chen Z., Xu K. Biodegradable block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymers. Biomaterials. 2011;32:3178–3188. doi: 10.1016/j.biomaterials.2011.01.031. PubMed DOI

Chen Z., Cheng S., Xu K. Block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxyhexanoate-co-3-hydroxyoctanoate) Biomaterials. 2009;30:2219–2230. doi: 10.1016/j.biomaterials.2008.12.078. PubMed DOI

Sharma P., Ahuja A., Izrayeel A.M.D., Samyn P., Rastogi V.K. Physicochemical and thermal characterization of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) films incorporating thyme essential oil for active packaging of white bread. Food Control. 2022;133:108688. doi: 10.1016/j.foodcont.2021.108688. DOI

Volova T.G., Golubev A.I., Nemtsev I.V., Lukyanenko A.V., Dudaev A.E., Shishatskaya E.I. Laser processing of polymer films fabricated from phas differing in their monomer composition. Polymers. 2021;13:1553. doi: 10.3390/polym13101553. PubMed DOI PMC

Busscher H.J., van Pelt A.W.J., de Jong H.P., Arends J. Effect of spreading pressure on surface free energy determinations by means of contact angle measurements. J. Colloid Interface Sci. 1983;95:23–27. doi: 10.1016/0021-9797(83)90067-X. DOI

Volova T., Kiselev E., Nemtsev I., Lukyanenko A., Sukovatyi A., Kuzmin A., Ryltseva G., Shishatskaya E. Properties of degradable polyhydroxyalkanoates with different monomer compositions. Int. J. Biol. Macromol. 2021;182:98–114. doi: 10.1016/j.ijbiomac.2021.04.008. PubMed DOI

Doi Y., Segawa A., Kunioka M. Biosynthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Alcaligenes eutrophus. Int. J. Biol. Macromol. 1990;12:106–111. doi: 10.1016/0141-8130(90)90061-E. PubMed DOI

Chanprateep S., Buasri K., Muangwong A., Utiswannakul P. Biosynthesis and biocompatibility of biodegradable poly(3-hydroxybutyrate- co-4-hydroxybutyrate) Polym. Degrad. Stab. 2010;95:2003–2012. doi: 10.1016/j.polymdegradstab.2010.07.014. DOI

Saito Y., Doi Y. Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Comamonas acidovorans. Int. J. Biol. Macromol. 1994;16:99–104. doi: 10.1016/0141-8130(94)90022-1. PubMed DOI

Huong K.H., Azuraini M.J., Aziz N.A., Amirul A.A.A. Pilot scale production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) biopolymers with high molecular weight and elastomeric properties. J. Biosci. Bioeng. 2017;124:76–83. doi: 10.1016/j.jbiosc.2017.02.003. PubMed DOI

Huong K.H., Elina K.A.R., Amirul A.A. Production of high molecular weight poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by Cupriavidus malaysiensis USMAA1020 utilising substrate with longer carbon chain. Int. J. Biol. Macromol. 2018;116:217–223. doi: 10.1016/j.ijbiomac.2018.04.148. PubMed DOI

Gunasekaran P., Rajasekaran G., Han E.H., Chung Y.H., Choi Y.J., Yang Y.J., Lee J.E., Kim H.N., Lee K., Kim J.S., et al. Cationic Amphipathic Triazines with Potent Anti-bacterial, Anti-inflammatory and Anti-atopic Dermatitis Properties. Sci. Rep. 2019;9:1292. doi: 10.1038/s41598-018-37785-z. PubMed DOI PMC

Narahashi T., Yamada M., Frazier D.T. Cationic Forms of Local Anaesthetics block Action Potentials from Inside the Nerve Membrane. Nature. 1969;223:748–749. doi: 10.1038/223748a0. PubMed DOI

Greenspan P., Fowler S.D. Spectrofluorometric studies of the lipid probe, nile red. J. Lipid Res. 1985;26:781–789. doi: 10.1016/S0022-2275(20)34307-8. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...