Endometriosis: An Immunologist's Perspective

. 2025 May 28 ; 26 (11) : . [epub] 20250528

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40508002

Grantová podpora
Program EXCELES, ID Project No LX22NPO5102 National Institute for Cancer Research
CZ.02.01.01/00/22_008/0004644 SALVAGE
LM2023053 EATRIS-CZ

Endometriosis, a complex inflammatory disease, affects a significant proportion of women of reproductive age, approximately 10-15%. The disease involves the growth of endometrial glands and stroma outside the uterine cavity, leading to tissue remodeling and fibrosis. Hormonal imbalances, accompanied by local and general inflammation and pain, are key features of endometriosis. Endometriotic lesions are associated with the overproduction of cytokines, metalloproteinases, prostaglandins, reactive oxygen radicals, and extracellular vesicles. Genetic predisposition and cytokine gene polymorphisms have been documented. Macrophages, dendritic cells, mast cells, Th1 in the early phase, Th2 in the late phase, and T regulatory cells play a crucial role in endometriosis. Reduced NK cell function and impaired immune vigilance contribute to endometrial growth. The strong inflammatory condition of the endometrium poses a barrier to the proper implantation of the zygote, contributing to the infertility of these patients. Cytokines from various cell types vary with the severity of the disease. The role of microbiota in endometriosis is still under study. Endometriosis is associated with autoimmunity and ovarian cancer. Hormonal treatments and surgery are commonly used; however, recent interest focuses on anti-inflammatory and immunomodulatory therapies, including cytokine and anti-cytokine antibodies. Modulating the immune response has proven critical; however, more research is needed to optimize treatment for these patients.

Zobrazit více v PubMed

[(accessed on 7 April 2025)]. Available online: https://www.who.int/news-room/fact-sheets/detail/endometriosis.

Tsamantioti E.S., Mahdy H. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2025. [(accessed on 7 May 2025)]. Endometriosis. Available online: https://www.ncbi.nlm.nih.gov/books/NBK567777/ PubMed

Smolarz B., Szyłło K., Romanowicz H. Endometriosis: Epidemiology, classification, pathogenesis, treatment and genetics. Int. J. Mol. Sci. 2021;22:10554. doi: 10.3390/ijms221910554. PubMed DOI PMC

Agarwal S.K., Chapron C., Giudice L.C., Laufer M.R., Leyland N., Missmer S.A., Singh S.S., Taylor H.S. Clinical Diagnosis of Endometriosis: A Call to Action. Am. J. Obstet. Gynecol. 2019;220:354.e1–354.e12. doi: 10.1016/j.ajog.2018.12.039. PubMed DOI

Park W., Lim W., Kim M., Jang H., Park S.J., Song G., Park S. Female reproductive disease, endometriosis: From inflammation to infertility. Mol. Cells. 2025;48:100164. doi: 10.1016/j.mocell.2024.100164. PubMed DOI PMC

Simoens S., Dunselman G., Dirksen C., Hummelshoj L., Bokor A., Brandes I., Brodszky V., Canis M., Colombo G.L., DeLeire T., et al. The burden of endometriosis: Costs and quality of life of women with endometriosis and treated in referral centres. Hum. Reprod. 2012;27:1292–1299. doi: 10.1093/humrep/des073. PubMed DOI

Hadfield R., Mardon H., Barlow D., Kennedy S. Delay in the diagnosis of endometriosis: A survey of women from the USA and the UK. Hum. Reprod. 1996;11:878–880. doi: 10.1093/oxfordjournals.humrep.a019270. PubMed DOI

Swift B., Taneri B., Becker C.M., Basarir H., Naci H., Missmer S.A., Zondervan K.T., Rahmioglu N. Prevalence, diagnostic delay and economic burden of endometriosis and its impact on quality of life: Results from an Eastern Mediterranean population. Eur. J. Public Health. 2024;34:244–252. doi: 10.1093/eurpub/ckad216. PubMed DOI PMC

Taylor H.S., Kotlyar A.M., Flores V.A. Endometriosis is a chronic systemic disease: Clinical challenges and novel innovations. Lancet. 2021;397:839–852. doi: 10.1016/S0140-6736(21)00389-5. PubMed DOI

Tariverdian N., Siedentopf F., Rücke M., Blois S.M., Klapp B.F., Kentenich H., Arck P.C. Intraperitoneal immune cell status in infertile women with and without endometriosis. J. Reprod. Immunol. 2009;80:80–90. doi: 10.1016/j.jri.2008.12.005. PubMed DOI

Amidifar S., Jafari D., Mansourabadi A.H., Sadaghian S., Esmaeilzadeh A. Immunopathology of Endometriosis, Molecular Approaches. Am. J. Reprod. Immunol. 2025;93:e70056. doi: 10.1111/aji.70056. PubMed DOI

Bao Q., Zheng Q., Wang S., Tang W., Zhang B. LncRNA HOTAIR regulates cell invasion and migration in endometriosis through miR-519b-3p/PRRG4 pathway. Front. Oncol. 2022;12:953055. doi: 10.3389/fonc.2022.953055. PubMed DOI PMC

Blanco L.P., Salmeri N., Temkin S.M., Shanmugam V.K., Stratton P. Endometriosis and autoimmunity. Autoimmun. Rev. 2025;24:103752. doi: 10.1016/j.autrev.2025.103752. PubMed DOI PMC

Vercellini P., Viganò P., Somigliana E., Fedele L. Endometriosis: Pathogenesis and treatment. Nat. Rev. Endocrinol. 2014;10:261–275. doi: 10.1038/nrendo.2013.255. PubMed DOI

Gordts S., Koninckx P., Brosens I. Pathogenesis of deep endometriosis. Fertil. Steril. 2017;108:872–885.e1. doi: 10.1016/j.fertnstert.2017.08.036. PubMed DOI

Guan Y., Chen Y., Lin R., Mo T., Li S., Cao Y., Yin T., Diao L., Li Y. Endometriosis: A new perspective on epigenetics and oxidative stress. J. Reprod. Immunol. 2025;169:104462. doi: 10.1016/j.jri.2025.104462. PubMed DOI

Laganà A.S., Garzon S., Götte M., Viganò P., Franchi M., Ghezzi F., Martin D.C. The Pathogenesis of Endometriosis: Molecular and Cell Biology Insights. Int. J. Mol. Sci. 2019;20:5615. doi: 10.3390/ijms20225615. PubMed DOI PMC

Wang Y., Nicholes K., Shih I.M. The Origin and Pathogenesis of Endometriosis. Annu. Rev. Pathol. 2020;15:71–95. doi: 10.1146/annurev-pathmechdis-012419-032654. PubMed DOI PMC

Bo C., Wang Y. Angiogenesis signaling in endometriosis: Molecules, diagnosis and treatment (Review) Mol. Med. Rep. 2024;29:43. doi: 10.3892/mmr.2024.13167. PubMed DOI PMC

Karimi-Zarchi M., Dehshiri-Zadeh N., Sekhavat L., Nosouhi F. Correlation of CA-125 serum level and clinico-pathological characteristic of patients with endometriosis. Int. J. Reprod. Biomed. 2016;14:713–718. doi: 10.29252/ijrm.14.11.713. PubMed DOI PMC

Neves D., Neto A.C., Salazar M., Fernandes A.S., Martinho M., Charrua A., Rodrigues A.R., Gouveia A.M., Almeida H. A narrative review about the intricate crosstalk among endometrium, adipose tissue, and neurons in endometriosis. The multifaceted role of leptin. Obes. Rev. 2025;26:e13879. doi: 10.1111/obr.13879. PubMed DOI

Abulughod N., Valakas S., El-Assaad F. Dietary and Nutritional Interventions for the Management of Endometriosis. Nutrients. 2024;16:3988. doi: 10.3390/nu16233988. PubMed DOI PMC

Marquardt R.M., Kim T.H., Shin J.H., Jeong J.W. Progesterone and Estrogen Signaling in the Endometrium: What Goes Wrong in Endometriosis? Int. J. Mol. Sci. 2019;20:3822. doi: 10.3390/ijms20153822. PubMed DOI PMC

Lee D., Kim S.K., Lee J.R., Jee B.C. Management of endometriosis-related infertility: Considerations and treatment options. Clin. Exp. Reprod. Med. 2020;47:1–11. doi: 10.5653/cerm.2019.02971. PubMed DOI PMC

García-Gómez E., Vázquez-Martínez E.R., Reyes-Mayoral C., Cruz-Orozco O.P., Camacho-Arroyo I., Cerbón M. Regulation of Inflammation Pathways and Inflammasome by Sex Steroid Hormones in Endometriosis. Front. Endocrinol. 2020;10:935. doi: 10.3389/fendo.2019.00935. PubMed DOI PMC

Rolla E. Endometriosis: Advances and controversies in classification, pathogenesis, diagnosis, and treatment. F1000Research. 2019;8:F1000-Faculty. doi: 10.12688/f1000research.14817.1. PubMed DOI PMC

Rocha T.P., Andres M.P., Carmona F., Baracat E.C., Abrão M.S. Deep Endometriosis: The Involvement of Multiple Pelvic Compartments Is Associated with More Severe Pain Symptoms and Infertility. Reprod. Sci. 2023;30:1668–1675. doi: 10.1007/s43032-022-01104-9. PubMed DOI

Camboni A., Marbaix E. Ectopic Endometrium: The Pathologist’s Perspective. Int. J. Mol. Sci. 2021;22:10974. doi: 10.3390/ijms222010974. PubMed DOI PMC

Istrate-Ofiţeru A.M., Berbecaru E.I., Zorilă G.L., Roşu G.C., Dîră L.M., Comănescu C.M., Drăguşin R.C., Ruican D., Nagy R.D., Iliescu D.G., et al. Specific Local Predictors That Reflect the Tropism of Endometriosis-A Multiple Immunohistochemistry Technique. Int. J. Mol. Sci. 2022;23:5614. doi: 10.3390/ijms23105614. PubMed DOI PMC

Moraru L., Mitranovici M.I., Chiorean D.M., Moraru R., Caravia L., Tirón A.T., Cotoi O.S. Adenomyosis and Its Possible Malignancy: A Review of the Literature. Diagnostics. 2023;13:1883. doi: 10.3390/diagnostics13111883. PubMed DOI PMC

Li Q., Chen G., Jiang H., Dai H., Li D., Zhu K., Zhang K., Shen H., Xu H., Li S. ITGB3 promotes cisplatin resistance in osteosarcoma tumors. Cancer Med. 2023;12:8452–8463. doi: 10.1002/cam4.5585. PubMed DOI PMC

Zhu C., Kong Z., Wang B., Cheng W., Wu A., Meng X. ITGB3/CD61: A hub modulator and target in the tumor microenvironment. Am. J. Transl. Res. 2019;11:7195–7208. PubMed PMC

Zhang L., Shao W., Li M., Liu S. ITCH-Mediated Ubiquitylation of ITGB3 Promotes Cell Proliferation and Invasion of Ectopic Endometrial Stromal Cells in Ovarian Endometriosis. Biomedicines. 2023;11:2506. doi: 10.3390/biomedicines11092506. PubMed DOI PMC

Shigesi N., Kvaskoff M., Kirtley S., Feng Q., Fang H., Knight J.C., Missmer S.A., Rahmioglu N., Zondervan K.T., Becker C.M. The association between endometriosis and autoimmune diseases: A systematic review and meta-analysis. Hum. Reprod. Update. 2019;25:486–503. doi: 10.1093/humupd/dmz014. PubMed DOI PMC

Zou M., Lin M., Hu K.L., Li R. Cross-Tissue Regulatory Network Analyses Reveal Novel Susceptibility Genes and Potential Mechanisms for Endometriosis. Biology. 2024;13:871. doi: 10.3390/biology13110871. PubMed DOI PMC

Wong F.C., Kim C.E., Garcia-Alonso L., Vento-Tormo R. The human endometrium: Atlases, models, and prospects. Curr. Opin. Genet. Dev. 2025;92:102341. doi: 10.1016/j.gde.2025.102341. PubMed DOI

Sun Y., Liu G. Endometriosis-associated Ovarian Clear Cell Carcinoma: A Special Entity? J. Cancer. 2021;12:6773–6786. doi: 10.7150/jca.61107. PubMed DOI PMC

Giannini A., Massimello F., Caretto M., Cosimi G., Mannella P., Luisi S., Gadducci A., Simoncini T. Factors in malignant transformation of ovarian endometriosis: A narrative review. Gynecol. Endocrinol. 2024;40:2409911. doi: 10.1080/09513590.2024.2409911. PubMed DOI

Murakami K., Kotani Y., Nakai H., Matsumura N. Endometriosis-Associated Ovarian Cancer: The Origin and Targeted Therapy. Cancers. 2020;12:1676. doi: 10.3390/cancers12061676. PubMed DOI PMC

Capozzi V.A., Scarpelli E., dell’Omo S., Rolla M., Pezzani A., Morganelli G., Gaiano M., Ghi T., Berretta R. Atypical Endometriosis: A Comprehensive Systematic Review of Pathological Patterns and Diagnostic Challenges. Biomedicines. 2024;12:1209. doi: 10.3390/biomedicines12061209. PubMed DOI PMC

Lei L., Xu X., Gong C., Lin B., Li F. Integrated analysis of genome-wide gene expression and DNA methylation profiles reveals candidate genes in ovary endometriosis. Front. Endocrinol. 2023;14:1093683. doi: 10.3389/fendo.2023.1093683. PubMed DOI PMC

Jung J., Kim N.H., Park J., Lim D., Kwon M., Gil W., Jung S., Go M., Kim C., Cheong Y.H., et al. Gremlin-2 is a novel tumor suppressor that negatively regulates ID1 in breast cancer. Breast Cancer Res. 2024;26:174. doi: 10.1186/s13058-024-01935-1. PubMed DOI PMC

Zhai M., Yang W., Zou C., Du S., Wu B., Wang C., Lu Y., Zheng Y. Predictive role of HPGD gene in carcinogenesis and immune environment monitoring in human cervical cancer. Cancer Biomark. Sect. A Dis. Markers. 2024;41:18758592241296277. doi: 10.1177/18758592241296277. PubMed DOI

Xu X., Dai X., Huang C., Guan X., Zhang C. 17beta-estradiol (E2) Regulates Malignancies and Stemness in Endometrial Carcinoma (EC) via Interacting with ESR1. Reprod. Sci. 2025 doi: 10.1007/s43032-025-01871-1. PubMed DOI

Ma R., Zheng Y., Wang J., Xu H., Zhang R., Xie Z., Zhang L., Zhao R. Identification of key genes associated with endometriosis and endometrial cancer by bioinformatics analysis. Front. Oncol. 2024;14:1387860. doi: 10.3389/fonc.2024.1387860. PubMed DOI PMC

Anglesio M.S., Bashashati A., Wang Y.K., Senz J., Ha G., Yang W., Aniba M.R., Prentice L.M., Farahani H., Li Chang H., et al. Multifocal endometriotic lesions associated with cancer are clonal and carry a high mutation burden. J. Pathol. 2015;236:201–209. doi: 10.1002/path.4516. PubMed DOI PMC

Wilbur M.A., Shih I.M., Segars J.H., Fader A.N. Cancer Implications for Patients with Endometriosis. Semin. Reprod. Med. 2017;35:110–116. doi: 10.1055/s-0036-1597120. PubMed DOI

Lu Y., Cuellar-Partida G., Painter J.N., Nyholt D.R., Australian Ovarian Cancer Study. International Endogene Consortium (IEC) Shared genetics underlying epidemiological association between endometriosis and ovarian cancer. Hum. Mol. Genet. 2015;24:5955–5964. doi: 10.1093/hmg/ddv306. PubMed DOI PMC

Parra-Herran C., Lerner-Ellis J., Xu B., Khalouei S., Bassiouny D., Cesari M., Ismiil N., Nofech-Mozes S. Molecular-based classification algorithm for endometrial carcinoma categorizes ovarian endometrioid carcinoma into prognostically significant groups. Mod. Pathol. 2017;30:1748–1759. doi: 10.1038/modpathol.2017.81. PubMed DOI

Chou Y.C., Chen C.H., Chen M.J., Chang C.W., Chen P.H., Yu M.H., Chen Y.J., Tsai E.M., Yang P.S., Lin S.Y., et al. Killer cell immunoglobulin-like receptors (KIR) and human leukocyte antigen-C (HLA-C) allorecognition patterns in women with endometriosis. Sci. Rep. 2020;10:4897. doi: 10.1038/s41598-020-61702-y. PubMed DOI PMC

Marin M.L.C., Coelho V., Visentainer J.E.L., Alves H.V., Köhler K.F., Rached M.R., Abrão M.S., Kalil J. Inhibitory KIR2DL2 Gene: Risk for Deep Endometriosis in Euro-descendants. Reprod. Sci. 2021;28:291–304. doi: 10.1007/s43032-020-00255-x. PubMed DOI

Kitawaki J., Xu B., Ishihara H., Fukui M., Hasegawa G., Nakamura N., Mizuno S., Ohta M., Obayashi H., Honjo H. Association of killer cell immunoglobulin-like receptor genotypes with susceptibility to endometriosis. Am. J. Reprod. Immunol. 2007;58:481–486. doi: 10.1111/j.1600-0897.2007.00533.x. PubMed DOI

Kula H., Balbal B., Timur T., Yalcın P., Yavuz O., Kızıldag S., Ulukus E.C., Posaci C. NOD1, NOD2, PYDC1, and PYDC2 gene polymorphisms in ovarian endometriosis. Front. Med. 2025;11:1495002. doi: 10.3389/fmed.2024.1495002. PubMed DOI PMC

Badie A., Saliminejad K., Salahshourifar I., Khorram Khorshid H.R. Interleukin 1 alpha (IL1A) polymorphisms and risk of endometriosis in Iranian population: A case-control study. Gynecol. Endocrinol. 2020;36:135–138. doi: 10.1080/09513590.2019.1631790. PubMed DOI

Wang X.Q., Hu M., Chen J.M., Sun W., Zhu M.B. Effects of gene polymorphism and serum levels of IL-2 and IL-6 on endometriosis. Europ. Rev. Med. Pharmacol. Sci. 2020;24:4635–4641. doi: 10.26355/eurrev_202005_21148. PubMed DOI

Zhong S., Liang Y., Wu Z., Wei L. Association between polymorphisms of cytokine genes and endometriosis: A comprehensive systematic review and meta-analysis. J. Reprod. Immunol. 2023;158:103969. doi: 10.1016/j.jri.2023.103969. PubMed DOI

Zhao W., Li Y., Zhao J., Kang S. A functional promoter polymorphism in interleukin 12B gene is associated with an increased risk of ovarian endometriosis. Gene. 2018;666:27–31. doi: 10.1016/j.gene.2018.04.082. PubMed DOI

Zare M., Hesampour F., Poordast T., Valibeigi M., Enayatmehri M., Ahmadi S., Nasri F., Gharesi-Fard B. Association between gene polymorphisms of IL-12, IL-12 receptor and IL-27 and organ involvement in Iranian endometriosis patients. Inter. J. Immun. 2023;50:24–33. doi: 10.1111/iji.12606. PubMed DOI

Watrowski R., Schuster E., Van Gorp T., Hofstetter G., Fischer M.B., Mahner S., Polterauer S., Zeillinger R., Obermayr E. Association of the Single Nucleotide Polymorphisms rs11556218, rs4778889, rs4072111, and rs1131445 of the Interleukin-16 Gene with Ovarian Cancer. Int. J. Mol. Sci. 2024;25:10272. doi: 10.3390/ijms251910272. PubMed DOI PMC

Babah O.A., Ojewunmi O.O., Onwuamah C.K., Udenze I.C., Osuntoki A.A., Afolabi B.B. Serum concentrations of IL-16 and its genetic polymorphism rs4778889 affect the susceptibility and severity of endometriosis in Nigerian women. BMC Women’s Health. 2023;23:253. doi: 10.1186/s12905-023-02362-8. PubMed DOI PMC

Xie Z., Ding X., Wang Y., Zhang M. The rs2275913 polymorphism of the interleukin-17A gene is associated with the risk of ovarian endometriosis. J. Obstet. Gynaecol. 2023;43:2199852. doi: 10.1080/01443615.2023.2199852. PubMed DOI

Balunathan N., Rani G.U., Perumal V., Kumarasamy P. Single nucleotide polymorphisms of Interleukin - 4, Interleukin-18, FCRL3 and sPLA2IIa genes and their association in pathogenesis of endometriosis. Mol. Biol. Rep. 2023;50:4239–4252. doi: 10.1007/s11033-023-08316-5. PubMed DOI

Mier-Cabrera J., Cruz-Orozco O., de la Jara-Díaz J., Galicia-Castillo O., Buenrostro-Jáuregui M., Parra-Carriedo A., Hernández-Guerrero C. Polymorphisms of TNF-alpha (−308), IL-1beta (+3954) and IL1-Ra (VNTR) are associated to severe stage of endometriosis in Mexican women: A case control study. BMC Women’s Health. 2022;22:356. doi: 10.1186/s12905-022-01941-5. PubMed DOI PMC

Chekini Z., Poursadoughian Yaran A., Ansari-Pour N., Shahhoseini M., Ramazanali F., Aflatoonian R., Afsharian P. A novel gene-wide haplotype at the macrophage migration inhibitory factor (MIF) locus is associated with endometrioma. Europ. J. Obst. Gynecol. Reprod. Biol. 2020;247:6–9. doi: 10.1016/j.ejogrb.2019.12.028. PubMed DOI

Cardoso J.V., Machado D.E., da Silva M.C., de Mello M.P., Berardo P.T., Medeiros R., Perini J.A. Influence of interleukin-8 polymorphism on endometriosis-related pelvic pain. Hum. Immunol. 2023;84:561–566. doi: 10.1016/j.humimm.2023.07.004. PubMed DOI

Le K.N., Benor A., Decherney A. An update on epigenetic mechanisms in endometriosis. Minerva Obstet. Gynecol. 2024 doi: 10.23736/S2724-606X.24.05631-8. PubMed DOI

Bulun S.E., Yilmaz B.D., Sison C., Miyazaki K., Bernardi L., Liu S., Kohlmeier A., Yin P., Milad M., Wei J. Endometriosis. Endocr. Rev. 2019;40:1048–1079. doi: 10.1210/er.2018-00242. PubMed DOI PMC

Raja M.H.R., Farooqui N., Zuberi N., Ashraf M., Azhar A., Baig R., Badar B., Rehman R. Endometriosis, infertility and MicroRNA’s: A review. J. Gynecol. Obstet. Hum. Reprod. 2021;50:102157. doi: 10.1016/j.jogoh.2021.102157. PubMed DOI

Hon J.X., Wahab N.A., Karim A.K.A., Mokhtar N.M., Mokhtar M.H. MicroRNAs in Endometriosis: Insights into Inflammation and Progesterone Resistance. Int. J. Mol. Sci. 2023;24:15001. doi: 10.3390/ijms241915001. PubMed DOI PMC

Azari Z.D., Aljubran F., Nothnick W.B. Inflammatory MicroRNAs and the Pathophysiology of Endometriosis and Atherosclerosis: Common Pathways and Future Directions Towards Elucidating the Relationship. Reprod. Sci. 2022;29:2089–2104. doi: 10.1007/s43032-022-00955-6. PubMed DOI

Liao Z., Tang S., Jiang P., Geng T., Cope D.I., Dunn T.N., Guner J., Radilla L.A., Guan X., Monsivais D. Impaired bone morphogenetic protein (BMP) signaling pathways disrupt decidualization in endometriosis. Commun. Biol. 2024;7:227. doi: 10.1038/s42003-024-05898-z. PubMed DOI PMC

Abbaszadeh M., Karimi M., Rajaei S. The landscape of non-coding RNAs in the immunopathogenesis of Endometriosis. Front. Immunol. 2023;14:1223828. doi: 10.3389/fimmu.2023.1223828. PubMed DOI PMC

González-Ramos R., Van Langendonckt A., Defrère S., Lousse J.C., Colette S., Devoto L., Donnez J. Involvement of the nuclear factor-κB pathway in the pathogenesis of endometriosis. Fertil. Steril. 2010;94:1985–1994. doi: 10.1016/j.fertnstert.2010.01.013. PubMed DOI

Zdrojkowski Ł., Jasiński T., Ferreira-Dias G., Pawliński B., Domino M. The Role of NF-κB in Endometrial Diseases in Humans and Animals: A Review. Int. J. Mol. Sci. 2023;24:2901. doi: 10.3390/ijms24032901. PubMed DOI PMC

Vissers G., Giacomozzi M., Verdurmen W., Peek R., Nap A. The role of fibrosis in endometriosis: A systematic review. Hum. Reprod. Update. 2024;30:706–750. doi: 10.1093/humupd/dmae023. PubMed DOI PMC

Anchan M.M., Kalthur G., Datta R., Majumdar K.P.K., Dutta R. Unveiling the fibrotic puzzle of endometriosis: An overlooked concern calling for prompt action. F1000Research. 2024;13:721. doi: 10.12688/f1000research.152368.3. PubMed DOI PMC

Almquist L.D., Likes C.E., Stone B., Brown K.R., Savaris R., Forstein D.A., Miller P.B., Lessey B.A. Endometrial BCL6 testing for the prediction of in vitro fertilisation outcomes: A cohort study. Fertil. Steril. 2017;108:1063–1069. doi: 10.1016/j.fertnstert.2017.09.017. PubMed DOI PMC

Saadat Varnosfaderani A., Kalantari S., Ramezanali F., Shahhoseini M., Amirchaghmaghi E. Increased Gene Expression of LITAF, TNF-α and BCL6 in Endometrial Tissues of Women with Endometriosis: A Case-Control Study. Cell J. 2024;26:243–249. doi: 10.22074/cellj.2024.2022348.1503. PubMed DOI

Wang Z., Guo S., Xie Y., Tong Y., Qi W., Wang Z. Endometrial expression of ERRβ and ERRγ: Prognostic significance and clinical correlations in severe endometriosis. Front. Endocrinol. 2024;15:1489097. doi: 10.3389/fendo.2024.1489097. PubMed DOI PMC

Cheng C.W., Licence D., Cook E., Luo F., Arends M.J., Smith S.K., Print C.G., Charnock-Jones D.S. Activation of mutated K-ras in donor endometrial epithelium and stroma promotes lesion growth in an intact immunocompetent murine model of endometriosis. J. Pathol. 2011;224:261–269. doi: 10.1002/path.2852. PubMed DOI

Maeda D., Shih I.-M. Pathogenesis and the role of ARID1A mutation in endometriosis-related ovarian neoplasms. Adv. Anat. Pathol. 2013;20:45–52. doi: 10.1097/PAP.0b013e31827bc24d. PubMed DOI PMC

Steinbuch S.C., Lüß A.M., Eltrop S., Götte M., Kiesel L. Endometriosis-Associated Ovarian Cancer: From Molecular Pathologies to Clinical Relevance. Int. J. Mol. Sci. 2024;25:4306. doi: 10.3390/ijms25084306. PubMed DOI PMC

Pan Y., Pan C., Zhang C. Unraveling the complexity of follicular fluid: Insights into its composition, function, and clinical implications. J. Ovarian Res. 2024;17:237. doi: 10.1186/s13048-024-01551-9. PubMed DOI PMC

Wagner M., Hicks C., El-Omar E., Combes V., El-Assaad F. The Critical Role of Host and Bacterial Extracellular Vesicles in Endometriosis. Biomedicines. 2024;12:2585. doi: 10.3390/biomedicines12112585. PubMed DOI PMC

Duval C., Wyse B.A., Tsang B.K., Librach C.L. Extracellular vesicles and their content in the context of polycystic ovarian syndrome and endometriosis: A review. J. Ovarian Res. 2024;17:160. doi: 10.1186/s13048-024-01480-7. PubMed DOI PMC

Nazri H.M., Imran M., Fischer R., Heilig R., Manek S., Dragovic R.A., Kessler B.M., Zondervan K.T., Tapmeier T.T., Becker C.M. Characterization of exosomes in peritoneal fluid of endometriosis patients. Fertil. Steril. 2020;113:364–373.e2. doi: 10.1016/j.fertnstert.2019.09.032. PubMed DOI PMC

Björk E., Israelsson P., Nagaev I., Nagaeva O., Lundin E., Ottander U., Mincheva-Nilsson L. Endometriotic Tissue-derived Exosomes Downregulate NKG2D-mediated Cytotoxicity and Promote Apoptosis: Mechanisms for Survival of Ectopic Endometrial Tissue in Endometriosis. J. Immunol. 2024;213:567–576. doi: 10.4049/jimmunol.2300781. PubMed DOI PMC

Ding D., Liu X., Duan J., Guo S.W. Platelets are an unindicted culprit in the development of endometriosis: Clinical and experimental evidence. Hum. Reprod. 2015;30:812–832. doi: 10.1093/humrep/dev025. PubMed DOI

Bortot B., Di Florio R., Merighi S., Peacock B., Lees R., Valle F., Brucale M., Mangogna A., Di Lorenzo G., Romano F., et al. Platelets as key cells in endometriosis patients: Insights from small extracellular vesicles in peritoneal fluid and endometriotic lesions analysis. FASEB J. 2024;38:e70267. doi: 10.1096/fj.202402499R. PubMed DOI PMC

Ding S., Lin Q., Zhu T., Li T., Zhu L., Wang J., Zhang X. Is there a correlation between inflammatory markers and coagulation parameters in women with advanced ovarian endometriosis? BMC Women’s Health. 2019;19:169. doi: 10.1186/s12905-019-0860-9. PubMed DOI PMC

Dantzler M.D., Miller T.A., Dougherty M.W., Quevedo A. The Microbiome Landscape of Adenomyosis: A Systematic Review. Reprod. Sci. 2025;32:251–260. doi: 10.1007/s43032-024-01766-7. PubMed DOI

Guo W., Xu Z., Hu S., Shen Y. Exploring Microbial Signatures in Endometrial Tissues with Endometriosis. Int. Immunopharmacol. 2025;148:114072. doi: 10.1016/j.intimp.2025.114072. PubMed DOI

Qin R., Tian G., Liu J., Cao L. The gut microbiota and endometriosis: From pathogenesis to diagnosis and treatment. Front. Cell. Infect. Microbiol. 2022;12:1069557. doi: 10.3389/fcimb.2022.1069557. PubMed DOI PMC

Escorcia Mora P., Valbuena D., Diez-Juan A. The Role of the Gut Microbiota in Female Reproductive and Gynecological Health: Insights into Endometrial Signaling Pathways. Life. 2025;15:762. doi: 10.3390/life15050762. PubMed DOI PMC

Hu S., Ding Q., Zhang W., Kang M., Ma J., Zhao L. Gut microbial beta-glucuronidase: A vital regulator in female estrogen metabolism. Gut Microbes. 2023;15:2236749. doi: 10.1080/19490976.2023.2236749. PubMed DOI PMC

Baker J.M., Al-Nakkash L., Herbst-Kralovetz M.M. Estrogen-gut microbiome axis: Physiological and clinical implications. Maturitas. 2017;103:45–53. doi: 10.1016/j.maturitas.2017.06.025. PubMed DOI

Chen C., Song X., Wei W., Zhong H., Dai J., Lan Z., Li F., Yu X., Feng Q., Wang Z., et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat. Commun. 2017;8:875. doi: 10.1038/s41467-017-00901-0. PubMed DOI PMC

Wei W., Zhang X., Tang H., Zeng L., Wu R. Microbiota composition and distribution along the female reproductive tract of women with endometriosis. Ann. Clin. Microbiol. Antimicrob. 2020;19:15. doi: 10.1186/s12941-020-00356-0. PubMed DOI PMC

Ata B., Yildiz S., Turkgeldi E., Brocal V.P., Dinleyici E.C., Moya A., Urman B. The Endobiota Study: Comparison of Vaginal, Cervical and Gut Microbiota Between Women with Stage 3/4 Endometriosis and Healthy Controls. Sci. Rep. 2019;9:2204. doi: 10.1038/s41598-019-39700-6. PubMed DOI PMC

Huang L., Liu B., Liu Z., Feng W., Liu M., Wang Y., Peng D., Fu X., Zhu H., Cui Z., et al. Gut Microbiota Exceeds Cervical Microbiota for Early Diagnosis of Endometriosis. Front. Cell. Infect. Microbiol. 2021;11:788836. doi: 10.3389/fcimb.2021.788836. PubMed DOI PMC

Svensson A., Brunkwall L., Roth B., Orho-Melander M., Ohlsson B. Associations Between Endometriosis and Gut Microbiota. Reprod. Sci. 2021;28:2367–2377. doi: 10.1007/s43032-021-00506-5. PubMed DOI PMC

Shan J., Ni Z., Cheng W., Zhou L., Zhai D., Sun S., Yu C. Gut microbiota imbalance and its correlations with hormone and inflammatory factors in patients with stage 3/4 endometriosis. Arch. Gynecol. Obstet. 2021;304:1363–1373. doi: 10.1007/s00404-021-06057-z. PubMed DOI

Ye H., Tian Y., Yu X., Li L., Hou M. Association Between Pelvic Inflammatory Disease and Risk of Endometriosis: A Systematic Review and Meta-Analysis. J. Women’s Health. 2024;33:73–79. doi: 10.1089/jwh.2023.0300. PubMed DOI

Garmendia J.V., De Sanctis C.V., Hajdúch M., De Sanctis J.B. Microbiota and Recurrent Pregnancy Loss (RPL); More than a Simple Connection. Microorganisms. 2024;12:1641. doi: 10.3390/microorganisms12081641. PubMed DOI PMC

Sobstyl A., Chałupnik A., Mertowska P., Grywalska E. How Do Microorganisms Influence the Development of Endometriosis? Participation of Genital, Intestinal and Oral Microbiota in Metabolic Regulation and Immunopathogenesis of Endometriosis. Int. J. Mol. Sci. 2023;24:10920. doi: 10.3390/ijms241310920. PubMed DOI PMC

Leonardi M., Hicks C., El-Assaad F., El-Omar E., Condous G. Endometriosis and the microbiome: A systematic review. BJOG Int. J. Obstet. Gynaecol. 2020;127:239–249. doi: 10.1111/1471-0528.15916. PubMed DOI

Jimenez N., Norton T., Diadala G., Bell E., Valenti M., Farland L.V., Mahnert N., Herbst-Kralovetz M.M. Vaginal and rectal microbiome contribute to genital inflammation in chronic pelvic pain. BMC Med. 2024;22:283. doi: 10.1186/s12916-024-03500-1. PubMed DOI PMC

Guo C., Zhang C. Role of the gut microbiota in the pathogenesis of endometriosis: A review. Front. Microbiol. 2024;15:1363455. doi: 10.3389/fmicb.2024.1363455. PubMed DOI PMC

Brubaker S.W., Bonham K.S., Zanoni I., Kagan J.C. Innate immune pattern recognition: A cell biological perspective. Annu. Rev. Immunol. 2015;33:257–290. doi: 10.1146/annurev-immunol-032414-112240. PubMed DOI PMC

Guo B., Chen J.H., Zhang J.H., Fang Y., Liu X.J., Zhang J., Zhu H.Q., Zhan L. Pattern-recognition receptors in endometriosis: A narrative review. Front. Immunol. 2023;14:1161606. doi: 10.3389/fimmu.2023.1161606. PubMed DOI PMC

Zhang Q., Yang D., Han X., Ren Y., Fan Y., Zhang C., Sun L., Ye T., Wang Q., Ban Y., et al. Alarmins and their pivotal role in the pathogenesis of spontaneous abortion: Insights for therapeutic intervention. Eur. J. Med. Res. 2024;29:640. doi: 10.1186/s40001-024-02236-1. PubMed DOI PMC

Chen F., Tang H., Cai X., Lin J., Kang R., Tang D., Liu J. DAMPs in immunosenescence and cancer. Semin. Cancer Biol. 2024;106–107:123–142. doi: 10.1016/j.semcancer.2024.09.005. PubMed DOI

Kobayashi H., Higashiura Y., Shigetomi H., Kajihara H. Pathogenesis of endometriosis: The role of initial infection and subsequent sterile inflammation (Review) Mol. Med. Rep. 2014;9:9–15. doi: 10.3892/mmr.2013.1755. PubMed DOI

Sobstyl M., Niedźwiedzka-Rystwej P., Grywalska E., Korona-Głowniak I., Sobstyl A., Bednarek W., Roliński J. Toll-Like Receptor 2 Expression as a New Hallmark of Advanced Endometriosis. Cells. 2020;9:1813. doi: 10.3390/cells9081813. PubMed DOI PMC

Noh E.J., Kim D.J., Lee J.Y., Park J.H., Kim J.S., Han J.W., Kim B.C., Kim C.J., Lee S.K. Ureaplasma Urealyticum Infection Contributes to the Development of Pelvic Endometriosis Through Toll-Like Receptor 2. Front. Immunol. 2019;10:2373. doi: 10.3389/fimmu.2019.02373. PubMed DOI PMC

de Azevedo B.C., Mansur F., Podgaec S. systematic review of toll-like receptors in endometriosis. Arch. Gynecol. Obstet. 2021;304:309–316. doi: 10.1007/s00404-021-06075-x. PubMed DOI

Almasi M.Z., Hosseini E., Jafari R., Aflatoonian K., Aghajanpour S., Ramazanali F., Moini A., Shahhoseini M., Afsharian P., Aflatoonian R. Evaluation of Toll-like receptor 3 (TLR3) signaling pathway genes and its genetic polymorphisms in ectopic and eutopic endometrium of women with endometriosis. J. Gynecol. Obstet. Hum. Reprod. 2021;50:102153. doi: 10.1016/j.jogoh.2021.102153. PubMed DOI

Allhorn S., Böing C., Koch A.A., Kimmig R., Gashaw I. TLR3 and TLR4 expression in healthy and diseased human endometrium. Reprod. Biol. Endocrinol. 2008;6:40. doi: 10.1186/1477-7827-6-40. PubMed DOI PMC

Zheng D., Liwinski T., Elinav E. Inflammasome activation and regulation: Toward a better understanding of complex mechanisms. Cell Discov. 2020;6:36. doi: 10.1038/s41421-020-0167-x. PubMed DOI PMC

Al Mamun A., Geng P., Wang S., Shao C. Role of Pyroptosis in Endometrial Cancer and Its Therapeutic Regulation. J. Inflamm. Res. 2024;17:7037–7056. doi: 10.2147/JIR.S486878. PubMed DOI PMC

Irandoost E., Najibi S., Talebbeigi S., Nassiri S. Focus on the role of NLRP3 inflammasome in the pathology of endometriosis: A review on molecular mechanisms and possible medical applications. Naunyn Schmiedeberg’s Arch. Pharmacol. 2023;396:621–631. doi: 10.1007/s00210-022-02365-6. PubMed DOI

Ahn S.H., Khalaj K., Young S.L., Lessey B.A., Koti M., Tayade C. Immune-inflammation gene signatures in endometriosis patients. Fertil. Steril. 2016;106:1420–1431.e7. doi: 10.1016/j.fertnstert.2016.07.005. PubMed DOI PMC

Fonseca B.M., Pinto B., Costa L., Felgueira E., Rebelo I. Increased expression of NLRP3 inflammasome components in granulosa cells and follicular fluid interleukin(IL)-1beta and IL-18 levels in fresh IVF/ICSI cycles in women with endometriosis. J. Assist. Reprod. Genet. 2023;40:191–199. doi: 10.1007/s10815-022-02662-2. PubMed DOI PMC

Murakami M., Osuka S., Muraoka A., Hayashi S., Bayasula, Kasahara Y., Sonehara R., Hariyama Y., Shinjo K., Tanaka H., et al. Effectiveness of NLRP3 Inhibitor as a Non-Hormonal Treatment for ovarian endometriosis. Reprod. Biol. Endocrinol. 2022;20:58. doi: 10.1186/s12958-022-00924-3. PubMed DOI PMC

Liu Y., Jiang Z., Zhang L., Tian W., Lin A., Li M. Blockage of the NLRP3 inflammasome by MCC950 inhibits migration and invasion in adenomyosis. Reprod. Biomed. Online. 2024;49:104319. doi: 10.1016/j.rbmo.2024.104319. PubMed DOI

Zhang M., Shi Z., Peng X., Cai D., Peng R., Lin Y., Dai L., Li J., Chen Y., Xiao J., et al. NLRP3 inflammasome-mediated Pyroptosis induce Notch signal activation in endometriosis angiogenesis. Mol. Cell. Endocrinol. 2023;574:111952. doi: 10.1016/j.mce.2023.111952. PubMed DOI

Zhou F., Zhao F., Huang Q., Lin X., Zhang S., Dai Y. NLRP3 activated macrophages promote endometrial stromal cells migration in endometriosis. J. Reprod. Immunol. 2022;152:103649. doi: 10.1016/j.jri.2022.103649. PubMed DOI

Bergqvist A., Bruse C., Carlberg M., Carlström K. Interleukin 1beta, interleukin-6, and tumor necrosis factor-alpha in endometriotic tissue and in endometrium. Fertil. Steril. 2001;75:489–495. doi: 10.1016/S0015-0282(00)01752-0. PubMed DOI

Xu Y., Liu H., Xiong W., Peng Y., Li X., Long X., Jin J., Liang J., Weng R., Liu J., et al. A novel mechanism regulating pyroptosis-induced fibrosis in endometriosis via lnc-MALAT1/miR-141-3p/NLRP3 pathway. Biol. Reprod. 2023;109:156–171. doi: 10.1093/biolre/ioad057. PubMed DOI

An M., Fu X., Meng X., Liu H., Ma Y., Li Y., Li Q., Chen J. PI3K/AKT signaling pathway associates with pyroptosis and inflammation in patients with endometriosis. J. Reprod. Immunol. 2024;162:104213. doi: 10.1016/j.jri.2024.104213. PubMed DOI

Hang Y., Tan L., Chen Q., Liu Q., Jin Y. E3 ubiquitin ligase TRIM24 deficiency promotes NLRP3/caspase-1/IL-1β-mediated pyroptosis in endometriosis. Cell Biol. Int. 2021;45:1561–1570. doi: 10.1002/cbin.11592. PubMed DOI

Han S.J., Jung S.Y., Wu S.P., Hawkins S.M., Park M.J., Kyo S., Lydon J.P., Tsai S.Y., Tsai M.J., DeMayo F.J., et al. Estrogen Receptor β Modulates Apoptosis Complexes and the Inflammasome to Drive the Pathogenesis of Endometriosis. Cell. 2015;163:960–974. doi: 10.1016/j.cell.2015.10.034. PubMed DOI PMC

Choi J., Jo M., Lee E., Kim S.E., Lee D.Y., Choi D. Inhibition of the NLRP3 inflammasome by progesterone is attenuated by abnormal autophagy induction in endometriotic cyst stromal cells: Implications for endometriosis. Mol. Hum. Reprod. 2022;28:gaac007. doi: 10.1093/molehr/gaac007. PubMed DOI

Guo B., Zhu H., Xiao C., Zhang J., Liu X., Fang Y., Wei B., Zhang J., Cao Y., Zhan L. NLRC5 exerts anti-endometriosis effects through inhibiting ERβ-mediated inflammatory response. BMC Med. 2024;22:351. doi: 10.1186/s12916-024-03571-0. PubMed DOI PMC

Zhan L., Yao S., Sun S., Su Q., Li J., Wei B. NLRC5 and autophagy combined as possible predictors in patients with endometriosis. Fertil. Steril. 2018;110:949–956. doi: 10.1016/j.fertnstert.2018.06.028. PubMed DOI

He R., Liu X., Zhang J., Wang Z., Wang W., Fu L., Fan Y., Sun S., Cao Y., Zhan L., et al. NLRC5 Inhibits Inflammation of Secretory Phase Ectopic Endometrial Stromal Cells by Up-Regulating Autophagy in Ovarian Endometriosis. Front. Pharmacol. 2020;11:1281. doi: 10.3389/fphar.2020.01281. PubMed DOI PMC

Yeo S.G., Won Y.S., Kim S.H., Park D.C. Differences in C-type lectin receptors and their adaptor molecules in the peritoneal fluid of patients with endometriosis and gynecologic cancers. Int. J. Med. Sci. 2018;15:411–416. doi: 10.7150/ijms.23360. PubMed DOI PMC

Izumi G., Koga K., Takamura M., Makabe T., Nagai M., Urata Y., Harada M., Hirata T., Hirota Y., Fujii T., et al. Mannose receptor is highly expressed by peritoneal dendritic cells in endometriosis. Fertil. Steril. 2017;107:167–173.e2. doi: 10.1016/j.fertnstert.2016.09.036. PubMed DOI

Wei C., Mei J., Tang L., Liu Y., Li D., Li M., Zhu X. 1-Methyl-tryptophan attenuates regulatory T cells differentiation due to the inhibition of estrogen-IDO1-MRC2 axis in endometriosis. Cell Death Dis. 2016;7:e2489. doi: 10.1038/cddis.2016.375. PubMed DOI PMC

Sopasi F., Spyropoulou I., Kourti M., Vasileiadis S., Tripsianis G., Galazios G., Koutlaki N. Oxidative stress and female infertility: The role of follicular fluid soluble receptor of advanced glycation end-products (sRAGE) in women with endometriosis. Hum. Fertil. 2023;26:1400–1407. doi: 10.1080/14647273.2023.2230360. PubMed DOI

Ajona D., Cragg M.S., Pio R. The complement system in clinical oncology: Applications, limitations and challenges. Semin. Immunol. 2024;77:101921. doi: 10.1016/j.smim.2024.101921. PubMed DOI

Mastellos D.C., Hajishengallis G., Lambris J.D. A guide to complement biology, pathology and therapeutic opportunity. Nat. Rev. Immunol. 2024;24:118–141. doi: 10.1038/s41577-023-00926-1. PubMed DOI

Zeller J.M., Henig I., Radwanska E., Dmowski W.P. Enhancement of human monocyte and peritoneal macrophage chemiluminescence activities in women with endometriosis. Am. J. Reprod. Immunol. Microbiol. 1987;13:78–82. doi: 10.1111/j.1600-0897.1987.tb00097.x. PubMed DOI

Lousse J.C., Defrère S., Van Langendonckt A., Gras J., González-Ramos R., Colette S., Donnez J. Iron storage is significantly increased in peritoneal macrophages of endometriosis patients and correlates with iron overload in peritoneal fluid. Fertil. Steril. 2009;91:1668–1675. doi: 10.1016/j.fertnstert.2008.02.103. PubMed DOI

Chen S., Liu Y., Zhong Z., Wei C., Liu Y., Zhu X. Peritoneal immune microenvironment of endometriosis: Role and therapeutic perspectives. Front. Immunol. 2023;14:1134663. doi: 10.3389/fimmu.2023.1134663. PubMed DOI PMC

Lousse J.C., Van Langendonckt A., González-Ramos R., Defrère S., Renkin E., Donnez J. Increased activation of nuclear factor-kappa B (NF-kappaB) in isolated peritoneal macrophages of patients with endometriosis. Fertil. Steril. 2008;90:217–220. doi: 10.1016/j.fertnstert.2007.06.015. PubMed DOI

Wu M.H., Sun H.S., Lin C.C., Hsiao K.Y., Chuang P.C., Pan H.A., Tsai S.J. Distinct mechanisms regulate cyclooxygenase-1 and -2 in peritoneal macrophages of women with and without endometriosis. Mol. Hum. Reprod. 2002;8:1103–1110. doi: 10.1093/molehr/8.12.1103. PubMed DOI

Lai Z.Z., Yang H.L., Ha S.Y., Chang K.K., Mei J., Zhou W.J., Qiu X.M., Wang X.Q., Zhu R., Li D.J., et al. Cyclooxygenase-2 in Endometriosis. Int. J. Biol. Sci. 2019;15:2783–2797. doi: 10.7150/ijbs.35128. PubMed DOI PMC

Chan R.W.S., Lee C.L., Ng E.H.Y., Yeung W.S.B. Co-culture with macrophages enhances the clonogenic and invasion activity of endometriotic stromal cells. Cell Prolif. 2017;50:e12330. doi: 10.1111/cpr.12330. PubMed DOI PMC

Harada T., Kaponis A., Iwabe T., Taniguchi F., Makrydimas G., Sofikitis N., Paschopoulos M., Paraskevaidis E., Terakawa N. Apoptosis in human endometrium and endometriosis. Hum. Reprod. Update. 2004;10:29–38. doi: 10.1093/humupd/dmh007. PubMed DOI

Huang E., Wang X., Chen L. Regulated Cell Death in Endometriosis. Biomolecules. 2024;14:142. doi: 10.3390/biom14020142. PubMed DOI PMC

Capobianco A., Rovere-Querini P. Endometriosis, a disease of the macrophage. Front. Immunol. 2013;4:9. doi: 10.3389/fimmu.2013.00009. PubMed DOI PMC

Vallvé-Juanico J., Santamaria X., Vo K.C., Houshdaran S., Giudice L.C. Macrophages display proinflammatory phenotypes in the eutopic endometrium of women with endometriosis with relevance to an infectious etiology of the disease. Fertil. Steril. 2019;112:1118–1128. doi: 10.1016/j.fertnstert.2019.08.060. PubMed DOI PMC

Hudson Q.J., Ashjaei K., Perricos A., Kuessel L., Husslein H., Wenzl R., Yotova I. Endometriosis Patients Show an Increased M2 Response in the Peritoneal CD14+low/CD68+low Macrophage Subpopulation Coupled with an Increase in the T-helper 2 and T-regulatory Cells. Reprod. Sci. 2020;27:1920–1931. doi: 10.1007/s43032-020-00211-9. PubMed DOI PMC

Henlon Y., Panir K., McIntyre I., Hogg C., Dhami P., Cuff A.O., Senior A., Moolchandani-Adwani N., Courtois E.T., Horne A.W., et al. Single-cell analysis identifies distinct macrophage phenotypes associated with prodisease and proresolving functions in the endometriotic niche. Proc. Natl. Acad. Sci. USA. 2024;121:e2405474121. doi: 10.1073/pnas.2405474121. PubMed DOI PMC

Laganà A.S., Salmeri F.M., Ban Frangež H., Ghezzi F., Vrtačnik-Bokal E., Granese R. Evaluation of M1 and M2 macrophages in ovarian endometriomas from women affected by endometriosis at different stages of the disease. Gynecol. Endocrinol. 2020;36:441–444. doi: 10.1080/09513590.2019.1683821. PubMed DOI

Duan J., Liu X., Wang H., Guo S.W. The M2a macrophage subset may be critically involved in the fibrogenesis of endometriosis in mice. Reprod. Biomed. Online. 2018;37:254–268. doi: 10.1016/j.rbmo.2018.05.017. PubMed DOI

Viganò P., Ottolina J., Bartiromo L., Bonavina G., Schimberni M., Villanacci R., Candiani M. Cellular Components Contributing to Fibrosis in Endometriosis: A Literature Review. J. Minim. Invasive Gynecol. 2020;27:287–295. doi: 10.1016/j.jmig.2019.11.011. PubMed DOI

Garmendia J.V., De Sanctis J.B. A Brief Analysis of Tissue-Resident NK Cells in Pregnancy and Endometrial Diseases: The Importance of Pharmacologic Modulation. Immuno. 2021;1:174–193. doi: 10.3390/immuno1030011. DOI

Giuliani E., Parkin K.L., Lessey B.A., Young S.L., Fazleabas A.T. Characterisation of uterine NK cells in women with infertility or recurrent pregnancy loss and associated endometriosis. Am. J. Reprod. Immunol. 2014;72:262–269. doi: 10.1111/aji.12259. PubMed DOI PMC

Garmendia J.V., De Sanctis C.V., Hajdúch M., De Sanctis J.B. Exploring the Immunological Aspects and Treatments of Recurrent Pregnancy Loss and Recurrent Implantation Failure. Int. J. Mol. Sci. 2025;26:1295. doi: 10.3390/ijms26031295. PubMed DOI PMC

Makoui M.H., Fekri S., Makoui R.H., Ansari N., Esmaeilzadeh A. The Role of Mast Cells in the Development and Advancement of Endometriosis. Am. J. Reprod. Immunol. 2025;93:e70019. doi: 10.1111/aji.70019. PubMed DOI

Suszczyk D., Skiba W., Jakubowicz-Gil J., Kotarski J., Wertel I. The Role of Myeloid-Derived Suppressor Cells (MDSCs) in the Development and/or Progression of Endometriosis-State of the Art. Cells. 2021;10:677. doi: 10.3390/cells10030677. PubMed DOI PMC

Zhang T., He Y., Man G.C.W., Ding Y., Wang C.C., Chung J.P.W. Myeloid-derived suppressor cells: A new emerging player in endometriosis. Int. Rev. Cell Mol. Biol. 2023;375:191–220. doi: 10.1016/bs.ircmb.2022.11.004. PubMed DOI

Satake E., Koga K., Takamura M., Izumi G., Elsherbini M., Taguchi A., Makabe T., Takeuchi A., Harada M., Hirata T., et al. The roles of polymorphonuclear myeloid-derived suppressor cells in endometriosis. J. Reprod. Immunol. 2021;148:103371. doi: 10.1016/j.jri.2021.103371. PubMed DOI

Chen H., Qin S., Lei A., Li X., Gao Q., Dong J., Xiao Q., Zhou J. Expansion of monocytic myeloid-derived suppressor cells in endometriosis patients: A pilot study. Int. Immunopharmacol. 2017;47:150–158. doi: 10.1016/j.intimp.2017.03.026. PubMed DOI

Sun Y., Shao J., Jiang F., Wang Y., Yan Q., Yu N., Zhang J., Zhang J., Li M., He Y. CD33+ CD14+ CD11b+ HLA-DR- monocytic myeloid-derived suppressor cells recruited and activated by CCR9/CCL25 are crucial for the pathogenic progression of endometriosis. Am. J. Reprod. Immunol. 2019;81:e13067. doi: 10.1111/aji.13067. PubMed DOI

Chen Y., Wang K., Xu Y., Guo P., Hong B., Cao Y., Wei Z., Xue R., Wang C., Jiang H. Alteration of Myeloid-Derived Suppressor Cells, Chronic Inflammatory Cytokines, and Exosomal miRNA Contribute to the Peritoneal Immune Disorder of Patients With Endometriosis. Reprod. Sci. 2019;26:1130–1138. doi: 10.1177/1933719118808923. PubMed DOI

Guo P., Bi K., Lu Z., Wang K., Xu Y., Wu H., Cao Y., Jiang H. CCR5/CCR5 ligand-induced myeloid-derived suppressor cells are related to the progression of endometriosis. Reprod. Biomed. Online. 2019;39:704–711. doi: 10.1016/j.rbmo.2019.05.014. PubMed DOI

Zhang T., Zhou J., Man G.C.W., Leung K.T., Liang B., Xiao B., Ma X., Huang S., Huang H., Hegde V.L., et al. MDSCs drive the process of endometriosis by enhancing angiogenesis and are a new potential therapeutic target. Eur. J. Immunol. 2018;48:1059–1073. doi: 10.1002/eji.201747417. PubMed DOI PMC

Bosteels V., Janssens S. Striking a balance: New perspectives on homeostatic dendritic cell maturation. Nat. Rev. Immunol. 2025;25:125–140. doi: 10.1038/s41577-024-01079-5. PubMed DOI

Li W., Lin A., Qi L., Lv X., Yan S., Xue J., Mu N. Immunotherapy: A promising novel endometriosis therapy. Front. Immunol. 2023;14:1128301. doi: 10.3389/fimmu.2023.1128301. PubMed DOI PMC

Rahal D., Andrade F., Nisihara R. Insights into the role of complement system in the pathophysiology of endometriosis. Immunol. Lett. 2021;231:43–48. doi: 10.1016/j.imlet.2021.01.005. PubMed DOI

Agostinis C., Balduit A., Mangogna A., Zito G., Romano F., Ricci G., Kishore U., Bulla R. Immunological Basis of the Endometriosis: The Complement System as a Potential Therapeutic Target. Front. Immunol. 2021;11:599117. doi: 10.3389/fimmu.2020.599117. PubMed DOI PMC

Agostinis C., Toffoli M., Zito G., Balduit A., Pegoraro S., Spazzapan M., Pascolo L., Romano F., Di Lorenzo G., Mangogna A., et al. Proangiogenic properties of complement protein C1q can contribute to endometriosis. Front. Immunol. 2024;15:1405597. doi: 10.3389/fimmu.2024.1405597. PubMed DOI PMC

Suryawanshi S., Huang X., Elishaev E., Budiu R.A., Zhang L., Kim S., Donnellan N., Mantia-Smaldone G., Ma T., Tseng G., et al. Complement pathway is frequently altered in endometriosis and endometriosis-associated ovarian cancer. Clin. Cancer Res. 2014;20:6163–6174. doi: 10.1158/1078-0432.CCR-14-1338. PubMed DOI PMC

Abramiuk M., Grywalska E., Małkowska P., Sierawska O., Hrynkiewicz R., Niedźwiedzka-Rystwej P. The Role of the Immune System in the Development of Endometriosis. Cells. 2022;11:2028. doi: 10.3390/cells11132028. PubMed DOI PMC

Milewski Ł., Dziunycz P., Barcz E., Radomski D., Roszkowski P.I., Korczak-Kowalska G., Kamiński P., Malejczyk J. Increased levels of human neutrophil peptides 1, 2, and 3 in peritoneal fluid of patients with endometriosis: Association with neutrophils, T cells and IL-8. J. Reprod. Immunol. 2011;91:64–70. doi: 10.1016/j.jri.2011.05.008. PubMed DOI

Lukács L., Kovács A.R., Pál L., Szűcs S., Kövér Á., Lampé R. Phagocyte function of peripheral neutrophil granulocytes and monocytes in endometriosis before and after surgery. J. Gynecol. Obstet. Hum. Reprod. 2021;50:101796. doi: 10.1016/j.jogoh.2020.101796. PubMed DOI

Wilson T.R., Kasper S., Burns K.A. An emerging role for neutrophils in the pathogenesis of endometriosis. npj Women’s Health. 2025;3:9. doi: 10.1038/s44294-025-00059-x. DOI

Takamura M., Koga K., Izumi G., Urata Y., Nagai M., Hasegawa A., Harada M., Hirata T., Hirota Y., Wada-Hiraike O., et al. Neutrophil depletion reduces endometriotic lesion formation in mice. Am. J. Reprod. Immunol. 2016;76:193–198. doi: 10.1111/aji.12540. PubMed DOI

Hogg C., Horne A.W., Greaves E. Endometriosis-associated macrophages: Origin, phenotype, and function. Front. Endocrinol. 2020;11:7. doi: 10.3389/fendo.2020.00007. PubMed DOI PMC

Hogg C., Panir K., Dhami P., Rosser M., Mack M., Soong D., Pollard J.W., Jenkins S.J., Horne A.W., Greaves E. Macrophages inhibit and enhance endometriosis depending on their origin. Proc. Natl. Acad. Sci. USA. 2021;118:e2013776118. doi: 10.1073/pnas.2013776118. PubMed DOI PMC

Liu Y.Y., Liu Y.K., Hu W.T., Tang L.L., Sheng Y.R., Wei C.Y., Li M.Q., Zhu X.Y. Elevated heme impairs macrophage phagocytosis in endometriosis. Reproduction. 2019;158:257–266. doi: 10.1530/REP-19-0028. PubMed DOI

Gao X., Gao H., Shao W., Wang J., Li M., Liu S. The Extracellular Vesicle-Macrophage Regulatory Axis: A Novel Pathogenesis for Endometriosis. Biomolecules. 2023;13:1376. doi: 10.3390/biom13091376. PubMed DOI PMC

Martínez-Zamora M.A., Armengol-Badia O., Quintas-Marquès L., Carmona F., Closa D. Macrophage Phenotype Induced by Circulating Small Extracellular Vesicles from Women with Endometriosis. Biomolecules. 2024;14:737. doi: 10.3390/biom14070737. PubMed DOI PMC

Chuang P.C., Lin Y.J., Wu M.H., Wing L.Y., Shoji Y., Tsai S.J. Inhibition of CD36-dependent phagocytosis by prostaglandin E2 contributes to the development of endometriosis. Am. J. Pathol. 2010;176:850–860. doi: 10.2353/ajpath.2010.090551. PubMed DOI PMC

Weng L.C., Hou S.H., Lei S.T., Peng H.Y., Li M.Q., Zhao D. Estrogen-regulated CD200 inhibits macrophage phagocytosis in endometriosis. J. Reprod. Immunol. 2020;138:103090. doi: 10.1016/j.jri.2020.103090. PubMed DOI

Shiraishi T., Ikeda M., Watanabe T., Negishi Y., Ichikawa G., Kaseki H., Akira S., Morita R., Suzuki S. Downregulation of pattern recognition receptors on macrophages involved in aggravation of endometriosis. Am. J. Reprod. Immunol. 2024;91:e13812. doi: 10.1111/aji.13812. PubMed DOI

Symons L.K., Miller J.E., Kay V.R., Marks R.M., Liblik K., Koti M., Tayade C. The Immunopathophysiology of Endometriosis. Trends Mol. Med. 2018;24:748–762. doi: 10.1016/j.molmed.2018.07.004. PubMed DOI

Li X., Liu Y., Tang Y., Xia Z. Transformation of macrophages into myofibroblasts in fibrosis-related diseases: Emerging biological concepts and potential mechanism. Front. Immunol. 2024;15:1474688. doi: 10.3389/fimmu.2024.1474688. PubMed DOI PMC

Tuckerman E., Mariee N., Prakash A., Li T.C., Laird S. Uterine natural killer cells in peri-implantation endometrium from women with repeated implantation failure after IVF. J. Reprod. Immunol. 2010;87:60–66. doi: 10.1016/j.jri.2010.07.001. PubMed DOI

Kikuchi Y., Ishikawa N., Hirata J., Imaizumi E., Sasa H., Nagata I. Changes of peripheral blood lymphocyte subsets before and after operation of patients with endometriosis. Acta Obstet. Gynecol. Scand. 1993;72:157–161. doi: 10.3109/00016349309013364. PubMed DOI

Azeze G.G., Wu L., Alemu B.K., Wang C.C., Zhang T. Changes in the number and activity of natural killer cells and its clinical association with endometriosis: Systematic review and meta-analysis. F&S Rev. 2024;5:100072. doi: 10.1016/j.xfnr.2024.100072. DOI

Jeung I., Cheon K., Kim M.R. Decreased Cytotoxicity of Peripheral and Peritoneal Natural Killer Cell in Endometriosis. Biomed. Res. Int. 2016;2016:2916070. doi: 10.1155/2016/2916070. PubMed DOI PMC

González-Foruria I., Santulli P., Chouzenoux S., Carmona F., Batteux F., Chapron C. Soluble ligands for the NKG2D receptor are released during endometriosis and correlate with disease severity. PLoS ONE. 2015;10:e0119961. doi: 10.1371/journal.pone.0119961. PubMed DOI PMC

Kang Y.J., Jeung I.C., Park A., Park Y.J., Jung H., Kim T.D., Lee H.G., Choi I., Yoon S.R. An increased level of IL-6 suppresses NK cell activity in peritoneal fluid of patients with endometriosis via regulation of SHP-2 expression. Hum. Reprod. 2014;29:2176–2189. doi: 10.1093/humrep/deu172. PubMed DOI

Guo S.W., Du Y., Liu X. Platelet-derived TGF-β1 mediates the down-modulation of NKG2D expression and may be responsible for impaired natural killer (NK) cytotoxicity in women with endometriosis. Hum. Reprod. 2016;31:1462–1474. doi: 10.1093/humrep/dew057. PubMed DOI

Yu J.J., Sun H.T., Zhang Z.F., Shi R.X., Liu L.B., Shang W.Q., Wei C.Y., Chang K.K., Shao J., Wang M.Y., et al. IL15 promotes growth and invasion of endometrial stromal cells and inhibits killing activity of NK cells in endometriosis. Reproduction. 2016;152:151–160. doi: 10.1530/REP-16-0089. PubMed DOI

Yang H.L., Zhou W.J., Chang K.K., Mei J., Huang L.Q., Wang M.Y., Meng Y., Ha S.Y., Li D.J., Li M.Q. The crosstalk between endometrial stromal cells and macrophages impairs cytotoxicity of NK cells in endometriosis by secreting IL-10 and TGF-β. Reproduction. 2017;154:815–825. doi: 10.1530/REP-17-0342. PubMed DOI

Reis J.L., Rosa N.N., Ângelo-Dias M., Martins C., Borrego L.M., Lima J. Natural Killer Cell Receptors and Endometriosis: A Systematic Review. Int. J. Mol. Sci. 2022;24:331. doi: 10.3390/ijms24010331. PubMed DOI PMC

Saeki S., Fukui A., Mai C., Takeyama R., Yamaya A., Shibahara H. Co-expression of activating and inhibitory receptors on peritoneal fluid NK cells in women with endometriosis. J. Reprod. Immunol. 2023;155:103765. doi: 10.1016/j.jri.2022.103765. PubMed DOI

Sugamata M., Ihara T., Uchiide I. Increase of activated mast cells in human endometriosis. Am. J. Reprod. Immunol. 2005;53:120–125. doi: 10.1111/j.1600-0897.2005.00254.x. PubMed DOI

Kirchhoff D., Kaulfuss S., Fuhrmann U., Maurer M., Zollner T.M. Mast cells in endometriosis: Guilty or innocent bystanders? Expert Opin. Ther. Targets. 2012;16:237–241. doi: 10.1517/14728222.2012.661415. PubMed DOI

McCallion A., Nasirzadeh Y., Lingegowda H., Miller J.E., Khalaj K., Ahn S., Monsanto S.P., Bidarimath M., Sisnett D.J., Craig A.W., et al. Estrogen mediates inflammatory role of mast cells in endometriosis pathophysiology. Front. Immunol. 2022;13:961599. doi: 10.3389/fimmu.2022.961599. PubMed DOI PMC

Xu X., Wang J., Guo X., Chen Y., Ding S., Zou G., Zhu L., Li T., Zhang X. GPR30-mediated non-classic estrogen pathway in mast cells participates in endometriosis pain via the production of FGF2. Front. Immunol. 2023;14:1106771. doi: 10.3389/fimmu.2023.1106771. PubMed DOI PMC

Schulke L., Berbic M., Manconi F., Tokushige N., Markham R., Fraser I.S. Dendritic cell populations in the eutopic and ectopic endometrium of women with endometriosis. Hum. Reprod. 2009;24:1695–1703. doi: 10.1093/humrep/dep071. PubMed DOI

Qiaomei Z., Ping W., Yanjing Z., Jinhua W., Shaozhan C., Lihong C. Features of peritoneal dendritic cells in the development of endometriosis. Reprod. Biol. Endocrinol. 2023;21:4. doi: 10.1186/s12958-023-01058-w. PubMed DOI PMC

Yang X., Jiang L., Xu Y. HSD11B1 overexpression in dendritic cells and stromal cells relates to endometriosis by inhibiting dendritic cell proliferation and maturation. Gynecol. Endocrinol. 2024;40:2411607. doi: 10.1080/09513590.2024.2411607. PubMed DOI

Maridas D.E., Hey-Cunningham A.J., Ng C.H.M., Markham R., Fraser I.S., Berbic M. Peripheral and endometrial dendritic cell populations during the normal cycle and in the presence of endometriosis. J. Endometr. Pelvic Pain Disord. 2014;6:67–119. doi: 10.5301/je.5000180. PubMed DOI PMC

Suen J.L., Chang Y., Shiu Y.S., Hsu C.Y., Sharma P., Chiu C.C., Chen Y.J., Hour T.C., Tsai E.M. IL-10 from plasmacytoid dendritic cells promotes angiogenesis in the early stage of endometriosis. J. Pathol. 2019;249:485–497. doi: 10.1002/path.5339. PubMed DOI PMC

Knez J., Kovačič B., Goropevšek A. The role of regulatory T-cells in the development of endometriosis. Hum. Reprod. 2024;39:1367–1380. doi: 10.1093/humrep/deae103. PubMed DOI

Riccio L.G.C., Baracat E.C., Chapron C., Batteux F., Abrão M.S. The role of the B lymphocytes in endometriosis: A systematic review. J. Reprod. Immunol. 2017;123:29–34. doi: 10.1016/j.jri.2017.09.001. PubMed DOI

Kisovar A., Becker C.M., Granne I., Southcombe J.H. The role of CD8+ T cells in endometriosis: A systematic review. Front. Immunol. 2023;14:1225639. doi: 10.3389/fimmu.2023.1225639. PubMed DOI PMC

Chopyak V.V., Koval H.D., Havrylyuk A.M., Lishchuk-Yakymovych K.A., Potomkina H.A., Kurpisz M.K. Immunopathogenesis of endometriosis—A novel look at an old problem. Cent. Eur. J. Immunol. 2022;47:109–116. doi: 10.5114/ceji.2022.113830. PubMed DOI PMC

Hanada T., Tsuji S., Nakayama M., Wakinoue S., Kasahara K., Kimura F., Mori T., Ogasawara K., Murakami T. Suppressive regulatory T cells and latent transforming growth factor-β-expressing macrophages are altered in the peritoneal fluid of patients with endometriosis. Reprod. Biol. Endocrinol. 2018;16:9. doi: 10.1186/s12958-018-0325-2. PubMed DOI PMC

Riccio L.G.C., Andres M.P., Dehó I.Z., Fontanari G.O., Abrão M.S. Foxp3+CD39+CD73+ regulatory T-cells are decreased in the peripheral blood of women with deep infiltrating endometriosis. Clinics. 2024;79:100390. doi: 10.1016/j.clinsp.2024.100390. PubMed DOI PMC

Li M.Q., Wang Y., Chang K.K., Meng Y.H., Liu L.B., Mei J., Wang Y., Wang X.Q., Jin L.P., Li D.J. CD4+Foxp3+ regulatory T cell differentiation mediated by endometrial stromal cell-derived TECK promotes the growth and invasion of endometriotic lesions. Cell Death Dis. 2014;5:e1436. doi: 10.1038/cddis.2014.414. PubMed DOI PMC

Sisnett D.J., Zutautas K.B., Miller J.E., Lingegowda H., Ahn S.H., McCallion A., Bougie O., Lessey B.A., Tayade C. The Dysregulated IL-23/TH17 Axis in Endometriosis Pathophysiology. J. Immunol. 2024;212:1428–1441. doi: 10.4049/jimmunol.2400018. PubMed DOI

Shi J., Xu Q., Yu S., Zhang T. Perturbations of the endometrial immune microenvironment in endometriosis and adenomyosis: Their impact on reproduction and pregnancy. Semin. Immunopathol. 2025;47:16. doi: 10.1007/s00281-025-01040-1. PubMed DOI PMC

Olkowska-Truchanowicz J., Białoszewska A., Zwierzchowska A., Sztokfisz-Ignasiak A., Janiuk I., Dąbrowski F., Korczak-Kowalska G., Barcz E., Bocian K., Malejczyk J. Peritoneal Fluid from Patients with Ovarian Endometriosis Displays Immunosuppressive Potential and Stimulates Th2 Response. Int. J. Mol. Sci. 2021;22:8134. doi: 10.3390/ijms22158134. PubMed DOI PMC

Reis J.L., Rosa N.N., Martins C., Ângelo-Dias M., Borrego L.M., Lima J. The Role of NK and T Cells in Endometriosis. Int. J. Mol. Sci. 2024;25:10141. doi: 10.3390/ijms251810141. PubMed DOI PMC

Schmitz T., Hoffmann V., Olliges E., Bobinger A., Popovici R., Nößner E., Meissner K. Reduced frequency of perforin-positive CD8+ T cells in menstrual effluent of endometriosis patients. J. Reprod. Immunol. 2021;148:103424. doi: 10.1016/j.jri.2021.103424. PubMed DOI

Hosseinzadeh R., Moini A., Hosseini R., Fatehnejad M., Yekaninejad M.S., Javidan M., Changaei M., Feizisani F., Rajaei S. A higher number of exhausted local PD1+, but not TIM3+, NK cells in advanced endometriosis. Heliyon. 2023;10:e23294. doi: 10.1016/j.heliyon.2023.e23294. PubMed DOI PMC

Abramiuk M., Bębnowska D., Hrynkiewicz R., Polak P.N.G., Kotarski J., Roliński J., Grywalska E. CLTA-4 Expression is Associated with the Maintenance of Chronic Inflammation in Endometriosis and Infertility. Cells. 2021;10:487. doi: 10.3390/cells10030487. PubMed DOI PMC

Podgaec S., Abrao M.S., Días J.A., Jr., Rizzo L.V., de Oliveira R.M., Baracat E.C. Endometriosis: An inflammatory disease with a Th2 immune response component. Hum. Reprod. 2007;22:1373–1379. doi: 10.1093/humrep/del516. PubMed DOI

Santoso B., Sa’adi A., Dwiningsih S.R., Tunjungseto A., Widyanugraha M.Y.A., Mufid A.F., Rahmawati N.Y., Ahsan F. Soluble immune checkpoints CTLA-4, HLA-G, PD-1, and PD-L1 are associated with endometriosis-related infertility. Am. J. Reprod. Immunol. 2020;84:e13296. doi: 10.1111/aji.13296. PubMed DOI

Chen P., Wang D.B., Liang Y.M. Evaluation of estrogen in endometriosis patients: Regulation of GATA-3 in endometrial cells and effects on Th2 cytokines. J. Obstet. Gynaecol. Res. 2016;42:669–677. doi: 10.1111/jog.12957. PubMed DOI

Lin K.R., Li P.X., Zhu X.H., Mao X.F., Peng J.L., Chen X.P., SiTu C.Y., Zhang L.F., Luo W., Han Y.B., et al. Peripheral immune characteristics and subset disorder in reproductive females with endometriosis. Front. Immunol. 2024;15:1431175. doi: 10.3389/fimmu.2024.1431175. PubMed DOI PMC

Delbandi A.A., Mahmoudi M., Shervin A., Farhangnia P., Mohammadi T., Zarnani A.H. Increased circulating T helper 17 (TH17) cells and endometrial tissue IL-17-producing cells in patients with endometriosis compared with non-endometriotic subjects. Reprod. Biol. 2025;25:101019. doi: 10.1016/j.repbio.2025.101019. Advance online publication. PubMed DOI

Kitaya K. B Cell Lineage in the Human Endometrium: Physiological and Pathological Implications. Cells. 2025;14:648. doi: 10.3390/cells14090648. PubMed DOI PMC

Slawek A., Lorek D., Kedzierska A.E., Kubik P., Pajak J., Chrobak A., Chelmonska-Soyta A. Peripheral blood subpopulations of Bregs producing IL-35 in women with endometriosis. Am. J. Reprod. Immunol. 2023;89:e13675. doi: 10.1111/aji.13675. PubMed DOI

Ren Y., Zhu D., Han X., Zhang Q., Chen B., Zhou P., Wei Z., Zhang Z., Cao Y., Zou H. HMGB1: A double-edged sword and therapeutic target in the female reproductive system. Front. Immunol. 2023;14:1238785. doi: 10.3389/fimmu.2023.1238785. PubMed DOI PMC

Huang J., Chen X., Liu J. High mobility group box 1 promotes endometriosis under hypoxia by regulating inflammation and autophagy in vitro and in vivo. Int. Immunopharmacol. 2024;127:111397. doi: 10.1016/j.intimp.2023.111397. PubMed DOI

Dai W., Guo R., Na X., Jiang S., Liang J., Guo C., Fang Y., Na Z., Li D. Hypoxia and the endometrium: An indispensable role for HIF-1α as therapeutic strategies. Redox Biol. 2024;73:103205. doi: 10.1016/j.redox.2024.103205. PubMed DOI PMC

Huang Y., Li R., Hu R., Yao J., Yang Y. PEG2-Induced Pyroptosis Regulates the Expression of HMGB1 and Promotes hEM15A Migration in Endometriosis. Int. J. Mol. Sci. 2022;23:11707. doi: 10.3390/ijms231911707. PubMed DOI PMC

Jana B., Andronowska A., Całka J., Mówińska A. Biosynthetic pathway for leukotrienes is stimulated by lipopolysaccharide and cytokines in pig endometrial stromal cells. Sci. Rep. 2025;15:2806. doi: 10.1038/s41598-025-86787-1. PubMed DOI PMC

Ihara T., Uchiide I., Sugamata M. Light and electron microscopic evaluation of antileukotriene therapy for experimental rat endometriosis. Fertil. Steril. 2004;81((Suppl. S1)):819–823. doi: 10.1016/j.fertnstert.2003.08.029. PubMed DOI

Kiykac Altinbas S., Tapisiz O.L., Cavkaytar S., Simsek G., Oguztuzun S., Goktolga U. Is montelukast effective in regression of endometrial implants in an experimentally induced endometriosis model in rats? Europ. J. Obstet. Gynecol. Reprod. Biol. 2015;184:7–12. doi: 10.1016/j.ejogrb.2014.10.026. PubMed DOI

Wu R., Zhou W., Chen S., Shi Y., Su L., Zhu M., Chen Q., Chen Q. Lipoxin A4 suppresses the development of endometriosis in an ALX receptor-dependent manner via the p38 MAPK pathway. Br. J. Pharmacol. 2014;171:4927–4940. doi: 10.1111/bph.12816. PubMed DOI PMC

Huang Z.X., He X.R., Ding X.Y., Chen J.H., Lei Y.H., Bai J.B., Lin D.C., Hong Y.H., Lan J.F., Chen Q.H. Lipoxin A4 depresses inflammation and promotes autophagy via AhR/mTOR/AKT pathway to suppress endometriosis. Am. J. Reprod. Immunol. 2023;89:e13659. doi: 10.1111/aji.13659. PubMed DOI

Dmitrieva N., Suess G., Shirley R. Resolvins RvD1 and 17(R)-RvD1 alleviate signs of inflammation in a rat model of endometriosis. Fertil. Steril. 2014;102:1191–1196. doi: 10.1016/j.fertnstert.2014.06.046. PubMed DOI

Gu Z., Lamont G.J., Lamont R.J., Uriarte S.M., Wang H., Scott D.A. Resolvin D1, resolvin D2 and maresin 1 activate the GSK3β anti-inflammatory axis in TLR4-engaged human monocytes. Innate Immun. 2016;622:186–195. doi: 10.1177/1753425916628618. PubMed DOI PMC

de Fáveri C., Fermino P.M.P., Piovezan A.P., Volpato L.K. The Inflammatory Role of Pro-Resolving Mediators in Endometriosis: An Integrative Review. Int. J. Mol. Sci. 2021;22:4370. doi: 10.3390/ijms22094370. PubMed DOI PMC

Chávez-Castillo M., Ortega Á., Cudris-Torres L., Duran P., Rojas M., Manzano A., Garrido B., Salazar J., Silva A., Rojas-Gomez D.M., et al. Specialized Pro-Resolving Lipid Mediators: The Future of Chronic Pain Therapy? Int. J. Mol. Sci. 2021;22:10370. doi: 10.3390/ijms221910370. PubMed DOI PMC

Collie B., Troisi J., Lombardi M., Symes S., Richards S. The Current Applications of Metabolomics in Understanding Endometriosis: A Systematic Review. Metabolites. 2025;15:50. doi: 10.3390/metabo15010050. PubMed DOI PMC

Wilson R.B. Hypoxia, cytokines and stromal recruitment: Parallels between pathophysiology of encapsulating peritoneal sclerosis, endometriosis and peritoneal metastasis. Pleura Peritoneum. 2018;3:20180103. doi: 10.1515/pp-2018-0103. PubMed DOI PMC

Ni C., Li D. Ferroptosis and oxidative stress in endometriosis: A systematic review of the literature. Medicine. 2024;103:e37421. doi: 10.1097/MD.0000000000037421. PubMed DOI PMC

Zhu W., Liu X., Yang L., He Q., Huang D., Tan X. Ferroptosis and tumor immunity: In perspective of the major cell components in the tumor microenvironment. Eur. J. Pharmacol. 2023;961:176124. doi: 10.1016/j.ejphar.2023.176124. PubMed DOI

Kondera-Anasz Z., Sikora J., Mielczarek-Palacz A., Jońca M. Concentrations of interleukin (IL)-1alpha, IL-1 soluble receptor type II (IL-1 sRII) and IL-1 receptor antagonist (IL-1 Ra) in the peritoneal fluid and serum of infertile women with endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2005;123:198–203. doi: 10.1016/j.ejogrb.2005.04.019. PubMed DOI

Sikora J., Ferrero S., Mielczarek-Palacz A., Kondera-Anasz Z. The Delicate Balance between the Good and the Bad IL-1 Proinflammatory Effects in Endometriosis. Curr. Med. Chem. 2018;25:2105–2121. doi: 10.2174/0929867325666180111093547. PubMed DOI

Malvezzi H., Hernandes C., Piccinato C.A., Podgaec S. Interleukin in endometriosis-associated infertility-pelvic pain: Systematic review and meta-analysis. Reproduction. 2019;158:1–12. doi: 10.1530/REP-18-0618. PubMed DOI

Werdel R., Mabie A., Evans T.L., Coté R.D., Schlundt A., Doehrman P., Dilsaver D., Coté J.J. Serum Levels of Interleukins in Endometriosis Patients: A Systematic Review and Meta-analysis. J. Minim. Invasive Gynecol. 2024;31:387–396.e11. doi: 10.1016/j.jmig.2024.02.011. PubMed DOI

Koumantakis E., Matalliotakis I., Neonaki M., Froudarakis G., Georgoulias V. Soluble serum interleukin-2 receptor, interleukin-6 and interleukin-1a in patients with endometriosis and in controls. Arch. Gynecol. Obstet. 1994;255:107–112. doi: 10.1007/BF02390936. PubMed DOI

Khan K.N., Guo S.W., Ogawa K., Fujishita A., Mori T. The role of innate and adaptive immunity in endometriosis. J. Reprod. Immunol. 2024;163:104242. doi: 10.1016/j.jri.2024.104242. PubMed DOI

Xia T., Zeng K., Peng Q., Wu X., Lei X. Clinical significance of serum Th1/Th2 cytokines in patients with endometriosis. Women Health. 2023;63:73–82. doi: 10.1080/03630242.2022.2144986. PubMed DOI

Voltolini Velho R., Halben N., Chekerov R., Keye J., Plendl J., Sehouli J., Mechsner S. Functional changes of immune cells: Signal of immune tolerance of the ectopic lesions in endometriosis? Reprod. Biomed. Online. 2021;43:319–328. doi: 10.1016/j.rbmo.2021.04.012. PubMed DOI

Mao X.D., Hu C.Y., Zhu M.C., Ou H.L., Qian Y.L. Immunological microenvironment alterations in follicles of women with proven severe endometriosis undergoing in vitro fertilization. Mol. Biol. Rep. 2019;46:4675–4684. doi: 10.1007/s11033-019-04753-3. PubMed DOI

Oală I.E., Mitranovici M.I., Chiorean D.M., Irimia T., Crișan A.I., Melinte I.M., Cotruș T., Tudorache V., Moraru L., Moraru R., et al. Endometriosis and the Role of Pro-Inflammatory and Anti-Inflammatory Cytokines in Pathophysiology: A Narrative Review of the Literature. Diagnostics. 2024;14:312. doi: 10.3390/diagnostics14030312. PubMed DOI PMC

Ghodsi M., Hojati V., Attaranzadeh A., Saifi B. Evaluation of IL-3, IL-5, and IL-6 concentration in the follicular fluid of women with endometriosis: A cross-sectional study. Int. J. Reprod. Biomed. 2022;20:213–220. doi: 10.18502/ijrm.v20i3.10713. PubMed DOI PMC

Pellicer A., Albert C., Mercader A., Bonilla-Musoles F., Remohí J., Simón C. The follicular and endocrine environment in women with endometriosis: Local and systemic cytokine production. Fertil. Steril. 1998;70:425–431. doi: 10.1016/S0015-0282(98)00204-0. PubMed DOI

Monsanto S.P., Edwards A.K., Zhou J., Nagarkatti P., Nagarkatti M., Young S.L., Lessey B.A., Tayade C. Surgical removal of endometriotic lesions alters local and systemic proinflammatory cytokines in endometriosis patients. Fertil. Steril. 2016;105:968–977.e5. doi: 10.1016/j.fertnstert.2015.11.047. PubMed DOI PMC

Bellelis P., Frediani Barbeiro D., Gueuvoghlanian-Silva B.Y., Kalil J., Abrão M.S., Podgaec S. Interleukin-15 and Interleukin-7 are the Major Cytokines to Maintain Endometriosis. Gynecol. Obstet. Investig. 2019;84:435–444. doi: 10.1159/000496607. PubMed DOI

Akoum A., Lawson C., McColl S., Villeneuve M. Ectopic endometrial cells express high concentrations of interleukin (IL)-8 in vivo regardless of the menstrual cycle phase and respond to oestradiol by up-regulating IL-1-induced IL-8 expression in vitro. Mol. Hum. Reprod. 2001;7:859–866. doi: 10.1093/molehr/7.9.859. PubMed DOI

Sikora J., Smycz-Kubańska M., Mielczarek-Palacz A., Kondera-Anasz Z. Abnormal peritoneal regulation of chemokine activation-The role of IL-8 in pathogenesis of endometriosis. Am. J. Reprod. Immunol. 2017;77:e12622. doi: 10.1111/aji.12622. PubMed DOI

Punnonen J., Teisala K., Ranta H., Bennett B., Punnonen R. Increased levels of interleukin-6 and interleukin-10 in the peritoneal fluid of patients with endometriosis. Am. J. Obstet. Gynecol. 1996;174:1522–1526. doi: 10.1016/S0002-9378(96)70600-2. PubMed DOI

Mazzeo D., Viganó P., Di Blasio A.M., Sinigaglia F., Vignali M., Panina-Bordignon P. Interleukin-12 and its free p40 subunit regulate immune recognition of endometrial cells: Potential role in endometriosis. J. Clin. Endocrinol. Metab. 1998;83:911–916. doi: 10.1210/jc.83.3.911. PubMed DOI

Rahmawati N.Y., Ahsan F., Santoso B., Mufid A.F., Sa’adi A., Dwiningsih S.R., Tunjungseto A., Widyanugraha M.Y.A. IL-8 and IL-12p70 are associated with pelvic pain among infertile women with endometriosis. Pain Med. 2023;24:1262–1269. doi: 10.1093/pm/pnad080. PubMed DOI

Chegini N., Roberts M., Ripps B. Differential expression of interleukins (IL)-13 and IL-15 in ectopic and eutopic endometrium of women with endometriosis and normal fertile women. Am. J. Reprod. Immunol. 2003;49:75–83. doi: 10.1034/j.1600-0897.2003.00028.x. PubMed DOI

Bailey A.P., Hill A.S., Beste M.T., Cook C.D., Sarda V., Laufer M.R., Isaacson K.B., Griffith L.G., Missmer S.A. Comparison of cytokines in the peritoneal fluid and conditioned medium of adolescents and adults with and without endometriosis. Am. J. Reprod. Immunol. 2021;85:e13347. doi: 10.1111/aji.13347. PubMed DOI

Koga K., Osuga Y., Yoshino O., Hirota Y., Yano T., Tsutsumi O., Taketani Y. Elevated interleukin-16 levels in the peritoneal fluid of women with endometriosis may be a mechanism for inflammatory reactions associated with endometriosis. Fertil. Steril. 2005;83:878–882. doi: 10.1016/j.fertnstert.2004.12.004. PubMed DOI

Zhang J., Zhao W., Zhou Y., Xi S., Xu X., Du X., Zheng X., Hu W., Sun R., Tian Z., et al. Pyroptotic T cell-derived active IL-16 has a driving function in ovarian endometriosis development. Cell Rep. Med. 2024;5:101476. doi: 10.1016/j.xcrm.2024.101476. PubMed DOI PMC

Zhang X., Xu H., Lin J., Qian Y., Deng L. Peritoneal fluid concentrations of interleukin-17 correlate with the severity of endometriosis and infertility of this disorder. BJOG Int. J. Obstet. Gynaecol. 2005;112:1153–1155. doi: 10.1111/j.1471-0528.2005.00639.x. PubMed DOI

Ahn S.H., Edwards A.K., Singhm S.S., Young S.L., Lessey B.A., Tayade C. IL-17A Contributes to the Pathogenesis of Endometriosis by Triggering Proinflammatory Cytokines and Angiogenic Growth Factors. J. Immunol. 2015;195:2591–2600. doi: 10.4049/jimmunol.1501138. PubMed DOI PMC

Shi J.L., Zheng Z.M., Chen M., Shen H.H., Li M.Q., Shao J. IL-17: An important pathogenic factor in endometriosis. Int. J. Med. Sci. 2022;19:769–778. doi: 10.7150/ijms.71972. PubMed DOI PMC

Arici A., Matalliotakis I., Goumenou A., Koumantakis G., Vassiliadis S., Mahutte N.G. Altered expression of interleukin-18 in the peritoneal fluid of women with endometriosis. Fertil. Steril. 2003;80:889–894. doi: 10.1016/S0015-0282(03)01122-1. PubMed DOI

Zhang Q.F., Chen G.Y., Liu Y., Huang H.J., Song Y.F. Relationship between resistin and IL-23 levels in follicular fluid in infertile patients with endometriosis undergoing IVF-ET. Adv. Clin. Exp. Med. 2017;26:1431–1435. doi: 10.17219/acem/41149. PubMed DOI

Bungum H.F., Nygaard U., Vestergaard C., Martensen P.M., Knudsen U.B. Increased IL-25 levels in the peritoneal fluid of patients with endometriosis. J. Reprod. Immunol. 2016;114:6–9. doi: 10.1016/j.jri.2016.01.003. PubMed DOI

O D., Waelkens E., Vanhie A., Peterse D., Fassbender A., D’Hooghe T. The Use of Antibody Arrays in the Discovery of New Plasma Biomarkers for Endometriosis. Reprod. Sci. 2020;27:751–762. doi: 10.1007/s43032-019-00081-w. PubMed DOI

Lee M.Y., Kim S.H., Oh Y.S., Heo S.H., Kim K.H., Chae H.D., Kim C.H., Kang B.M. Role of interleukin-32 in the pathogenesis of endometriosis: In vitro, human and transgenic mouse data. Hum. Reprod. 2018;33:807–816. doi: 10.1093/humrep/dey055. PubMed DOI

Choi Y.S., Kim S., Oh Y.S., Cho S., Hoon Kim S. Elevated serum interleukin-32 levels in patients with endometriosis: A cross-sectional study. Am. J. Reprod. Immunol. 2019;82:e13149. doi: 10.1111/aji.13149. PubMed DOI

Lin K., Ma J., Peng Y., Sun M., Xu K., Wu R., Lin J. Autocrine Production of Interleukin-34 Promotes the Development of Endometriosis through CSF1R/JAK3/STAT6 signaling. Sci. Rep. 2019;9:16781. doi: 10.1038/s41598-019-52741-1. PubMed DOI PMC

Zhang C., Peng Z., Ban D., Zhang Y. Upregulation of Interleukin 35 in Patients With Endometriosis Stimulates Cell Proliferation. Reprod. Sci. 2018;25:443–451. doi: 10.1177/1933719117715123. PubMed DOI

Smycz-Kubanska M., Wendlocha D., Witek A., Mielczarek-Palacz A. The role of selected cytokines from the interleukin-1 family in the peritoneal fluid of women with endometriosis. Ginekol. Pol. 2025;96:126–135. doi: 10.5603/gpl.101419. PubMed DOI

Xavier P., Belo L., Beires J., Rebelo I., Martinez-de-Oliveira J., Lunet N., Barros H. Serum levels of VEGF and TNF-alpha and their association with C-reactive protein in patients with endometriosis. Arch. Gynecol. Obst. 2006;273:227–231. doi: 10.1007/s00404-005-0080-4. PubMed DOI

Iwabe T., Harada T., Terakawa N. Role of cytokines in endometriosis-associated infertility. Gynecol. Obst. Investig. 2002;53((Suppl. S1)):19–25. doi: 10.1159/000049420. PubMed DOI

Ullah A., Wang M.J., Wang Y.X., Shen B. CXC chemokines influence immune surveillance in immunological disorders: Polycystic ovary syndrome and endometriosis. Biochim. Biophys. Acta Mol. Basis Dis. 2023;1869:166704. doi: 10.1016/j.bbadis.2023.166704. PubMed DOI

Shimoya K., Zhang Q., Temma-Asano K., Hayashi S., Kimura T., Murata Y. Fractalkine in the peritoneal fluid of women with endometriosis. Int. J. Gynaecol. Obst. 2005;91:36–41. doi: 10.1016/j.ijgo.2005.06.018. PubMed DOI

Smycz-Kubańska M., Kondera-Anasz Z., Sikora J., Wendlocha D., Królewska-Daszczyńska P., Englisz A., Janusz A., Janusz J., Mielczarek-Palacz A. The Role of Selected Chemokines in the Peritoneal Fluid of Women with Endometriosis—Participation in the Pathogenesis of the Disease. Processes. 2021;9:2229. doi: 10.3390/pr9122229. DOI

Arici A., Oral E., Attar E., Tazuke S.I., Olive D.L. Monocyte chemotactic protein-1 concentration in peritoneal fluid of women with endometriosis and its modulation of expression in mesothelial cells. Fertil. Steril. 1997;67:1065–1072. doi: 10.1016/S0015-0282(97)81440-9. PubMed DOI

Nirgianakis K., McKinnon B., Ma L., Imboden S., Bersinger N., Mueller M.D. Peritoneal fluid biomarkers in patients with endometriosis: A cross-sectional study. Horm. Mol. Biol. Clin. Investig. 2020;42:113–122. doi: 10.1515/hmbci-2019-0064. PubMed DOI

Heidari S., Kolahdouz-Mohammadi R., Khodaverdi S., Tajik N., Delbandi A.A. Expression levels of MCP-1, HGF, and IGF-1 in endometriotic patients compared with non-endometriotic controls. BMC Women’s Health. 2021;21:422. doi: 10.1186/s12905-021-01560-6. PubMed DOI PMC

Han M.T., Cheng W., Zhu R., Wu H.H., Ding J., Zhao N.N., Li H., Wang F.X. The cytokine profiles in follicular fluid and reproductive outcomes in women with endometriosis. Am. J. Reprod. Immunol. 2023;89:e13633. doi: 10.1111/aji.13633. PubMed DOI

Zhang X., Mu L. Association between macrophage migration inhibitory factor in the endometrium and estrogen in endometriosis. Exp. Ther. Med. 2015;10:787–791. doi: 10.3892/etm.2015.2516. PubMed DOI PMC

Elbaradie S.M.Y., Bakry M.S., Bosilah A.H. Serum macrophage migration inhibition factor for diagnosing endometriosis and its severity: Case-control study. BMC Women’s Health. 2020;20:189. doi: 10.1186/s12905-020-01051-0. PubMed DOI PMC

Fukaya T., Sugawara J., Yoshida H., Yajima A. The role of macrophage colony stimulating factor in the peritoneal fluid in infertile patients with endometriosis. Tohoku J. Exp. Med. 1994;172:221–226. doi: 10.1620/tjem.172.221. PubMed DOI

Budrys N.M., Nair H.B., Liu Y.G., Kirma N.B., Binkley P.A., Kumar S., Schenken R.S., Tekmal R.R. Increased expression of macrophage colony-stimulating factor and its receptor in patients with endometriosis. Fertil. Steril. 2012;97:1129–1135.e1. doi: 10.1016/j.fertnstert.2012.02.007. PubMed DOI PMC

Shi J., Tan X., Feng G., Zhuo Y., Jiang Z., Banda S., Wang L., Zheng W., Chen L., Yu D., et al. Research advances in drug therapy of endometriosis. Front. Pharmacol. 2023;14:1199010. doi: 10.3389/fphar.2023.1274946. PubMed DOI PMC

Nisolle M., Casanas-Roux F., Anaf V., Mine J.M., Donnez J. Morphometric study of the stromal vascularisation in peritoneal endometriosis. Fertil. Steril. 1993;59:681–684. doi: 10.1016/S0015-0282(16)55823-3. PubMed DOI

McLaren J., Prentice A., Charnock-Jones D.S., Millican S.A., Müller K.H., Sharkey A.M., Smith S.K. Vascular endothelial growth factor is produced by peritoneal fluid macrophages in endometriosis and is regulated by ovarian steroids. J. Clin. Investig. 1996;98:482–489. doi: 10.1172/JCI118815. PubMed DOI PMC

Lee S.R., Kim S.H., Lee Y.J., Hong S.H., Chae H.D., Kim C.H., Kang B.M., Choi Y.M. Expression of epidermal growth factor, fibroblast growth factor-2, and platelet-derived growth factor-A in the eutopic endometrium of women with endometriosis. J. Obstet. Gynaecol. Res. 2007;33:242–247. doi: 10.1111/j.1447-0756.2007.00518.x. PubMed DOI

Smolarz B., Szaflik T., Romanowicz H., Bryś M., Forma E., Szyłło K. Analysis of VEGF, IGF1/2 and the Long Noncoding RNA (lncRNA) H19 Expression in Polish Women with Endometriosis. Int. J. Mol. Sci. 2024;25:5271. doi: 10.3390/ijms25105271. PubMed DOI PMC

Pantelis A., Machairiotis N., Lapatsanis D.P. The Formidable yet Unresolved Interplay between Endometriosis and Obesity. Sci. World J. 2021;2021:6653677. doi: 10.1155/2021/6653677. PubMed DOI PMC

Oosterlynck D.J., Meuleman C., Waer M., Koninckx P.R. Transforming growth factor-beta activity is increased in peritoneal fluid from women with endometriosis. Obstet. Gynecol. 1994;83:287–292. PubMed

Abdoli M., Hoseini S.M., Sandoghsaz R.S., Javaheri A., Montazeri F., Moshtaghioun S.M. Endometriotic lesions and their recurrence: A Study on the mediators of immunoregulatory (TGF-β/miR-20a) and stemness (NANOG/miR-145) J. Reprod. Immunol. 2024;166:104336. doi: 10.1016/j.jri.2024.104336. PubMed DOI

Suen J.L., Chang Y., Chiu P.R., Hsieh T.H., His E., Chen Y.C., Chen Y.F., Tsai E.M. Serum level of IL-10 is increased in patients with endometriosis, and IL-10 promotes the growth of lesions in a murine model. Am. J. Pathol. 2014;184:464–471. doi: 10.1016/j.ajpath.2013.10.023. PubMed DOI

Santulli P., Borghese B., Chouzenoux S., Streuli I., Borderie D., de Ziegler D., Weill B., Chapron C., Batteux F. Interleukin-19 and interleukin-22 serum levels are decreased in patients with ovarian endometrioma. Fertil. Steril. 2013;99:219–226.e2. doi: 10.1016/j.fertnstert.2012.08.055. PubMed DOI

Guo Y., Chen Y., Liu L.B., Chang K.K., Li H., Li M.Q., Shao J. IL-22 in the endometriotic milieu promotes the proliferation of endometrial stromal cells via stimulating the secretion of CCL2 and IL-8. Int. J. Clin. Exp. Pathol. 2013;6:2011–2020. PubMed PMC

Liu S., Zhao R., Zang Y., Huang P., Zhang Q., Fan X., Bai J., Zheng X., Zhao S., Kuai D., et al. Interleukin-22 promotes endometrial carcinoma cell proliferation and cycle progression via ERK1/2 and p38 activation. Mol. Cell. Biochem. 2025;480:3147–3160. doi: 10.1007/s11010-024-05179-7. PubMed DOI PMC

Wang Q., Wang L., Shao J., Wang Y., Jin L.P., Li D.J., Li M.Q. IL-22 enhances the invasiveness of endometrial stromal cells of adenomyosis in an autocrine manner. Int. J. Clin. Exp. Pathol. 2014;7:5762–5771. PubMed PMC

Jiang J., Jiang Z., Xue M. Serum and peritoneal fluid levels of interleukin-6 and interleukin-37 as biomarkers for endometriosis. Gynecol. Endocrinol. 2019;35:571–575. doi: 10.1080/09513590.2018.1554034. PubMed DOI

Hsu C.C., Yang B.C., Wu M.H., Huang K.E. Enhanced interleukin-4 expression in patients with endometriosis. Fertil. Steril. 1997;67:1059–1064. doi: 10.1016/S0015-0282(97)81439-2. PubMed DOI

OuYang Z., Hirota Y., Osuga Y., Hamasaki K., Hasegawa A., Tajima T., Hirata T., Koga K., Yoshino O., Harada M., et al. Interleukin-4 stimulates proliferation of endometriotic stromal cells. Am. J. Pathol. 2008;173:463–469. doi: 10.2353/ajpath.2008.071044. PubMed DOI PMC

Krygere L., Jukna P., Jariene K., Drejeriene E. Diagnostic Potential of Cytokine Biomarkers in En dometriosis: Challenges and Insights. Biomedicines. 2024;12:2867. doi: 10.3390/biomedicines12122867. PubMed DOI PMC

Wang F., Wang H., Jin D., Zhang Y. Serum miR-17, IL-4, and IL-6 levels for diagnosis of endometriosis. Medicine. 2018;97:e10853. doi: 10.1097/MD.0000000000010853. PubMed DOI PMC

Sadat Sandoghsaz R., Montazeri F., Shafienia H., Mehdi Kalantar S., Javaheri A., Samadi M. Expression of miR-21 &IL-4 in endometriosis. Hum. Immunol. 2024;85:110746. doi: 10.1016/j.humimm.2023.110746. PubMed DOI

Wang X.M., Ma Z.Y., Song N. Inflammatory cytokines IL-6, IL-10, IL-13, TNF-α and peritoneal fluid flora were associated with infertility in patients with endometriosis. Eur. Rev. Med. Pharmacol. Sci. 2018;22:2513–2518. doi: 10.26355/eurrev_201805_14899. PubMed DOI

Qiu X.M., Lai Z.Z., Ha S.Y., Yang H.L., Liu L.B., Wang Y., Shi J.W., Ruan L.Y., Ye J.F., Wu J.N., et al. IL-2 and IL-27 synergistically promote growth and invasion of endometriotic stromal cells by maintaining the balance of IFN-γ and IL-10 in endometriosis. Reproduction. 2020;159:251–260. doi: 10.1530/REP-19-0411. PubMed DOI

Miller J.E., Monsanto S.P., Ahn S.H., Khalaj K., Fazleabas A.T., Young S.L., Lessey B.A., Koti M., Tayade C. Interleukin-33 modulates inflammation in endometriosis. Sci. Rep. 2017;7:17903. doi: 10.1038/s41598-017-18224-x. PubMed DOI PMC

Miller J.E., Lingegowda H., Symons L.K., Bougie O., Young S.L., Lessey B.A., Koti M., Tayade C. IL-33 activates group 2 innate lymphoid cell expansion and modulates endometriosis. JCI Insight. 2021;6:e149699. doi: 10.1172/jci.insight.149699. PubMed DOI PMC

Ruan J., Tian Q., Li S., Zhou X., Sun Q., Wang Y., Xiao Y., Li M., Chang K., Yi X. The IL-33-ST2 axis plays a vital role in endometriosis via promoting epithelial-mesenchymal transition by phosphorylating β-catenin. Cell Commun. Signal. 2024;22:318. doi: 10.1186/s12964-024-01683-x. PubMed DOI PMC

Xiao F., Liu X., Guo S.W. Interleukin-33 Derived from Endometriotic Lesions Promotes Fibrogenesis through Inducing the Production of Profibrotic Cytokines by Regulatory T Cells. Biomedicines. 2022;10:2893. doi: 10.3390/biomedicines10112893. PubMed DOI PMC

Sharpe-Timms K.L., Bruno P.L., Penney L.L., Bickel J.T. Immunohistochemical localization of granulocyte-macrophage colony-stimulating factor in matched endometriosis and endometrial tissues. Am. J. Obstet. Gynecol. 1994;171:740–745. doi: 10.1016/0002-9378(94)90091-4. PubMed DOI

Propst A.M., Quade B.J., Nowak R.A., Stewart E.A. Granulocyte macrophage colony-stimulating factor in adenomyosis and autologous endometrium. J. Soc. Gynecol. Investig. 2002;9:93–97. doi: 10.1177/107155760200900208. PubMed DOI

Toullec L., Batteux F., Santulli P., Chouzenoux S., Jeljeli M., Belmondo T., Hue S., Chapron C. High Levels of Anti-GM-CSF Antibodies in Deep Infiltrating Endometriosis. Reprod. Sci. 2020;27:211–217. doi: 10.1007/s43032-019-00021-8. PubMed DOI

Zhao Y.Q., Ren Y.F., Li B.B., Wei C., Yu B. The mysterious association between adiponectin and endometriosis. Front. Pharmacol. 2024;15:1396616. doi: 10.3389/fphar.2024.1396616. PubMed DOI PMC

Matarese G., Alviggi C., Sanna V., Howard J.K., Lord G.M., Carravetta C., Fontana S., Lechler R.I., Bloom S.R., De Placido G. Increased leptin levels in serum and peritoneal fluid of patients with pelvic endometriosis. J. Clin. Endocrinol. Metab. 2000;85:2483–2487. doi: 10.1210/jc.85.7.2483. PubMed DOI

Hong J., Yi K.W. What is the link between endometriosis and adiposity? Obstet. Gynecol. Sci. 2022;65:227–233. doi: 10.5468/ogs.21343. PubMed DOI PMC

Tian Z., Wang Y., Zhao Y., Chang X.H., Zhu H.L. Serum and peritoneal fluid leptin levels in endometriosis: A systematic review and meta-analysis. Gynecol. Endocrinol. 2021;37:689–693. doi: 10.1080/09513590.2020.1862789. PubMed DOI

Wójtowicz M., Zdun D., Owczarek A.J., Skrzypulec-Plinta V., Olszanecka-Glinianowicz M. Evaluation of adipokines concentrations in plasma, peritoneal, and endometrioma fluids in women operated on for ovarian endometriosis. Front. Endocrinol. 2023;14:1218980. doi: 10.3389/fendo.2023.1218980. PubMed DOI PMC

Kim T.H., Bae N., Kim T., Hsu A.L., Hunter M.I., Shin J.H., Jeong J.W. Leptin Stimulates Endometriosis Development in Mouse Models. Biomedicines. 2022;10:2160. doi: 10.3390/biomedicines10092160. PubMed DOI PMC

Kalaitzopoulos D.R., Lempesis I.G., Samartzis N., Kolovos G., Dedes I., Daniilidis A., Nirgianakis K., Leeners B., Goulis D.G., Samartzis E.P. Leptin concentrations in endometriosis: A systematic review and meta-analysis. J. Reprod. Immunol. 2021;146:103338. doi: 10.1016/j.jri.2021.103338. PubMed DOI

Wu M.H., Chen K.F., Lin S.C., Lgu C.W., Tsai S.J. Aberrant expression of leptin in human endometriotic stromal cells is induced by elevated levels of hypoxia inducible factor-1alpha. Am. J. Pathol. 2007;170:590–598. doi: 10.2353/ajpath.2007.060477. PubMed DOI PMC

Zyguła A., Sankiewicz A., Sakowicz A., Dobrzyńska E., Dakowicz A., Mańka G., Kiecka M., Spaczynski R., Piekarski P., Banaszewska B., et al. Is the leptin/BMI ratio a reliable biomarker for endometriosis? Front. Endocrinol. 2024;15:1359182. doi: 10.3389/fendo.2024.1359182. PubMed DOI PMC

Takemura Y., Osuga Y., Harada M., Hirata T., Koga K., Morimoto C., Hirota Y., Yoshino O., Yano T., Taketani Y. Serum adiponectin concentrations are decreased in women with endometriosis. Hum. Reprod. 2005;20:3510–3513. doi: 10.1093/humrep/dei233. PubMed DOI

Zhao Z., Wu Y., Zhang H., Wang X., Tian X., Wang Y., Qiu Z., Zou L., Tang Z., Huang M. Association of leptin and adiponectin levels with endometriosis: A systematic review and meta-analysis. Gynecol. Endocrinol. 2021;37:591–599. doi: 10.1080/09513590.2021.1878139. PubMed DOI

Yi K.W., Shin J.H., Park H.T., Kim T., Kim S.H., Hur J.Y. Resistin concentration is increased in the peritoneal fluid of women with endometriosis. Am. J. Reprod. Immunol. 2010;64:318–323. doi: 10.1111/j.1600-0897.2010.00840.x. PubMed DOI

Oh Y.K., Ha Y.R., Yi K.W., Park H.T., Shin J.H., Kim T., Hur J.Y. Increased expression of resistin in ectopic endometrial tissue of women with endometriosis. Am. J. Reprod. Immunol. 2017;78:e12726. doi: 10.1111/aji.12726. PubMed DOI

Lee J.C., Kim S.H., Oh Y.S., Kim J.H., Lee S.R., Chae H.D. Increased Expression of Retinol-Binding Protein 4 in Ovarian Endometrioma and Its Possible Role in the Pathogenesis of Endometriosis. Int. J. Mol. Sci. 2021;22:5827. doi: 10.3390/ijms22115827. PubMed DOI PMC

Lv S.J., Sun J.N., Gan L., Sun J. Identification of molecular subtypes and immune infiltration in endometriosis: A novel bioinformatics analysis and In vitro validation. Front. Immunol. 2023;14:1130738. doi: 10.3389/fimmu.2023.1130738. PubMed DOI PMC

Krasnyi A.M., Sadekova A.A., Smolnova T.Y., Chursin V.V., Buralkina N.A., Chuprynin V.D., Yarotskaya E., Pavlovich S.V., Sukhikh G.T. The Levels of Ghrelin, Glucagon, Visfatin and Glp-1 Are Decreased in the Peritoneal Fluid of Women with Endometriosis along with the Increased Expression of the CD10 Protease by the Macrophages. Int. J. Mol. Sci. 2022;23:10361. doi: 10.3390/ijms231810361. PubMed DOI PMC

Morotti M., Vincent K., Becker C.M. Mechanisms of pain in endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017;209:8–13. doi: 10.1016/j.ejogrb.2016.07.497. PubMed DOI

Zheng P., Zhang W., Leng J., Lang J. Research on central sensitisation of endometriosis-associated pain: A systematic review of the literature. J. Pain Res. 2019;12:1447–1456. doi: 10.2147/JPR.S197667. PubMed DOI PMC

Monnin N., Fattet A.J., Koscinski I. Endometriosis: Update of Pathophysiology, (Epi) Genetic and Environmental Involvement. Biomedicines. 2023;11:978. doi: 10.3390/biomedicines11030978. PubMed DOI PMC

Liu S.J., Lv W. A laparoscopic surgery for deep infiltrating endometriosis and the review of literature. Clin. Exp. Obstet. Gynecol. 2016;43:616–618. doi: 10.12891/ceog3108.2016. PubMed DOI

Gentles A., Goodwin E., Bedaiwy Y., Marshall N., Yong P.J. Nociplastic Pain in Endometriosis: A Scoping Review. J. Clin. Med. 2024;13:7521. doi: 10.3390/jcm13247521. PubMed DOI PMC

Godin S.K., Wagner J., Huang P., Bree D. The role of peripheral nerve signaling in endometriosis. FASEB BioAdvances. 2021;3:802–813. doi: 10.1096/fba.2021-00063. PubMed DOI PMC

Astruc A., Roux L., Robin F., Sall N.R., Dion L., Lavoué V., Legendre G., Leveque J., Bessede T., Bertrand M., et al. Advanced Insights into Human Uterine Innervation: Implications for Endometriosis and Pelvic Pain. J. Clin. Med. 2024;13:1433. doi: 10.3390/jcm13051433. PubMed DOI PMC

Fattori V., Zaninelli T.H., Rasquel-Oliveira F.S., Heintz O.K., Jain A., Sun L., Seshan M.L., Peterse D., Lindholm A.E., Anchan R.M., et al. Nociceptor-to-macrophage communication through CGRP/RAMP1 signaling drives endometriosis-associated pain and lesion growth in mice. Sci. Transl. Med. 2024;16:eadk8230. doi: 10.1126/scitranslmed.adk8230. PubMed DOI

Lingegowda H., Williams B.J., Spiess K.G., Sisnett D.J., Lomax A.E., Koti M., Tayadeet C. Role of the endocannabinoid system in the pathophysiology of endometriosis and therapeutic implications. J. Cannabis Res. 2022;4:54. doi: 10.1186/s42238-022-00163-8. PubMed DOI PMC

Clayton P., Subah S., Venkatesh R., Hill M., Bogoda N. Palmitoylethanolamide: A Potential Alternative to Cannabidiol. J. Diet. Supp. 2023;20:505–530. doi: 10.1080/19390211.2021.2005733. PubMed DOI

Farooqi T., Bhuyan D.J., Low M., Sinclair J., Leonardi M., Armour M. Cannabis and Endometriosis: The Roles of the Gut Microbiota and the Endocannabinoid System. J. Clin. Med. 2023;12:7071. doi: 10.3390/jcm12227071. PubMed DOI PMC

Vercellini P., Fedele L., Aimi G., Pietropaolo G., Consonni D., Crosignani P.G. Association between endometriosis stage, lesion type, patient characteristics and severity of pelvic pain symptoms: A multivariate analysis of over 1000 patients. Hum. Reprod. 2007;22:266–271. doi: 10.1093/humrep/del339. PubMed DOI

As-Sanie S., Kim J., Schmidt-Wilcke T., Sundgren P.C., Clauw D.J., Napadow V., Harris R.E. Functional Connectivity is Associated With Altered Brain Chemistry in Women with Endometriosis-Associated Chronic Pelvic Pain. J. Pain. 2016;17:1–13. doi: 10.1016/j.jpain.2015.09.008. PubMed DOI PMC

Eippert F., Tracey I., Chen A., De E., Argoff C. Pain and the PAG: Learning from painful mistakes. Nat. Neurosci. 2014;17:1438–1439. doi: 10.1038/nn.3844. PubMed DOI

Tran L.V., Tokushige N., Berbic M., Markham R., Fraser I.S. Macrophages and nerve fibres in peritoneal endometriosis. Hum. Reprod. 2009;24:835–841. doi: 10.1093/humrep/den483. PubMed DOI

Wei Y., Liang Y., Lin H., Dai Y., Yao S. Autonomic nervous system and inflammation interaction in endometriosis-associated pain. J. Neuroinflamm. 2020;17:80. doi: 10.1186/s12974-020-01752-1. PubMed DOI PMC

Wu J., Xie H., Yao S., Liang Y. Macrophage and nerve interaction in endometriosis. J. Neuroinflamm. 2017;14:53. doi: 10.1186/s12974-017-0828-3. PubMed DOI PMC

Castro J., Maddern J., Erickson A., Harrington A.M., Brierley S.M. Peripheral and central neuroplasticity in a mouse model of endometriosis. J. Neurochem. 2024;168:3777–3800. doi: 10.1111/jnc.15843. PubMed DOI

Machairiotis N., Vasilakaki S., Thomakos N. Inflammatory Mediators and Pain in Endometriosis: A Systematic Review. Biomedicines. 2021;9:54. doi: 10.3390/biomedicines9010054. PubMed DOI PMC

Maddern J., Grundy L., Castro J., Brierley S.M. Pain in Endometriosis. Front. Cell. Neurosci. 2020;14:590823. doi: 10.3389/fncel.2020.590823. PubMed DOI PMC

Greaves E., Temp J., Esnal-Zufiurre A., Mechsner S., Horne A.W., Saunders P.T. Estradiol is a critical mediator of macrophage-nerve cross talk in peritoneal endometriosis. Am. J. Pathol. 2015;185:2286–2297. doi: 10.1016/j.ajpath.2015.04.012. PubMed DOI PMC

Falcone T., Flyckt R. Clinical Management of Endometriosis. Obstet. Gynecol. 2018;131:557–571. doi: 10.1097/AOG.0000000000002469. PubMed DOI

Bajaj P., Bajaj P., Madsen H., Arendt-Nielsen L. Endometriosis is associated with central sensitization: A psychophysical controlled study. J. Pain. 2003;4:372–380. doi: 10.1016/S1526-5900(03)00720-X. PubMed DOI

Ding S., Guo X., Zhu L., Wang J., Li T., Yu Q., Zhang X. Macrophage-derived netrin-1 contributes to endometriosis-associated pain. Ann. Transl. Med. 2021;9:29. doi: 10.21037/atm-20-2161. PubMed DOI PMC

Forster R., Sarginson A., Velichkova A., Hogg C., Dorning A., Horne A.W., Saunders P.T.K., Greaves E. Macrophage-derived insulin-like growth factor-1 is a key neurotrophic and nerve-sensitizing factor in pain associated with endometriosis. FASEB J. 2019;33:11210–11222. doi: 10.1096/fj.201900797R. PubMed DOI PMC

Hosseinirad H., Rahman M.S., Jeong J.W. Targeting TET3 in macrophages provides a concept strategy for the treatment of endometriosis. J. Clin. Investig. 2024;134:e185421. doi: 10.1172/JCI185421. PubMed DOI PMC

Li J., Wu Z., Li N., Wang J., Huang M., Zhu L., Wan G., Zhang Z. Exploring macrophage and nerve interaction in endometriosis-associated pain: The inductive role of IL-33. Inflamm. Res. 2025;74:42. doi: 10.1007/s00011-025-02010-x. PubMed DOI

Midavaine É., Moraes B.C., Benitez J., Rodriguez S.R., Braz J.M., Kochhar N.P., Eckalbar W.L., Tian L., Domingos A.I., Pintar J.E., et al. Meningeal regulatory T cells inhibit nociception in female mice. Science. 2025;388:96–104. doi: 10.1126/science.adq6531. PubMed DOI

Nielsen N.M., Jørgensen K.T., Pedersen B.V., Rostgaard K., Frisch M. The co-occurrence of endometriosis with multiple sclerosis, systemic lupus erythematosus and Sjogren syndrome. Hum. Reprod. 2011;26:1555–1559. doi: 10.1093/humrep/der105. PubMed DOI

Matalliotaki C., Matalliotakis M., Zervou M.I., Trivli A., Matalliotakis I., Mavromatidis G., Spandidos D.A., Albertsen H.M., Chettier R., Ward K., et al. Co-existence of endometriosis with 13 non-gynecological co-morbidities: Mutation analysis by whole exome sequencing. Mol. Med. Rep. 2018;18:5053–5057. doi: 10.3892/mmr.2018.9521. PubMed DOI PMC

Hamouda R.K., Arzoun H., Sahib I., Escudero Mendez L., Srinivasan M., Shoukrie S.I., Dhanoa R.K., Selvaraj R., Malla J., Selvamani T.Y., et al. The Comorbidity of Endometriosis and Systemic Lupus Erythematosus: A Systematic Review. Cureus. 2023;15:e42362. doi: 10.7759/cureus.42362. PubMed DOI PMC

Días J.A., Jr., de Oliveira R.M., Abrao M.S. Antinuclear antibodies and endometriosis. Int. J. Gynaecol. Obstet. 2006;93:262–263. doi: 10.1016/j.ijgo.2006.03.005. PubMed DOI

Kirkegaard S., Uldall Torp N.M., Andersen S., Andersen S.L. Endometriosis, polycystic ovary syndrome, and the thyroid: A review. Endocr. Connect. 2024;13:e230431. doi: 10.1530/EC-23-0431. PubMed DOI PMC

Mathur S.P., Holt V.L., Lee J.H., Jiang H., Rust P.F. Levels of antibodies to transferrin and alpha 2-HS glycoprotein in women with and without endometriosis. Am. J. Reprod. Immunol. 1998;40:69–73. doi: 10.1111/j.1600-0897.1998.tb00393.x. PubMed DOI

Dotan A., Kanduc D., Muller S., Makatsariya A., Shoenfeld Y. Molecular mimicry between SARS-CoV-2 and the female reproductive system. Am. J. Reprod. Immunol. 2021;86:e13494. doi: 10.1111/aji.13494. PubMed DOI PMC

Garvey M. Endometriosis: Future Biological Perspectives for Diagnosis and Treatment. Int. J. Mol. Sci. 2024;25:12242. doi: 10.3390/ijms252212242. PubMed DOI PMC

Zhang W., Li K., Jian A., Zhang G., Zhang X. Prospects for potential therapy targeting immune associated factors in endometriosis (Review) Mol. Med. Rep. 2025;31:57. doi: 10.3892/mmr.2024.13422. PubMed DOI PMC

Kato T., Yasuda K., Matsushita K., Ishii K.J., Hirota S., Yoshimoto T., Shibahara H. Interleukin-1/-33 Signaling Pathways as Therapeutic Targets for Endometriosis. Front. Immunol. 2019;10:2021. doi: 10.3389/fimmu.2019.02021. PubMed DOI PMC

Fedotcheva T.A., Fedotcheva N.I., Shimanovsky N.L. Progesterone as an Anti-Inflammatory Drug and Immunomodulator: New Aspects in Hormonal Regulation of the Inflammation. Biomolecules. 2022;12:1299. doi: 10.3390/biom12091299. PubMed DOI PMC

Chang C.Y., Chiang A.J., Yan M.J., Lai M.T., Su Y.Y., Huang H.Y., Chang C.Y., Li Y.H., Li P.F., Chen C.M., et al. Ribosome biogenesis serves as a therapeutic target for treating endometriosis and the associated complications. Biomedicines. 2022;10:185. doi: 10.3390/biomedicines10010185. PubMed DOI PMC

Hamid A.M., Madkour W.A., Moawad A., Elzaher M.A., Roberts M.P. Does cabergoline help in decreasing endometrioma size compared to LHRH agonist? A prospective randomized study. Arch. Gynecol. Obstet. 2014;290:677–682. doi: 10.1007/s00404-014-3242-4. PubMed DOI

DiVasta A.D., Stamoulis C., Gallagher J.S., Laufer M.R., Anchan R., Hornstein M.D. Nonhormonal therapy for endometriosis: A randomized, placebo-controlled, pilot study of cabergoline versus norethindrone acetate. F&S Rep. 2021;2:454–461. doi: 10.1016/j.xfre.2021.07.003. PubMed DOI PMC

Wyatt J., Fernando S.M., Powell S.G., Hill C.J., Arshad I., Probert C., Ahmed S., Hapangama D.K. The role of iron in the pathogenesis of endometriosis: A systematic review. Hum. Reprod. Open. 2023;2023:hoad033. doi: 10.1093/hropen/hoad033. PubMed DOI PMC

Tewary S., Lucas E.S., Fujihara R., Kimani P.K., Polanco A., Brighton P.J., Muter J., Fishwick K.J., Da Costa M.J.M.D., Ewington L.J., et al. Impact of sitagliptin on endometrial mesenchymal stem-like progenitor cells: A randomised, double-blind placebo-controlled feasibility trial. eBioMedicine. 2020;51:102597. doi: 10.1016/j.ebiom.2019.102597. PubMed DOI PMC

Li Y., Lv X., Jiang M., Jin Z. Sitagliptin ameliorates hypoxia-induced damages in endometrial stromal cells: An implication in endometriosis. Bioengineered. 2022;13:800–809. doi: 10.1080/21655979.2021.2012950. PubMed DOI PMC

Grzymajlo K., El Hafny-Rahbi B., Kieda C. Tumour suppressor PTEN activity is differentially inducible by myo-inositol phosphates. J. Cell. Mol. Med. 2023;27:879–890. doi: 10.1111/jcmm.17699. PubMed DOI PMC

Dera-Szymanowska A., Chmaj-Wierzchowska K., Horst N., Stryjakowska K., Wirlstein P., Andrusiewicz M., Florek E., Beltrano J., Szymanowski K., Wolun-Cholewa M. Immunomodulation inhibits the development of endometriosis in rats. J. Physiol. Pharmacol. 2020;71:145–153. doi: 10.26402/jpp.2020.1.14. PubMed DOI

Chu X., Hou M., Li Y., Zhang Q., Wang S., Ma J. Extracellular vesicles in endometriosis: Role and potential. Front. Endocrinol. 2024;15:1365327. doi: 10.3389/fendo.2024.1365327. PubMed DOI PMC

Meczekalski B., Nowicka A., Bochynska S., Szczesnowicz A., Bala G., Szeliga A. Kisspeptin and Endometriosis-Is There a Link? J. Clin. Med. 2024;13:7683. doi: 10.3390/jcm13247683. PubMed DOI PMC

Chen Y., Li T. Unveiling the Mechanisms of Pain in Endometriosis: Comprehensive Analysis of Inflammatory Sensitization and Therapeutic Potential. Int. J. Mol. Sci. 2025;26:1770. doi: 10.3390/ijms26041770. PubMed DOI PMC

Genovese T., Siracusa R., D’Amico R., Cordaro M., Peritore A.F., Gugliandolo E., Crupi R., Trovato Salinaro A., Raffone E., Impellizzeri D., et al. Regulation of Inflammatory and Proliferative Pathways by Fotemustine and Dexamethasone in Endometriosis. Int. J. Mol. Sci. 2021;22:5998. doi: 10.3390/ijms22115998. PubMed DOI PMC

Maksym R.B., Hoffmann-Młodzianowska M., Skibińska M., Rabijewski M., Mackiewicz A., Kieda C. Immunology and Immunotherapy of Endometriosis. J. Clin. Med. 2021;10:5879. doi: 10.3390/jcm10245879. PubMed DOI PMC

Park S.R., Kim S.K., Kim S.R., Kim D., Kim K.W., Hong I.S., Lee H.Y. Noncanonical functions of glucocorticoids: A novel role for glucocorticoids in performing multiple beneficial functions in endometrial stem cells. Cell Death Dis. 2021;12:612. doi: 10.1038/s41419-021-03893-4. PubMed DOI PMC

Jiao X.F., Li H., Zeng L., Yang H., Hu Y., Qu Y., Chen W., Sun Y., Zhang W., Zeng X., et al. Use of statins and risks of ovarian, uterine, and cervical diseases: A cohort study in the UK Biobank. Eur. J. Clin. Pharmacol. 2024;80:855–867. doi: 10.1007/s00228-024-03656-y. PubMed DOI PMC

Qin X., Wang Q., Xu D., Sun Y., Xu W., Wang B., Yang Z., Hao L. Atorvastatin exerts dual effects of lesion regression and ovarian protection in the prevention and treatment of endometriosis. Eur. J. Pharmacol. 2024;964:176261. doi: 10.1016/j.ejphar.2023.176261. PubMed DOI

Dillon G.A., Stanhewicz A.E., Serviente C., Flores V.A., Stachenfeld N., Alexander L.M. Seven days of statin treatment improves nitric-oxide mediated endothelial-dependent cutaneous microvascular function in women with endometriosis. Microvasc. Res. 2022;144:104421. doi: 10.1016/j.mvr.2022.104421. PubMed DOI PMC

Perelló M., González-Foruria I., Castillo P., Martínez-Florensa M., Lozano F., Balasch J., Carmona F. Oral Administration of Pentoxifylline Reduces Endometriosis-Like Lesions in a Nude Mouse Model. Reprod. Sci. 2017;24:911–918. doi: 10.1177/1933719116673198. PubMed DOI

Creus M., Fábregues F., Carmona F., del Pino M., Manau D., Balasch J. Combined laparoscopic surgery and pentoxifylline therapy for treatment of endometriosis-associated infertility: A preliminary trial. Hum. Reprod. 2008;23:1910–1916. doi: 10.1093/humrep/den167. PubMed DOI

Kamencic H., Thiel J.A. Pentoxifylline after conservative surgery for endometriosis: A randomized, controlled trial. J. Minim. Invasive Gynecol. 2008;15:62–66. doi: 10.1016/j.jmig.2007.07.018. PubMed DOI

Alborzi S., Ghotbi S., Parsanezhad M.E., Dehbashi S., Alborzi S., Alborzi M. Pentoxifylline therapy after laparoscopic surgery for different stages of endometriosis: A prospective, double-blind, randomized, placebo-controlled study. J. Minim. Invasive Gynecol. 2007;14:54–58. doi: 10.1016/j.jmig.2006.06.024. PubMed DOI

Grammatis A.L., Georgiou E.X., Becker C.M. Pentoxifylline for the treatment of endometriosis-associated pain and infertility. Cochrane Database Syst. Rev. 2021;8:CD007677. doi: 10.1002/14651858.CD007677. PubMed DOI PMC

Clemenza S., Sorbi F., Noci I., Capezzuoli T., Turrini I., Carriero C., Buffi N., Fambrini M., Petraglia F. From pathogenesis to clinical practice: Emerging medical treatments for endometriosis. Best Pract. Res. Clin. Obstet. Gynaecol. 2018;51:92–101. doi: 10.1016/j.bpobgyn.2018.01.021. PubMed DOI

Lebovic D.I., Kir M., Casey C.L. Peroxisome proliferator-activated receptor-gamma induces regression of endometrial explants in a rat model of endometriosis. Fertil. Steril. 2004;82((Suppl. S3)):1008–1013. doi: 10.1016/j.fertnstert.2004.02.148. PubMed DOI

Lebovic D.I., Mwenda J.M., Chai D.C., Mueller M.D., Santi A., Fisseha S., D’Hooghe T. PPAR-gamma receptor ligand induces regression of endometrial explants in baboons: A prospective, randomized, placebo- and drug-controlled study. Fertil. Steril. 2007;88((Suppl. S4)):1108–1119. doi: 10.1016/j.fertnstert.2006.12.072. PubMed DOI PMC

Kim C.H., Lee Y.J., Kim J.B., Lee K.H., Kwon S.K., Ahn J.W., Kim S.H., Chae H.D., Kang B.M. Effect of Pioglitazone on Production of Regulated upon Activation Normal T-cell Expressed and Secreted (RANTES) and IVF Outcomes in Infertile Women with Endometriosis. Dev. Reprod. 2013;17:207–213. doi: 10.12717/DR.2013.17.3.207. PubMed DOI PMC

Ren X.U., Wang Y., Xu G., Dai L. Effect of rapamycin on endometriosis in mice. Exp. Therap. Med. 2016;12:101–106. doi: 10.3892/etm.2016.3280. PubMed DOI PMC

Fan J., Chen C., Zhong Y. A cohort study on IVF outcomes in infertile endometriosis patients: The effects of rapamycin treatment. Reprod. Biomed. Online. 2024;48:103319. doi: 10.1016/j.rbmo.2023.103319. PubMed DOI

Palmer S.S., Altan M., Denis D., Tos E.G., Gotteland J.P., Osteen K.G., Bruner-Tran K.L., Nataraja S.G. Bentamapimod (JNK Inhibitor AS602801) Induces Regression of Endometriotic Lesions in Animal Models. Reprod. Sci. 2016;23:11–23. doi: 10.1177/1933719115600553. PubMed DOI PMC

Hussein M., Chai D.C., Kyama C.M., Mwenda J.M., Palmer S.S., Gotteland J.P., D’Hooghe T.M. c-Jun NH2-terminal kinase inhibitor bentamapimod reduces induced endometriosis in baboons: An assessor-blind placebo-controlled randomized study. Fertil. Steril. 2016;105:815–824.e5. doi: 10.1016/j.fertnstert.2015.11.022. PubMed DOI

Feng Y., Dong H., Zheng L. Ligustrazine inhibits inflammatory response of human endometrial stromal cells through the STAT3/IGF2BP1/RELA axis. Pharm. Biol. 2023;61:666–673. doi: 10.1080/13880209.2023.2195883. PubMed DOI PMC

Jiang T., Chen Y., Gu X., Miao M., Hu D., Zhou H., Chen J., Teichmann A.T., Yang Y. Review of the Potential Therapeutic Effects and Molecular Mechanisms of Resveratrol on Endometriosis. Int. J. Women’s Health. 2023;15:741–763. doi: 10.2147/IJWH.S404660. PubMed DOI PMC

Bruner-Tran K.L., Osteen K.G., Taylor H.S., Sokalska A., Haines K., Duleba A.J. Resveratrol inhibits development of experimental endometriosis in vivo and reduces endometrial stromal cell invasiveness in vitro. Biol. Reprod. 2011;84:106–112. doi: 10.1095/biolreprod.110.086744. PubMed DOI PMC

Kodarahmian M., Amidi F., Moini A., Kashani L., Shabani Nashtaei M., Pazhohan A., Bahramrezai M., Berenjian S., Sobhani A. The modulating effects of Resveratrol on the expression of MMP-2 and MMP-9 in endometriosis women: A randomized exploratory trial. Gynecol. Endocrinol. 2019;35:719–726. doi: 10.1080/09513590.2019.1576612. PubMed DOI

Khodarahmian M., Amidi F., Moini A., Kashani L., Salahi E., Danaii-Mehrabad S., Nashtaei M.S., Mojtahedi M.F., Esfandyari S., Sobhani A. A randomized exploratory trial to assess the effects of resveratrol on VEGF and TNF-α 2 expression in endometriosis women. J. Reprod. Immunol. 2021;143:103248. doi: 10.1016/j.jri.2020.103248. PubMed DOI

Podgrajsek R., Ban Frangez H., Stimpfel M. Molecular Mechanism of Resveratrol and Its Therapeutic Potential on Female Infertility. Int. J. Mol. Sci. 2024;25:3613. doi: 10.3390/ijms25073613. PubMed DOI PMC

Rostami S., Alyasin A., Saedi M., Nekoonam S., Khodarahmian M., Moeini A., Amidi F. Astaxanthin ameliorates inflammation, oxidative stress, and reproductive outcomes in endometriosis patients undergoing assisted reproduction: A randomized, triple-blind placebo-controlled clinical trial. Front. Endocrinol. 2023;14:1144323. doi: 10.3389/fendo.2023.1144323. PubMed DOI PMC

Kamal D.A.M., Salamt N., Yusuf A.N.M., Kashim M.I.A.M., Mokhtar M.H. Potential Health Benefits of Curcumin on Female Reproductive Disorders: A Review. Nutrients. 2021;13:3126. doi: 10.3390/nu13093126. PubMed DOI PMC

Chowdhury I., Banerjee S., Driss A., Xu W., Mehrabi S., Nezhat C., Sidell N., Taylor R.N., Thompson W.E. Curcumin attenuates proangiogenic and proinflammatory factors in human eutopic endometrial stromal cells through the NF-κB signaling pathway. J. Cell. Physiol. 2019;234:6298–6312. doi: 10.1002/jcp.27360. PubMed DOI PMC

Jannatifar R., Asa E., Cheraghi E., Verdi A. Nanomicelle curcumin improves oxidative stress, inflammatory markers, and assisted reproductive techniques outcomes in endometriosis cases: A randomized clinical trial. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2025 doi: 10.1007/s00210-025-03958-7. PubMed DOI

Hipólito-Reis M., Neto A.C., Neves D. Impact of curcumin, quercetin, or resveratrol on the pathophysiology of endometriosis: A systematic review. Phytother. Res. 2022;36:2416–2433. doi: 10.1002/ptr.7464. PubMed DOI

Jian X., Shi C., Luo W., Zhou L., Jiang L., Liu K. Therapeutic effects and molecular mechanisms of quercetin in gynecological disorders. Biomed. Pharmacother. 2024;173:116418. doi: 10.1016/j.biopha.2024.116418. PubMed DOI

Park S., Lim W., Bazer F.W., Whang K.Y., Song G. Quercetin inhibits proliferation of endometriosis regulating cyclin D1 and its target microRNAs in vitro and in vivo. J. Nutr. Biochem. 2019;63:87–100. doi: 10.1016/j.jnutbio.2018.09.024. PubMed DOI

Włodarczyk M., Ciebiera M., Nowicka G., Łoziński T., Ali M., Al-Hendy A. Epigallocatechin Gallate for the Treatment of Benign and Malignant Gynecological Diseases-Focus on Epigenetic Mechanisms. Nutrients. 2024;16:559. doi: 10.3390/nu16040559. PubMed DOI PMC

Hung S.W., Liang B., Gao Y., Zhang R., Tan Z., Zhang T., Chung P.W.J., Chan T.H., Wang C.C. An In-Silico, In-Vitro and In-Vivo Combined Approach to Identify NMNATs as Potential Protein Targets of ProEGCG for Treatment of Endometriosis. Front. Pharmacol. 2021;12:714790. doi: 10.3389/fphar.2021.714790. PubMed DOI PMC

Stochino Loi E., Pontis A., Cofelice V., Pirarba S., Fais M.F., Daniilidis A., Melis I., Paoletti A.M., Angioni S. Effect of ultramicronized-palmitoylethanolamide and co-micronized palmitoylethanolamide/polydatin on chronic pelvic pain and quality of life in endometriosis patients: An open-label pilot study. Int. J. Women’s Health. 2019;11:443–449. doi: 10.2147/IJWH.S204275. PubMed DOI PMC

Indraccolo U., Indraccolo S.R., Mignini F. Micronized palmitoylethanolamide/trans-polydatin treatment of endometriosis-related pain: A meta-analysis. Ann. Ist. Super. Sanita. 2017;53:125–134. doi: 10.4415/ANN_17_02_08. PubMed DOI

Genovese T., Cordaro M., Siracusa R., Impellizzeri D., Caudullo S., Raffone E., Macrí F., Interdonato L., Gugliandolo E., Interlandi C., et al. Molecular and Biochemical Mechanism of Cannabidiol in the Management of the Inflammatory and Oxidative Processes Associated with Endometriosis. Int. J. Mol. Sci. 2022;23:5427. doi: 10.3390/ijms23105427. PubMed DOI PMC

Sinclair J., Collett L., Abbott J., Pate D.W., Sarris J., Armour M. Effects of cannabis ingestion on endometriosis-associated pelvic pain and related symptoms. PLoS ONE. 2021;16:e0258940. doi: 10.1371/journal.pone.0258940. PubMed DOI PMC

Mistry M., Simpson P., Morris E., Fritz A.K., Karavadra B., Lennox C., Prosser-Snelling E. Cannabidiol for the Management of Endometriosis and Chronic Pelvic Pain. J. Minim. Invasive Gynecol. 2022;29:169–176. doi: 10.1016/j.jmig.2021.11.017. PubMed DOI

Dimitrov N.V., Meyer C.J., Perloff M., Ruppenthal M.M., Phillipich M.J., Gilliland D., Malone W., Minn F.L. Alteration of retinol-binding-protein concentrations by the synthetic retinoid fenretinide in healthy human subjects. Am. J. Clin. Nutr. 1990;51:1082–1087. doi: 10.1093/ajcn/51.6.1082. PubMed DOI

Pavone M.E., Malpani S.S., Dyson M., Kim J.J., Bulun S.E. Fenretinide: A Potential Treatment for Endometriosis. Reprod. Sci. 2016;23:1139–1147. doi: 10.1177/1933719116632920. PubMed DOI PMC

Garić D., Dumut D.C., Shah J., De Sanctis J.B., Radzioch D. The role of essential fatty acids in cystic fibrosis and normalizing effect of fenretinide. Cell. Mol. Life Sci. 2020;77:4255–4267. doi: 10.1007/s00018-020-03530-x. PubMed DOI PMC

Aristarco V., Serrano D., Maisonneuve P., Guerrieri-Gonzaga A., Lazzeroni M., Feroce I., Macis D., Cavadini E., Albertazzi E., Jemos C., et al. Fenretinide in Young Women at Genetic or Familial Risk of Breast Cancer: A Placebo-Controlled Biomarker Trial. Cancer Prev. Res. 2024;17:255–263. doi: 10.1158/1940-6207.CAPR-23-0422. PubMed DOI

Yarmolinskaya M., Denisova A., Tkachenko N., Ivashenko T., Bespalova O., Tolibova G., Tral T. Vitamin D significance in pathogenesis of endometriosis. Gynecol. Endocrinol. 2021;37((Suppl. S1)):40–43. doi: 10.1080/09513590.2021.2006516. PubMed DOI

Kalaitzopoulos D.R., Samartzis N., Daniilidis A., Leeners B., Makieva S., Nirgianakis K., Dedes I., Metzler J.M., Imesch P., Lempesis I.G. Effects of vitamin D supplementation in endometriosis: A systematic review. Reprod. Biol. Endocrinol. 2022;20:176. doi: 10.1186/s12958-022-01051-9. PubMed DOI PMC

Xie B., Liao M., Huang Y., Hang F., Ma N., Hu Q., Wang J., Jin Y., Qin A. Association between vitamin D and endometriosis among American women: National Health and Nutrition Examination Survey. PLoS ONE. 2024;19:e0296190. doi: 10.1371/journal.pone.0296190. PubMed DOI PMC

Quattrone F., Sanchez A.M., Pannese M., Hemmerle T., Viganò P., Candiani M., Petraglia F., Neri D., Panina-Bordignon P. The Targeted Delivery of Interleukin 4 Inhibits Development of Endometriotic Lesions in a Mouse Model. Reprod. Sci. 2015;22:1143–1152. doi: 10.1177/1933719115578930. PubMed DOI

Somigliana E., Viganò P., Rossi G., Carinelli S., Vignali M., Panina-Bordignon P. Endometrial ability to implant in ectopic sites can be prevented by interleukin-12 in a murine model of endometriosis. Hum. Reprod. 1999;14:2944–2950. doi: 10.1093/humrep/14.12.2944. PubMed DOI

Itoh H., Sashihara T., Hosono A., Kaminogawa S., Uchida M. Interleukin-12 inhibits development of ectopic endometriotic tissues in peritoneal cavity via activation of NK cells in a murine endometriosis model. Cytotechnology. 2011;63:133–141. doi: 10.1007/s10616-010-9321-x. PubMed DOI PMC

Altintas D., Kokcu A., Tosun M., Cetinkaya M.B., Kandemir B. Efficacy of recombinant human interferon alpha-2b on experimental endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2008;139:95–99. doi: 10.1016/j.ejogrb.2007.09.006. PubMed DOI

Dicitore A., Castiglioni S., Saronni D., Gentilini D., Borghi M.O., Stabile S., Vignali M., Di Blasio A.M., Persani L., Vitale G. Effects of human recombinant type I IFNs (IFN-α2b and IFN-β1a) on growth and migration of primary endometrial stromal cells from women with deeply infiltrating endometriosis: A preliminary study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018;230:192–198. doi: 10.1016/j.ejogrb.2018.10.004. PubMed DOI

Acién P., Quereda F., Campos A., Gomez-Torres M.J., Velasco I., Gutierrez M. Use of intraperitoneal interferon alpha-2b therapy after conservative surgery for endometriosis and postoperative medical treatment with depot gonadotropin-releasing hormone analog: A randomized clinical trial. Fertil. Steril. 2002;78:705–711. doi: 10.1016/S0015-0282(02)03330-7. PubMed DOI

He Y., Xiong T., Guo F., Du Z., Fan Y., Sun H., Feng Z., Zhang G. Interleukin-37b inhibits the growth of murine endometriosis-like lesions by regulating proliferation, invasion, angiogenesis and inflammation. Mol. Hum. Reprod. 2020;26:240–255. doi: 10.1093/molehr/gaaa014. PubMed DOI

Li L., Liao Z., Ye M., Jiang J. Recombinant human IL-37 inhibited endometriosis development in a mouse model through increasing Th1/Th2 ratio by inducing the maturation of dendritic cells. Reprod. Biol. Endocrinol. 2021;19:128. doi: 10.1186/s12958-021-00811-3. PubMed DOI PMC

Önalan G., Tohma Y.A., Zeyneloğlu H.B. Effect of Etanercept on the Success of Assisted Reproductive Technology in Patients with Endometrioma. Gynecol. Obstet. Investig. 2018;83:358–364. doi: 10.1159/000484895. PubMed DOI

Liu M., Li Y., Yuan Y., Jiang M., Yin P., Yang D. Peri-implantation treatment with TNF-α inhibitor for endometriosis and/or adenomyosis women undergoing frozen-thawed embryo transfer: A retrospective cohort study. J. Reprod. Immunol. 2025;167:104415. doi: 10.1016/j.jri.2024.104415. PubMed DOI

Lu D., Song H., Shi G. Anti-TNF-α treatment for pelvic pain associated with endometriosis. Cochrane Database Syst. Rev. 2013;2013:CD008088. doi: 10.1002/14651858.CD008088.pub3. PubMed DOI PMC

Sullender R.T., Agarwal R.K., Jacobs M.B., Wessels J.M., Foster W.G., Agarwal S.K. Pilot Study of IL-1 Antagonist Anakinra for Treatment of Endometriosis. Int. J. Women’s Health. 2024;16:1583–1593. doi: 10.2147/IJWH.S467041. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...