Degradation of P(3HB-co-4HB) Films in Simulated Body Fluids

. 2022 May 13 ; 14 (10) : . [epub] 20220513

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35631874

Grantová podpora
CZ.02.2.69/ 0.0/0.0/19_073/0016948 Ministry of Education Youth and Sports

A novel model of biodegradable PHA copolymer films preparation was applied to evaluate the biodegradability of various PHA copolymers and to discuss its biomedical applicability. In this study, we illustrate the potential biomaterial degradation rate affectability by manipulation of monomer composition via controlling the biosynthetic strategies. Within the experimental investigation, we have prepared two different copolymers of 3-hydroxybutyrate and 4-hydroxybutyrate-P(3HB-co-36 mol.% 4HB) and P(3HB-co-66 mol.% 4HB), by cultivating the thermophilic bacterial strain Aneurinibacillus sp. H1 and further investigated its degradability in simulated body fluids (SBFs). Both copolymers revealed faster weight reduction in synthetic gastric juice (SGJ) and artificial colonic fluid (ACF) than simple homopolymer P3HB. In addition, degradation mechanisms differed across tested polymers, according to SEM micrographs. While incubated in SGJ, samples were fragmented due to fast hydrolysis sourcing from substantially low pH, which suggest abiotic degradation as the major degradation mechanism. On the contrary, ACF incubation indicated obvious enzymatic hydrolysis. Further, no cytotoxicity of the waste fluids was observed on CaCO-2 cell line. Based on these results in combination with high production flexibility, we suggest P(3HB-co-4HB) copolymers produced by Aneurinibacillus sp. H1 as being very auspicious polymers for intestinal in vivo treatments.

Zobrazit více v PubMed

Koller M., Mukherjee A. A New Wave of Industrialization of PHA Biopolyesters. Bioengineering. 2022;9:74. doi: 10.3390/bioengineering9020074. PubMed DOI PMC

Utsunomia C., Ren Q., Zinn M. Poly(4-Hydroxybutyrate): Current State and Perspectives. Front. Bioeng. Biotechnol. 2020;8:257. doi: 10.3389/fbioe.2020.00257. PubMed DOI PMC

Jendrossek D., Handrick R. Microbial Degradation of Polyhydroxyalkanoates. Annu. Rev. Microbiol. 2002;56:403–432. doi: 10.1146/annurev.micro.56.012302.160838. PubMed DOI

Koller M., Mukherjee A. Polyhydroxyalkanoates—Linking Properties, Applications and End-of-life Options. Chem. Biochem. Eng. Q. 2020;34:115–129. doi: 10.15255/CABEQ.2020.1819. DOI

Jaeger E.K., Steinbüchel A., Jendrossek D. Substrate specificities of bacterial polyhydroxyalkanoate depolymerases and lipases: Bacterial lipases hydrolyze poly(omega-hydroxyalkanoates) Appl. Environ. Microbiol. 1995;61:3113–3118. doi: 10.1128/aem.61.8.3113-3118.1995. PubMed DOI PMC

Mok P.-S., Ch’Ng D.H.-E., Ong S.-P., Numata K., Sudesh K. Characterization of the depolymerizing activity of commercial lipases and detection of lipase-like activities in animal organ extracts using poly(3-hydroxybutyrate-co-4-hydroxybutyrate) thin film. AMB Express. 2016;6:97. doi: 10.1186/s13568-016-0230-z. PubMed DOI PMC

Keridou I., Franco L., Del Valle L.J., Martínez J.C., Funk L., Turon P., Puiggalí J. Microstructural Changes during Degradation of Biobased Poly(4-Hydroxybutyrate) Sutures. Polymers. 2020;12:2024. doi: 10.3390/polym12092024. PubMed DOI PMC

Keridou I., Franco L., del Valle L.J., Martínez J.C., Funk L., Turon P., Puiggalí J. Hydrolytic and enzymatic degradation of biobased poly(4-hydroxybutyrate) films. Selective etching of spherulites. Polym. Degrad. Stab. 2020;183:109451. doi: 10.1016/j.polymdegradstab.2020.109451. DOI

Boyandin A.N., Prudnikova S.V., Filipenko M.L., Khrapov E.A., Vasil’Ev A.D., Volova T.G. Biodegradation of polyhydroxyalkanoates by soil microbial communities of different structures and detection of PHA degrading microorganisms. Appl. Biochem. Microbiol. 2011;48:28–36. doi: 10.1134/S0003683812010024. PubMed DOI

Prudnikova S.V., Vinogradova O.N., Trusova M.Y. Specific character of bacterial biodegradation of polyhydroxyalkanoates with different chemical structure in soil. Dokl. Biochem. Biophys. 2017;473:94–97. doi: 10.1134/S1607672917010185. PubMed DOI

Chen G.-Q., Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials. 2005;26:6565–6578. doi: 10.1016/j.biomaterials.2005.04.036. PubMed DOI

Luo Z., Wu Y., Li Z., Loh X.J. Recent Progress in Polyhydroxyalkanoates-Based Copolymers for Biomedical Applications. Biotechnol. J. 2019;14:1900283. doi: 10.1002/biot.201900283. PubMed DOI

Rodriguez-Contreras A. Recent Advances in the Use of Polyhydroyalkanoates in Biomedicine. Bioengineering. 2019;6:82. doi: 10.3390/bioengineering6030082. PubMed DOI PMC

Pernicova I., Novackova I., Sedlacek P., Kourilova X., Kalina M., Kovalcik A., Koller M., Nebesarova J., Krzyzanek V., Hrubanova K., et al. Introducing the Newly Isolated Bacterium Aneurinibacillus sp. H1 as an Auspicious Thermophilic Producer of Various Polyhydroxyalkanoates (PHA) Copolymers–1. Isolation and Characterization of the Bacterium. Polymers. 2020;12:1235. doi: 10.3390/polym12061235. PubMed DOI PMC

Obruca S., Benesova P., Oborná J., Marova I. Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate) production from oils by Cupriavidus necator. Biotechnol. Lett. 2013;36:775–781. doi: 10.1007/s10529-013-1407-z. PubMed DOI

Marques M.R.C., Loebenberg R., Almukainzi M. Simulated Fluids. Dissolution Technol. 2011;18:15–28. doi: 10.14227/DT180311P15. DOI

Sedlacek P., Pernicova I., Novackova I., Kourilova X., Kalina M., Kovalcik A., Koller M., Nebesarova J., Krzyzanek V., Hrubanova K., et al. Introducing the Newly Isolated Bacterium Aneurinibacillus sp. H1 as an Auspicious Thermophilic Producer of Various Polyhydroxyalkanoates (PHA) Copolymers–2. Material Study on the Produced Copolymers. Polymers. 2020;12:1298. doi: 10.3390/polym12061298. PubMed DOI PMC

Li X., Turánek J., Knötigová P., Kudláčková H., Masek J., Parkin S., Rankin S., Knutson B.L., Lehmler H.-J. Hydrophobic tail length, degree of fluorination and headgroup stereochemistry are determinants of the biocompatibility of (fluorinated) carbohydrate surfactants. Colloids Surf. B Biointerfaces. 2009;73:65–74. doi: 10.1016/j.colsurfb.2009.04.023. PubMed DOI PMC

Volova T.G., Gladyshev M.I., Trusova M.Y., Zhila N.O. Degradation of polyhydroxyalkanoates and the composition of microbial destructors under natural conditions. Microbiology. 2006;75:593–598. doi: 10.1134/S0026261706050092. PubMed DOI

Qu X.-H., Wu Q., Zhang K.-Y., Chen G. In vivo studies of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) based polymers: Biodegradation and tissue reactions. Biomaterials. 2006;27:3540–3548. doi: 10.1016/j.biomaterials.2006.02.015. PubMed DOI

Boskhomdzhiev A.P., Bonartsev A.P., Makhina T.K., Myshkina V.L., Ivanov E.A., Bagrov D., Filatova E.V., Iordanskii A.L., Bonartseva G. Biodegradation kinetics of poly(3-hydroxybutyrate)-based biopolymer systems. Biochem. (Moscow) Suppl. Ser. B Biomed. Chem. 2010;4:177–183. doi: 10.1134/S1990750810020083. PubMed DOI

Gutierrez-Wing M.T., Stevens B.E., Theegala C.S., Negulescu I.I., Rusch K.A. Aerobic Biodegradation of Polyhydroxybutyrate in Compost. Environ. Eng. Sci. 2011;28:477–488. doi: 10.1089/ees.2010.0208. DOI

Deroiné M., César G., Le Duigou A., Davies P., Bruzaud S. Natural Degradation and Biodegradation of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) in Liquid and Solid Marine Environments. J. Polym. Environ. 2015;23:493–505. doi: 10.1007/s10924-015-0736-5. DOI

Han J., Wu L., Liu X.-B., Hou J., Zhao L.-L., Chen J.-Y., Zhao D.-H., Xiang H. Biodegradation and biocompatibility of haloarchaea-produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymers. Biomaterials. 2017;139:172–186. doi: 10.1016/j.biomaterials.2017.06.006. PubMed DOI

Zhuikov V.A., Zhuikova Y.V., Makhina T.K., Myshkina V.L., Rusakov A., Useinov A., Voinova V.V., Bonartseva G.A., Berlin A.A., Bonartsev A.P., et al. Comparative Structure-Property Characterization of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)s Films under Hydrolytic and Enzymatic Degradation: Finding a Transition Point in 3-Hydroxyvalerate Content. Polymers. 2020;12:728. doi: 10.3390/polym12030728. PubMed DOI PMC

Kovalcik A., Obruca S., Kalina M., Machovsky M., Enev V., Jakesova M., Sobkova M., Marova I. Enzymatic Hydrolysis of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Scaffolds. Materials. 2020;13:2992. doi: 10.3390/ma13132992. PubMed DOI PMC

Chuah J.-A., Yamada M., Taguchi S., Sudesh K., Doi Y., Numata K. Biosynthesis and characterization of polyhydroxyalkanoate containing 5-hydroxyvalerate units: Effects of 5HV units on biodegradability, cytotoxicity, mechanical and thermal properties. Polym. Degrad. Stab. 2012;98:331–338. doi: 10.1016/j.polymdegradstab.2012.09.008. DOI

Freier T., Kunze C., Nischan C., Kramer S., Sternberg K., Saß M., Hopt U.T., Schmitz K.-P. In vitro and in vivo degradation studies for development of a biodegradable patch based on poly(3-hydroxybutyrate) Biomaterials. 2002;23:2649–2657. doi: 10.1016/S0142-9612(01)00405-7. PubMed DOI

YDoi Y., Kanesawa Y., Kunioka M., Saito T. Biodegradation of microbial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) Macromolecules. 1990;23:26–31. doi: 10.1021/ma00203a006. DOI

Bonartsev A., Boskhomodgiev A.P., Iordanskii A.L., Bonartseva G., Rebrov A.V., Makhina T.K., Myshkina V.L., Yakovlev S.A., Filatova E.A., Ivanov E.A., et al. Hydrolytic Degradation of Poly(3-hydroxybutyrate), Polylactide and their Derivatives: Kinetics, Crystallinity, and Surface Morphology. Mol. Cryst. Liq. Cryst. 2012;556:288–300. doi: 10.1080/15421406.2012.635982. DOI

Olkhov A., Tyubaeva P., Vetcher A., Karpova S., Kurnosov A., Rogovina S., Iordanskii A., Berlin A. Aggressive Impacts Affecting the Biodegradable Ultrathin Fibers Based on Poly(3-Hydroxybutyrate), Polylactide and Their Blends: Water Sorption, Hydrolysis and Ozonolysis. Polymers. 2021;13:941. doi: 10.3390/polym13060941. PubMed DOI PMC

Numata K., Abe H., Iwata T. Biodegradability of Poly(hydroxyalkanoate) Materials. Materials. 2009;2:1104–1126. doi: 10.3390/ma2031104. DOI

Chang H.-M., Huang C.-C., Tsai H.-C., Imae T., Hong P.-D. Characterization and morphology analysis of degradable poly(l-lactide) film in in-vitro gastric juice incubation. Appl. Surf. Sci. 2012;262:89–94. doi: 10.1016/j.apsusc.2012.02.087. DOI

Tarazona N.A., Machatschek R., Lendlein A. Influence of Depolymerases and Lipases on the Degradation of Polyhydroxyalkanoates Determined in Langmuir Degradation Studies. Adv. Mater. Interfaces. 2020;7:2000872. doi: 10.1002/admi.202000872. DOI

Chang H.-M., Prasannan A., Tsai H.-C., Jhu J.-J. Ex vivo evaluation of biodegradable poly(ɛ-caprolactone) films in digestive fluids. Appl. Surf. Sci. 2014;313:828–833. doi: 10.1016/j.apsusc.2014.06.082. DOI

Peng H., Ling J., Liu J., Zhu N., Ni X., Shen Z. Controlled enzymatic degradation of poly(ɛ-caprolactone)-based copolymers in the presence of porcine pancreatic lipase. Polym. Degrad. Stab. 2010;95:643–650. doi: 10.1016/j.polymdegradstab.2009.12.005. DOI

Ladd M.R., Costello C.M., Gosztyla C., Werts A.D., Johnson B., Fulton W.B., Martin L.Y., Redfield E.J., Crawford B., Panaparambil R., et al. Development of Intestinal Scaffolds that Mimic Native Mammalian Intestinal Tissue. Tissue Eng. Part A. 2019;25:1225–1241. doi: 10.1089/ten.tea.2018.0239. PubMed DOI PMC

Wu L., Li X., Li P., Pan L., Ji Z., Feng Y., Shi C. Bioabsorbable flexible elastomer of PTMC-b-PEG-b-PTMC copolymer as intestinal anastomosis scaffold. Polym. Adv. Technol. 2021;32:3633–3645. doi: 10.1002/pat.5371. DOI

Pernicová I., Kucera D., Nebesarova J., Kalina M., Novackova I., Koller M., Obruca S. Production of polyhydroxyalkanoates on waste frying oil employing selected Halomonas strains. Bioresour. Technol. 2019;292:122028. doi: 10.1016/j.biortech.2019.122028. PubMed DOI

Kourilova X., Pernicova I., Sedlar K., Musilova J., Sedlacek P., Kalina M., Koller M., Obruca S. Production of polyhydroxyalkanoates (PHA) by a thermophilic strain of Schlegelella thermodepolymerans from xylose rich substrates. Bioresour. Technol. 2020;315:12388. doi: 10.1016/j.biortech.2020.123885. PubMed DOI

Sabbagh F., Muhamad I.I. Production of poly-hydroxyalkanoate as secondary metabolite with main focus on sustainable energy. Renew. Sustain. Energy Rev. 2017;72:95–104. doi: 10.1016/j.rser.2016.11.012. DOI

Saratale G.D., Saratale R.G., Varjani S., Cho S.-K., Ghodake G.S., Kadam A., I Mulla S., Bharagava R.N., Kim D.-S., Shin H.S. Development of ultrasound aided chemical pretreatment methods to enrich saccharification of wheat waste biomass for polyhydroxybutyrate production and its characterization. Ind. Crop. Prod. 2020;150:112425. doi: 10.1016/j.indcrop.2020.112425. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...