Introducing the Newly Isolated Bacterium Aneurinibacillus sp. H1 as an Auspicious Thermophilic Producer of Various Polyhydroxyalkanoates (PHA) Copolymers-2. Material Study on the Produced Copolymers

. 2020 Jun 05 ; 12 (6) : . [epub] 20200605

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32517027

Grantová podpora
GA19-20697S Grantová Agentura České Republiky
Brno Ph.D. Talent Scholarship Holder Brno City Municipality
LM2015062 Czech-BioImaging MEYS CR
CZ.02.1.01/0.0/0.0/16_013/0001775 ERDF
6SA18032 SoMoPro

Aneurinibacillus sp. H1 is a promising, moderately thermophilic, novel Gram-positive bacterium capable of the biosynthesis of polyhydroxyalkanoates (PHA) with tunable monomer composition. In particular, the strain is able to synthesize copolymers of 3-hydroxybutyrate (3HB), 4-hydroxybutyrate (4HB) and 3-hydroxyvalerate (3HV) with remarkably high 4HB and 3HV fractions. In this study we performed an in-depth material analysis of PHA polymers produced by Aneurinibacillus sp. H1 in order to describe how the monomer composition affects fundamental structural and physicochemical parameters of the materials in the form of solvent-casted films. Results of infrared spectroscopy, X-ray diffractometry and thermal analysis clearly show that controlling the monomer composition enables optimization of PHA crystallinity both qualitatively (the type of the crystalline lattice) and quantitatively (the overall degree of crystallinity). Furthermore, resistance of the films against thermal and/or enzymatic degradation can also be manipulated by the monomer composition. Results of this study hence confirm Aneurinibacillus sp. H1 as an auspicious candidate for thermophilic production of PHA polymers with material properties that can be tuned together with their chemical composition by the corresponding adjustment of the cultivation process.

Zobrazit více v PubMed

Nakajima H., Dijkstra P., Loos K. The recent developments in biobased polymers toward general and engineering applications: Polymers that are upgraded from biodegradable polymers, analogous to petroleum-derived polymers, and newly developed. Polymers. 2017;9:523. doi: 10.3390/polym9100523. PubMed DOI PMC

Obruca S., Sedlacek P., Slaninova E., Fritz I., Daffert C., Meixner K., Sedrlova Z., Koller M. Novel unexpected functions of PHA granules. Appl. Microbiol. Biotechnol. 2020 doi: 10.1007/s00253-020-10568-1. PubMed DOI

Sedlacek P., Slaninova E., Enev V., Koller M., Nebesarova J., Marova I., Hrubanova K., Krzyzanek V., Samek O., Obruca S. What keeps polyhydroxyalkanoates in bacterial cells amorphous? A derivation from stress exposure experiments. Appl. Microbiol. Biotechnol. 2019;103:1905–1917. doi: 10.1007/s00253-018-09584-z. PubMed DOI

Obruca S., Sedlacek P., Krzyzanek V., Mravec F., Hrubanova K., Samek O., Kucera D., Benesova P., Marova I. Accumulation of poly(3-hydroxybutyrate) helps bacterial cells to survive freezing. PLoS ONE. 2016;11:e0157778. doi: 10.1371/journal.pone.0157778. PubMed DOI PMC

Obruca S., Sedlacek P., Mravec F., Krzyzanek V., Nebesarova J., Samek O., Kucera D., Benesova P., Hrubanova K., Milerova M., et al. The presence of PHB granules in cytoplasm protects non-halophilic bacterial cells against the harmful impact of hypertonic environments. New Biotechnol. 2017;39:68–80. doi: 10.1016/j.nbt.2017.07.008. PubMed DOI

Slaninova E., Sedlacek P., Mravec F., Mullerova L., Samek O., Koller M., Hesko O., Kucera D., Marova I., Obruca S. Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation. Appl. Microbiol. Biotechnol. 2018;102:1923–1931. doi: 10.1007/s00253-018-8760-8. PubMed DOI

Wampfler B., Ramsauer T., Rezzonico S., Hischier R., Köhling R., Thöny-Meyer L., Zinn M. Isolation and purification of medium chain length poly(3-hydroxyalkanoates) (mcl-PHA) for medical applications using nonchlorinated solvents. Biomacromolecules. 2010;11:2716–2723. doi: 10.1021/bm1007663. PubMed DOI

Koller M. Chemical and biochemical engineering approaches in manufacturing Polyhydroxyalkanoate (PHA) biopolyesters of tailored structure with focus on the diversity of building blocks. Chem. Biochem. Eng. Q. 2019;32:413–438. doi: 10.15255/CABEQ.2018.1385. DOI

Singh A.K., Srivastava J.K., Chandel A.K., Sharma L., Mallick N., Singh S.P. Biomedical applications of microbially engineered polyhydroxyalkanoates: An insight into recent advances, bottlenecks, and solutions. Appl. Microbiol. Biotechnol. 2019;103:2007–2032. doi: 10.1007/s00253-018-09604-y. PubMed DOI

Pernicova I., Novackova I., Sedlacek P., Kourilova X., Koller M., Obruca S. Application of osmotic challenge for enrichment of microbial consortia in polyhydroxyalkanoates producing thermophilic and thermotolerant bacteria and their subsequent isolation. Int. J. Biol. Macromol. 2020;144:698–704. doi: 10.1016/j.ijbiomac.2019.12.128. PubMed DOI

Chen G.-Q., Jiang X.-R. Next generation industrial biotechnology based on extremophilic bacteria. Curr. Opin. Biotechnol. 2018;50:94–100. doi: 10.1016/j.copbio.2017.11.016. PubMed DOI

Obruca S., Benesova P., Oborna J., Marova I. Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate) production from oils by Cupriavidus necator. Biotechnol. Lett. 2014;36:775–781. doi: 10.1007/s10529-013-1407-z. PubMed DOI

Hermawan S., Jendrossek D.J. Tyrosine 105 of Paucimonas lemoignei PHB depolymerase PhaZ7 is essential for polymer binding. Polym. Degrad. Stabil. 2010;95:1429–1435. doi: 10.1016/j.polymdegradstab.2010.01.002. DOI

Amirul A.A., Yahya A.R.M., Sudesh K., Azizan M.N.M., Majid M.I.A. Biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by Cupriavidus sp. USMAA1020 isolated from Lake Kulim, Malaysia. Bioresour. Technol. 2008;99:4903–4909. doi: 10.1016/j.biortech.2007.09.040. PubMed DOI

Chanprateep S., Kulpreecha S. Production and characterization of biodegradable terpolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) by Alcaligenes sp. A-04. J. Biosci. Bioeng. 2006;101:51–56. doi: 10.1263/jbb.101.51. PubMed DOI

Tanadchangsaeng N., Yu J. Microbial synthesis of polyhydroxybutyrate from glycerol: Gluconeogenesis, molecular weight and material properties of biopolyester. Biotechnol. Bioeng. 2012;109:2808–2818. doi: 10.1002/bit.24546. PubMed DOI

Tsuge T., Hyakutake M., Mizuno K. Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus. Appl. Microbiol. Biotechnol. 2015;99:6231–6624. doi: 10.1007/s00253-015-6777-9. PubMed DOI

Porter M., Yu J. Monitoring the in situ crystallization of native biopolyester granules in Ralstonia eutropha via infrared spectroscopy. J. Microb. Meth. 2011;87:49–55. doi: 10.1016/j.mimet.2011.07.009. PubMed DOI

Kann Y., Shurgalin M., Krishnaswamy R.K. FTIR spectroscopy for analysis of crystallinity of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) polymers and its utilization in evaluation of aging, orientation and composition. Polym. Test. 2014;40:218–224. doi: 10.1016/j.polymertesting.2014.09.009. DOI

Padermshoke A., Sato H., Katsumuto Y., Ekgasit S., Noda I., Ozaki Y. Thermally induced phase transition of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) investigated by two-dimensional infrared correlation spectroscopy. Vibrat. Spec. 2004;36:241–249. doi: 10.1016/j.vibspec.2003.11.016. DOI

Kunioka M., Tamaki A., Doi Y. Crystalline and thermal properties of bacterial copolyesters: Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) Macromolecules. 1989;22:694–697. doi: 10.1021/ma00192a031. DOI

Phillipson K., Hay J.N., Jenkins M.J. Thermal analysis FTIR spectroscopy of poly(ε-caprolactone) Thermochim. Acta. 2014;595:74–82. doi: 10.1016/j.tca.2014.08.027. DOI

Yu C., Bao J., Xie Q., Shan G., Bao Y., Pan P. Crystallization behavior and crystalline structural changes of poly(glycolic acid) investigated via temperature-variable WAXD and FTIR analysis. Cryst. Eng. Comm. 2016;18:7894–7902. doi: 10.1039/C6CE01623E. DOI

Saito Y., Doi Y. Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Comamonas acidovorans. Int. J. Biol. Macromol. 1994;16:99–104. doi: 10.1016/0141-8130(94)90022-1. PubMed DOI

Gao Z., Su T., Li P., Wang Z. Biodegradation of P(3HB-co-4HB) powder by Pseudomonas mendocina for preparation low-molecular-mass P(3HB-co-4HB) 3 Biotech. 2017;7:281. doi: 10.1007/s13205-017-0824-4. PubMed DOI PMC

Su F., Iwata T., Sudesh K., Doi Y. Electron and X-ray diffraction study on poly(4-hydroxybutyrate) Polymer. 2001;42:8915–8918. doi: 10.1016/S0032-3861(01)00412-8. DOI

Keridou I., Valle L.J.D., Funk L., Turon P., Yousef I., Franco L., Puiggali J. Isothermal crystallization kinetics of poly(4-hydroxybutyrate) biopolymer. Materials. 2019;12:2488. doi: 10.3390/ma12152488. PubMed DOI PMC

Barham P.J., Keller A., Otun E.L., Holmes P.A. Crystallization and morphology of a bacterial thermoplastic: Poly-3-hydroxybutyrate. J. Mater. Sci. 1984;19:2781–2794. doi: 10.1007/BF01026954. DOI

Scandola M., Ceccorulli G., Pizzoli M., Gazzano M. Study of the crystal phase and crystallization rate of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Macromolecules. 1992;25:1405–1410. doi: 10.1021/ma00031a008. DOI

Wang X., Zhang H., Liu M., Jia D. Thermal stability of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/modified montmorillonite bio-nanocomposites. Polym. Compos. 2017;38:673–681. doi: 10.1002/pc.23626. DOI

Kim K.J., Doi Y., Abe H. Effects of residual metal compounds and chain-end structure on thermal degradation of poly(3-hydroxybutyric acid) Polym. Degrad. Stabil. 2006;91:769–777. doi: 10.1016/j.polymdegradstab.2005.06.004. DOI

Kim K.J., Doi Y., Abe H., Martin D.P. Thermal degradation behavior of poly(4-hydroxybutyric acid) Polym. Degrad. Stabil. 2006;91:2333–2341. doi: 10.1016/j.polymdegradstab.2006.04.011. DOI

Merrick J.M., Steger R., Dombroski D. Hydrolysis of native poly(hydroxybutyrate) granules (PHB), crystalline PHB, and artificial amorphous PHB granules by intracellular and extracellular depolymerases. Int. J. Biol. Macromol. 1999;25:129–134. doi: 10.1016/S0141-8130(99)00026-4. PubMed DOI

Saito Y., Nakamura S., Hiramitsu M., Doi Y. Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) Polym. Int. 1996;39:169–174. doi: 10.1002/(SICI)1097-0126(199603)39:3<169::AID-PI453>3.0.CO;2-Z. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Degradation of P(3HB-co-4HB) Films in Simulated Body Fluids

. 2022 May 13 ; 14 (10) : . [epub] 20220513

Effects of Differing Monomer Compositions on Properties of P(3HB-co-4HB) Synthesized by Aneurinibacillus sp. H1 for Various Applications

. 2022 May 13 ; 14 (10) : . [epub] 20220513

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace