Introducing the Newly Isolated Bacterium Aneurinibacillus sp. H1 as an Auspicious Thermophilic Producer of Various Polyhydroxyalkanoates (PHA) Copolymers-2. Material Study on the Produced Copolymers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA19-20697S
Grantová Agentura České Republiky
Brno Ph.D. Talent Scholarship Holder
Brno City Municipality
LM2015062 Czech-BioImaging
MEYS CR
CZ.02.1.01/0.0/0.0/16_013/0001775
ERDF
6SA18032
SoMoPro
PubMed
32517027
PubMed Central
PMC7362046
DOI
10.3390/polym12061298
PII: polym12061298
Knihovny.cz E-zdroje
- Klíčová slova
- Aneurinibacillus sp., P(3HB-co-3HV-co-4HB), P(3HB-co-4HB), crystallinity, polyhydroxyalkanoates, thermophiles,
- Publikační typ
- časopisecké články MeSH
Aneurinibacillus sp. H1 is a promising, moderately thermophilic, novel Gram-positive bacterium capable of the biosynthesis of polyhydroxyalkanoates (PHA) with tunable monomer composition. In particular, the strain is able to synthesize copolymers of 3-hydroxybutyrate (3HB), 4-hydroxybutyrate (4HB) and 3-hydroxyvalerate (3HV) with remarkably high 4HB and 3HV fractions. In this study we performed an in-depth material analysis of PHA polymers produced by Aneurinibacillus sp. H1 in order to describe how the monomer composition affects fundamental structural and physicochemical parameters of the materials in the form of solvent-casted films. Results of infrared spectroscopy, X-ray diffractometry and thermal analysis clearly show that controlling the monomer composition enables optimization of PHA crystallinity both qualitatively (the type of the crystalline lattice) and quantitatively (the overall degree of crystallinity). Furthermore, resistance of the films against thermal and/or enzymatic degradation can also be manipulated by the monomer composition. Results of this study hence confirm Aneurinibacillus sp. H1 as an auspicious candidate for thermophilic production of PHA polymers with material properties that can be tuned together with their chemical composition by the corresponding adjustment of the cultivation process.
Faculty of Chemistry Brno University of Technology Purkynova 118 612 00 Brno Czech Republic
Faculty of Science University of South Bohemia Branisovska 31 370 05 Ceske Budejovice Czech Republic
Institute of Chemistry NAWI Graz University of Graz Heinrichstrasse 28 6 8010 Graz Austria
Zobrazit více v PubMed
Nakajima H., Dijkstra P., Loos K. The recent developments in biobased polymers toward general and engineering applications: Polymers that are upgraded from biodegradable polymers, analogous to petroleum-derived polymers, and newly developed. Polymers. 2017;9:523. doi: 10.3390/polym9100523. PubMed DOI PMC
Obruca S., Sedlacek P., Slaninova E., Fritz I., Daffert C., Meixner K., Sedrlova Z., Koller M. Novel unexpected functions of PHA granules. Appl. Microbiol. Biotechnol. 2020 doi: 10.1007/s00253-020-10568-1. PubMed DOI
Sedlacek P., Slaninova E., Enev V., Koller M., Nebesarova J., Marova I., Hrubanova K., Krzyzanek V., Samek O., Obruca S. What keeps polyhydroxyalkanoates in bacterial cells amorphous? A derivation from stress exposure experiments. Appl. Microbiol. Biotechnol. 2019;103:1905–1917. doi: 10.1007/s00253-018-09584-z. PubMed DOI
Obruca S., Sedlacek P., Krzyzanek V., Mravec F., Hrubanova K., Samek O., Kucera D., Benesova P., Marova I. Accumulation of poly(3-hydroxybutyrate) helps bacterial cells to survive freezing. PLoS ONE. 2016;11:e0157778. doi: 10.1371/journal.pone.0157778. PubMed DOI PMC
Obruca S., Sedlacek P., Mravec F., Krzyzanek V., Nebesarova J., Samek O., Kucera D., Benesova P., Hrubanova K., Milerova M., et al. The presence of PHB granules in cytoplasm protects non-halophilic bacterial cells against the harmful impact of hypertonic environments. New Biotechnol. 2017;39:68–80. doi: 10.1016/j.nbt.2017.07.008. PubMed DOI
Slaninova E., Sedlacek P., Mravec F., Mullerova L., Samek O., Koller M., Hesko O., Kucera D., Marova I., Obruca S. Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation. Appl. Microbiol. Biotechnol. 2018;102:1923–1931. doi: 10.1007/s00253-018-8760-8. PubMed DOI
Wampfler B., Ramsauer T., Rezzonico S., Hischier R., Köhling R., Thöny-Meyer L., Zinn M. Isolation and purification of medium chain length poly(3-hydroxyalkanoates) (mcl-PHA) for medical applications using nonchlorinated solvents. Biomacromolecules. 2010;11:2716–2723. doi: 10.1021/bm1007663. PubMed DOI
Koller M. Chemical and biochemical engineering approaches in manufacturing Polyhydroxyalkanoate (PHA) biopolyesters of tailored structure with focus on the diversity of building blocks. Chem. Biochem. Eng. Q. 2019;32:413–438. doi: 10.15255/CABEQ.2018.1385. DOI
Singh A.K., Srivastava J.K., Chandel A.K., Sharma L., Mallick N., Singh S.P. Biomedical applications of microbially engineered polyhydroxyalkanoates: An insight into recent advances, bottlenecks, and solutions. Appl. Microbiol. Biotechnol. 2019;103:2007–2032. doi: 10.1007/s00253-018-09604-y. PubMed DOI
Pernicova I., Novackova I., Sedlacek P., Kourilova X., Koller M., Obruca S. Application of osmotic challenge for enrichment of microbial consortia in polyhydroxyalkanoates producing thermophilic and thermotolerant bacteria and their subsequent isolation. Int. J. Biol. Macromol. 2020;144:698–704. doi: 10.1016/j.ijbiomac.2019.12.128. PubMed DOI
Chen G.-Q., Jiang X.-R. Next generation industrial biotechnology based on extremophilic bacteria. Curr. Opin. Biotechnol. 2018;50:94–100. doi: 10.1016/j.copbio.2017.11.016. PubMed DOI
Obruca S., Benesova P., Oborna J., Marova I. Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate) production from oils by Cupriavidus necator. Biotechnol. Lett. 2014;36:775–781. doi: 10.1007/s10529-013-1407-z. PubMed DOI
Hermawan S., Jendrossek D.J. Tyrosine 105 of Paucimonas lemoignei PHB depolymerase PhaZ7 is essential for polymer binding. Polym. Degrad. Stabil. 2010;95:1429–1435. doi: 10.1016/j.polymdegradstab.2010.01.002. DOI
Amirul A.A., Yahya A.R.M., Sudesh K., Azizan M.N.M., Majid M.I.A. Biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by Cupriavidus sp. USMAA1020 isolated from Lake Kulim, Malaysia. Bioresour. Technol. 2008;99:4903–4909. doi: 10.1016/j.biortech.2007.09.040. PubMed DOI
Chanprateep S., Kulpreecha S. Production and characterization of biodegradable terpolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) by Alcaligenes sp. A-04. J. Biosci. Bioeng. 2006;101:51–56. doi: 10.1263/jbb.101.51. PubMed DOI
Tanadchangsaeng N., Yu J. Microbial synthesis of polyhydroxybutyrate from glycerol: Gluconeogenesis, molecular weight and material properties of biopolyester. Biotechnol. Bioeng. 2012;109:2808–2818. doi: 10.1002/bit.24546. PubMed DOI
Tsuge T., Hyakutake M., Mizuno K. Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus. Appl. Microbiol. Biotechnol. 2015;99:6231–6624. doi: 10.1007/s00253-015-6777-9. PubMed DOI
Porter M., Yu J. Monitoring the in situ crystallization of native biopolyester granules in Ralstonia eutropha via infrared spectroscopy. J. Microb. Meth. 2011;87:49–55. doi: 10.1016/j.mimet.2011.07.009. PubMed DOI
Kann Y., Shurgalin M., Krishnaswamy R.K. FTIR spectroscopy for analysis of crystallinity of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) polymers and its utilization in evaluation of aging, orientation and composition. Polym. Test. 2014;40:218–224. doi: 10.1016/j.polymertesting.2014.09.009. DOI
Padermshoke A., Sato H., Katsumuto Y., Ekgasit S., Noda I., Ozaki Y. Thermally induced phase transition of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) investigated by two-dimensional infrared correlation spectroscopy. Vibrat. Spec. 2004;36:241–249. doi: 10.1016/j.vibspec.2003.11.016. DOI
Kunioka M., Tamaki A., Doi Y. Crystalline and thermal properties of bacterial copolyesters: Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) Macromolecules. 1989;22:694–697. doi: 10.1021/ma00192a031. DOI
Phillipson K., Hay J.N., Jenkins M.J. Thermal analysis FTIR spectroscopy of poly(ε-caprolactone) Thermochim. Acta. 2014;595:74–82. doi: 10.1016/j.tca.2014.08.027. DOI
Yu C., Bao J., Xie Q., Shan G., Bao Y., Pan P. Crystallization behavior and crystalline structural changes of poly(glycolic acid) investigated via temperature-variable WAXD and FTIR analysis. Cryst. Eng. Comm. 2016;18:7894–7902. doi: 10.1039/C6CE01623E. DOI
Saito Y., Doi Y. Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Comamonas acidovorans. Int. J. Biol. Macromol. 1994;16:99–104. doi: 10.1016/0141-8130(94)90022-1. PubMed DOI
Gao Z., Su T., Li P., Wang Z. Biodegradation of P(3HB-co-4HB) powder by Pseudomonas mendocina for preparation low-molecular-mass P(3HB-co-4HB) 3 Biotech. 2017;7:281. doi: 10.1007/s13205-017-0824-4. PubMed DOI PMC
Su F., Iwata T., Sudesh K., Doi Y. Electron and X-ray diffraction study on poly(4-hydroxybutyrate) Polymer. 2001;42:8915–8918. doi: 10.1016/S0032-3861(01)00412-8. DOI
Keridou I., Valle L.J.D., Funk L., Turon P., Yousef I., Franco L., Puiggali J. Isothermal crystallization kinetics of poly(4-hydroxybutyrate) biopolymer. Materials. 2019;12:2488. doi: 10.3390/ma12152488. PubMed DOI PMC
Barham P.J., Keller A., Otun E.L., Holmes P.A. Crystallization and morphology of a bacterial thermoplastic: Poly-3-hydroxybutyrate. J. Mater. Sci. 1984;19:2781–2794. doi: 10.1007/BF01026954. DOI
Scandola M., Ceccorulli G., Pizzoli M., Gazzano M. Study of the crystal phase and crystallization rate of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Macromolecules. 1992;25:1405–1410. doi: 10.1021/ma00031a008. DOI
Wang X., Zhang H., Liu M., Jia D. Thermal stability of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/modified montmorillonite bio-nanocomposites. Polym. Compos. 2017;38:673–681. doi: 10.1002/pc.23626. DOI
Kim K.J., Doi Y., Abe H. Effects of residual metal compounds and chain-end structure on thermal degradation of poly(3-hydroxybutyric acid) Polym. Degrad. Stabil. 2006;91:769–777. doi: 10.1016/j.polymdegradstab.2005.06.004. DOI
Kim K.J., Doi Y., Abe H., Martin D.P. Thermal degradation behavior of poly(4-hydroxybutyric acid) Polym. Degrad. Stabil. 2006;91:2333–2341. doi: 10.1016/j.polymdegradstab.2006.04.011. DOI
Merrick J.M., Steger R., Dombroski D. Hydrolysis of native poly(hydroxybutyrate) granules (PHB), crystalline PHB, and artificial amorphous PHB granules by intracellular and extracellular depolymerases. Int. J. Biol. Macromol. 1999;25:129–134. doi: 10.1016/S0141-8130(99)00026-4. PubMed DOI
Saito Y., Nakamura S., Hiramitsu M., Doi Y. Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) Polym. Int. 1996;39:169–174. doi: 10.1002/(SICI)1097-0126(199603)39:3<169::AID-PI453>3.0.CO;2-Z. DOI