Degradation of P(3HB-co-4HB) Films in Simulated Body Fluids
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.2.69/ 0.0/0.0/19_073/0016948
Ministry of Education Youth and Sports
PubMed
35631874
PubMed Central
PMC9143980
DOI
10.3390/polym14101990
PII: polym14101990
Knihovny.cz E-zdroje
- Klíčová slova
- Aneurinibacillus sp. H1, PHA copolymers, biodegradation, polyhydroxyalkanoates (PHA), simulated body fluids,
- Publikační typ
- časopisecké články MeSH
A novel model of biodegradable PHA copolymer films preparation was applied to evaluate the biodegradability of various PHA copolymers and to discuss its biomedical applicability. In this study, we illustrate the potential biomaterial degradation rate affectability by manipulation of monomer composition via controlling the biosynthetic strategies. Within the experimental investigation, we have prepared two different copolymers of 3-hydroxybutyrate and 4-hydroxybutyrate-P(3HB-co-36 mol.% 4HB) and P(3HB-co-66 mol.% 4HB), by cultivating the thermophilic bacterial strain Aneurinibacillus sp. H1 and further investigated its degradability in simulated body fluids (SBFs). Both copolymers revealed faster weight reduction in synthetic gastric juice (SGJ) and artificial colonic fluid (ACF) than simple homopolymer P3HB. In addition, degradation mechanisms differed across tested polymers, according to SEM micrographs. While incubated in SGJ, samples were fragmented due to fast hydrolysis sourcing from substantially low pH, which suggest abiotic degradation as the major degradation mechanism. On the contrary, ACF incubation indicated obvious enzymatic hydrolysis. Further, no cytotoxicity of the waste fluids was observed on CaCO-2 cell line. Based on these results in combination with high production flexibility, we suggest P(3HB-co-4HB) copolymers produced by Aneurinibacillus sp. H1 as being very auspicious polymers for intestinal in vivo treatments.
Zobrazit více v PubMed
Koller M., Mukherjee A. A New Wave of Industrialization of PHA Biopolyesters. Bioengineering. 2022;9:74. doi: 10.3390/bioengineering9020074. PubMed DOI PMC
Utsunomia C., Ren Q., Zinn M. Poly(4-Hydroxybutyrate): Current State and Perspectives. Front. Bioeng. Biotechnol. 2020;8:257. doi: 10.3389/fbioe.2020.00257. PubMed DOI PMC
Jendrossek D., Handrick R. Microbial Degradation of Polyhydroxyalkanoates. Annu. Rev. Microbiol. 2002;56:403–432. doi: 10.1146/annurev.micro.56.012302.160838. PubMed DOI
Koller M., Mukherjee A. Polyhydroxyalkanoates—Linking Properties, Applications and End-of-life Options. Chem. Biochem. Eng. Q. 2020;34:115–129. doi: 10.15255/CABEQ.2020.1819. DOI
Jaeger E.K., Steinbüchel A., Jendrossek D. Substrate specificities of bacterial polyhydroxyalkanoate depolymerases and lipases: Bacterial lipases hydrolyze poly(omega-hydroxyalkanoates) Appl. Environ. Microbiol. 1995;61:3113–3118. doi: 10.1128/aem.61.8.3113-3118.1995. PubMed DOI PMC
Mok P.-S., Ch’Ng D.H.-E., Ong S.-P., Numata K., Sudesh K. Characterization of the depolymerizing activity of commercial lipases and detection of lipase-like activities in animal organ extracts using poly(3-hydroxybutyrate-co-4-hydroxybutyrate) thin film. AMB Express. 2016;6:97. doi: 10.1186/s13568-016-0230-z. PubMed DOI PMC
Keridou I., Franco L., Del Valle L.J., Martínez J.C., Funk L., Turon P., Puiggalí J. Microstructural Changes during Degradation of Biobased Poly(4-Hydroxybutyrate) Sutures. Polymers. 2020;12:2024. doi: 10.3390/polym12092024. PubMed DOI PMC
Keridou I., Franco L., del Valle L.J., Martínez J.C., Funk L., Turon P., Puiggalí J. Hydrolytic and enzymatic degradation of biobased poly(4-hydroxybutyrate) films. Selective etching of spherulites. Polym. Degrad. Stab. 2020;183:109451. doi: 10.1016/j.polymdegradstab.2020.109451. DOI
Boyandin A.N., Prudnikova S.V., Filipenko M.L., Khrapov E.A., Vasil’Ev A.D., Volova T.G. Biodegradation of polyhydroxyalkanoates by soil microbial communities of different structures and detection of PHA degrading microorganisms. Appl. Biochem. Microbiol. 2011;48:28–36. doi: 10.1134/S0003683812010024. PubMed DOI
Prudnikova S.V., Vinogradova O.N., Trusova M.Y. Specific character of bacterial biodegradation of polyhydroxyalkanoates with different chemical structure in soil. Dokl. Biochem. Biophys. 2017;473:94–97. doi: 10.1134/S1607672917010185. PubMed DOI
Chen G.-Q., Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials. 2005;26:6565–6578. doi: 10.1016/j.biomaterials.2005.04.036. PubMed DOI
Luo Z., Wu Y., Li Z., Loh X.J. Recent Progress in Polyhydroxyalkanoates-Based Copolymers for Biomedical Applications. Biotechnol. J. 2019;14:1900283. doi: 10.1002/biot.201900283. PubMed DOI
Rodriguez-Contreras A. Recent Advances in the Use of Polyhydroyalkanoates in Biomedicine. Bioengineering. 2019;6:82. doi: 10.3390/bioengineering6030082. PubMed DOI PMC
Pernicova I., Novackova I., Sedlacek P., Kourilova X., Kalina M., Kovalcik A., Koller M., Nebesarova J., Krzyzanek V., Hrubanova K., et al. Introducing the Newly Isolated Bacterium Aneurinibacillus sp. H1 as an Auspicious Thermophilic Producer of Various Polyhydroxyalkanoates (PHA) Copolymers–1. Isolation and Characterization of the Bacterium. Polymers. 2020;12:1235. doi: 10.3390/polym12061235. PubMed DOI PMC
Obruca S., Benesova P., Oborná J., Marova I. Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate) production from oils by Cupriavidus necator. Biotechnol. Lett. 2013;36:775–781. doi: 10.1007/s10529-013-1407-z. PubMed DOI
Marques M.R.C., Loebenberg R., Almukainzi M. Simulated Fluids. Dissolution Technol. 2011;18:15–28. doi: 10.14227/DT180311P15. DOI
Sedlacek P., Pernicova I., Novackova I., Kourilova X., Kalina M., Kovalcik A., Koller M., Nebesarova J., Krzyzanek V., Hrubanova K., et al. Introducing the Newly Isolated Bacterium Aneurinibacillus sp. H1 as an Auspicious Thermophilic Producer of Various Polyhydroxyalkanoates (PHA) Copolymers–2. Material Study on the Produced Copolymers. Polymers. 2020;12:1298. doi: 10.3390/polym12061298. PubMed DOI PMC
Li X., Turánek J., Knötigová P., Kudláčková H., Masek J., Parkin S., Rankin S., Knutson B.L., Lehmler H.-J. Hydrophobic tail length, degree of fluorination and headgroup stereochemistry are determinants of the biocompatibility of (fluorinated) carbohydrate surfactants. Colloids Surf. B Biointerfaces. 2009;73:65–74. doi: 10.1016/j.colsurfb.2009.04.023. PubMed DOI PMC
Volova T.G., Gladyshev M.I., Trusova M.Y., Zhila N.O. Degradation of polyhydroxyalkanoates and the composition of microbial destructors under natural conditions. Microbiology. 2006;75:593–598. doi: 10.1134/S0026261706050092. PubMed DOI
Qu X.-H., Wu Q., Zhang K.-Y., Chen G. In vivo studies of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) based polymers: Biodegradation and tissue reactions. Biomaterials. 2006;27:3540–3548. doi: 10.1016/j.biomaterials.2006.02.015. PubMed DOI
Boskhomdzhiev A.P., Bonartsev A.P., Makhina T.K., Myshkina V.L., Ivanov E.A., Bagrov D., Filatova E.V., Iordanskii A.L., Bonartseva G. Biodegradation kinetics of poly(3-hydroxybutyrate)-based biopolymer systems. Biochem. (Moscow) Suppl. Ser. B Biomed. Chem. 2010;4:177–183. doi: 10.1134/S1990750810020083. PubMed DOI
Gutierrez-Wing M.T., Stevens B.E., Theegala C.S., Negulescu I.I., Rusch K.A. Aerobic Biodegradation of Polyhydroxybutyrate in Compost. Environ. Eng. Sci. 2011;28:477–488. doi: 10.1089/ees.2010.0208. DOI
Deroiné M., César G., Le Duigou A., Davies P., Bruzaud S. Natural Degradation and Biodegradation of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) in Liquid and Solid Marine Environments. J. Polym. Environ. 2015;23:493–505. doi: 10.1007/s10924-015-0736-5. DOI
Han J., Wu L., Liu X.-B., Hou J., Zhao L.-L., Chen J.-Y., Zhao D.-H., Xiang H. Biodegradation and biocompatibility of haloarchaea-produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymers. Biomaterials. 2017;139:172–186. doi: 10.1016/j.biomaterials.2017.06.006. PubMed DOI
Zhuikov V.A., Zhuikova Y.V., Makhina T.K., Myshkina V.L., Rusakov A., Useinov A., Voinova V.V., Bonartseva G.A., Berlin A.A., Bonartsev A.P., et al. Comparative Structure-Property Characterization of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)s Films under Hydrolytic and Enzymatic Degradation: Finding a Transition Point in 3-Hydroxyvalerate Content. Polymers. 2020;12:728. doi: 10.3390/polym12030728. PubMed DOI PMC
Kovalcik A., Obruca S., Kalina M., Machovsky M., Enev V., Jakesova M., Sobkova M., Marova I. Enzymatic Hydrolysis of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Scaffolds. Materials. 2020;13:2992. doi: 10.3390/ma13132992. PubMed DOI PMC
Chuah J.-A., Yamada M., Taguchi S., Sudesh K., Doi Y., Numata K. Biosynthesis and characterization of polyhydroxyalkanoate containing 5-hydroxyvalerate units: Effects of 5HV units on biodegradability, cytotoxicity, mechanical and thermal properties. Polym. Degrad. Stab. 2012;98:331–338. doi: 10.1016/j.polymdegradstab.2012.09.008. DOI
Freier T., Kunze C., Nischan C., Kramer S., Sternberg K., Saß M., Hopt U.T., Schmitz K.-P. In vitro and in vivo degradation studies for development of a biodegradable patch based on poly(3-hydroxybutyrate) Biomaterials. 2002;23:2649–2657. doi: 10.1016/S0142-9612(01)00405-7. PubMed DOI
YDoi Y., Kanesawa Y., Kunioka M., Saito T. Biodegradation of microbial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) Macromolecules. 1990;23:26–31. doi: 10.1021/ma00203a006. DOI
Bonartsev A., Boskhomodgiev A.P., Iordanskii A.L., Bonartseva G., Rebrov A.V., Makhina T.K., Myshkina V.L., Yakovlev S.A., Filatova E.A., Ivanov E.A., et al. Hydrolytic Degradation of Poly(3-hydroxybutyrate), Polylactide and their Derivatives: Kinetics, Crystallinity, and Surface Morphology. Mol. Cryst. Liq. Cryst. 2012;556:288–300. doi: 10.1080/15421406.2012.635982. DOI
Olkhov A., Tyubaeva P., Vetcher A., Karpova S., Kurnosov A., Rogovina S., Iordanskii A., Berlin A. Aggressive Impacts Affecting the Biodegradable Ultrathin Fibers Based on Poly(3-Hydroxybutyrate), Polylactide and Their Blends: Water Sorption, Hydrolysis and Ozonolysis. Polymers. 2021;13:941. doi: 10.3390/polym13060941. PubMed DOI PMC
Numata K., Abe H., Iwata T. Biodegradability of Poly(hydroxyalkanoate) Materials. Materials. 2009;2:1104–1126. doi: 10.3390/ma2031104. DOI
Chang H.-M., Huang C.-C., Tsai H.-C., Imae T., Hong P.-D. Characterization and morphology analysis of degradable poly(l-lactide) film in in-vitro gastric juice incubation. Appl. Surf. Sci. 2012;262:89–94. doi: 10.1016/j.apsusc.2012.02.087. DOI
Tarazona N.A., Machatschek R., Lendlein A. Influence of Depolymerases and Lipases on the Degradation of Polyhydroxyalkanoates Determined in Langmuir Degradation Studies. Adv. Mater. Interfaces. 2020;7:2000872. doi: 10.1002/admi.202000872. DOI
Chang H.-M., Prasannan A., Tsai H.-C., Jhu J.-J. Ex vivo evaluation of biodegradable poly(ɛ-caprolactone) films in digestive fluids. Appl. Surf. Sci. 2014;313:828–833. doi: 10.1016/j.apsusc.2014.06.082. DOI
Peng H., Ling J., Liu J., Zhu N., Ni X., Shen Z. Controlled enzymatic degradation of poly(ɛ-caprolactone)-based copolymers in the presence of porcine pancreatic lipase. Polym. Degrad. Stab. 2010;95:643–650. doi: 10.1016/j.polymdegradstab.2009.12.005. DOI
Ladd M.R., Costello C.M., Gosztyla C., Werts A.D., Johnson B., Fulton W.B., Martin L.Y., Redfield E.J., Crawford B., Panaparambil R., et al. Development of Intestinal Scaffolds that Mimic Native Mammalian Intestinal Tissue. Tissue Eng. Part A. 2019;25:1225–1241. doi: 10.1089/ten.tea.2018.0239. PubMed DOI PMC
Wu L., Li X., Li P., Pan L., Ji Z., Feng Y., Shi C. Bioabsorbable flexible elastomer of PTMC-b-PEG-b-PTMC copolymer as intestinal anastomosis scaffold. Polym. Adv. Technol. 2021;32:3633–3645. doi: 10.1002/pat.5371. DOI
Pernicová I., Kucera D., Nebesarova J., Kalina M., Novackova I., Koller M., Obruca S. Production of polyhydroxyalkanoates on waste frying oil employing selected Halomonas strains. Bioresour. Technol. 2019;292:122028. doi: 10.1016/j.biortech.2019.122028. PubMed DOI
Kourilova X., Pernicova I., Sedlar K., Musilova J., Sedlacek P., Kalina M., Koller M., Obruca S. Production of polyhydroxyalkanoates (PHA) by a thermophilic strain of Schlegelella thermodepolymerans from xylose rich substrates. Bioresour. Technol. 2020;315:12388. doi: 10.1016/j.biortech.2020.123885. PubMed DOI
Sabbagh F., Muhamad I.I. Production of poly-hydroxyalkanoate as secondary metabolite with main focus on sustainable energy. Renew. Sustain. Energy Rev. 2017;72:95–104. doi: 10.1016/j.rser.2016.11.012. DOI
Saratale G.D., Saratale R.G., Varjani S., Cho S.-K., Ghodake G.S., Kadam A., I Mulla S., Bharagava R.N., Kim D.-S., Shin H.S. Development of ultrasound aided chemical pretreatment methods to enrich saccharification of wheat waste biomass for polyhydroxybutyrate production and its characterization. Ind. Crop. Prod. 2020;150:112425. doi: 10.1016/j.indcrop.2020.112425. DOI