Specialized Pro-Resolving Lipid Mediators: The Future of Chronic Pain Therapy?
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CC-0437-10-21-09-10
Consejo de Desarrollo Científico, Humanístico y Tecnológico, Universidad del Zulia
PubMed
34638711
PubMed Central
PMC8509014
DOI
10.3390/ijms221910370
PII: ijms221910370
Knihovny.cz E-zdroje
- Klíčová slova
- central nervous system sensitization, chronic pain, eicosanoids, inflammation, long-term potentiation, nociception, omega 3 fatty acids, pain management, polyunsaturated fatty acids, specialized pro-resolving lipid mediators,
- MeSH
- chronická bolest metabolismus terapie MeSH
- kyseliny mastné omega-6 metabolismus MeSH
- lidé MeSH
- management bolesti * MeSH
- mediátory zánětu metabolismus MeSH
- omega-3 mastné kyseliny metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- kyseliny mastné omega-6 MeSH
- mediátory zánětu MeSH
- omega-3 mastné kyseliny MeSH
Chronic pain (CP) is a severe clinical entity with devastating physical and emotional consequences for patients, which can occur in a myriad of diseases. Often, conventional treatment approaches appear to be insufficient for its management. Moreover, considering the adverse effects of traditional analgesic treatments, specialized pro-resolving lipid mediators (SPMs) have emerged as a promising alternative for CP. These include various bioactive molecules such as resolvins, maresins, and protectins, derived from ω-3 polyunsaturated fatty acids (PUFAs); and lipoxins, produced from ω-6 PUFAs. Indeed, SPMs have been demonstrated to play a central role in the regulation and resolution of the inflammation associated with CP. Furthermore, these molecules can modulate neuroinflammation and thus inhibit central and peripheral sensitizations, as well as long-term potentiation, via immunomodulation and regulation of nociceptor activity and neuronal pathways. In this context, preclinical and clinical studies have evidenced that the use of SPMs is beneficial in CP-related disorders, including rheumatic diseases, migraine, neuropathies, and others. This review integrates current preclinical and clinical knowledge on the role of SPMs as a potential therapeutic tool for the management of patients with CP.
Zobrazit více v PubMed
Geurts J.W., Willems P.C., Lockwood C., van Kleef M., Kleijnen J., Dirksen C. Patient Expectations for Management of Chronic Non-Cancer Pain: A Systematic Review. Health Expect. 2017;20:1201–1217. doi: 10.1111/hex.12527. PubMed DOI PMC
GBD 2016 Disease and Injury Incidence and Prevalence Collaborators Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 328 Diseases and Injuries for 195 Countries, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:1211–1259. doi: 10.1016/S0140-6736(17)32154-2. PubMed DOI PMC
Fayaz A., Croft P., Langford R.M., Donaldson L.J., Jones G.T. Prevalence of Chronic Pain in the UK: A Systematic Review and Meta-Analysis of Population Studies. BMJ Open. 2016;6:e010364. doi: 10.1136/bmjopen-2015-010364. PubMed DOI PMC
Kheiry F., Rakhshan M., Shaygan M. The prevalence and associated factors of chronic pain in nurses Iran. Latinoam. Hipertens. 2019;14:20–25.
Dahlhamer J., Lucas J., Zelaya C., Nahin R., Mackey S., DeBar L., Kerns R., Von Korff M., Porter L., Helmick C. Prevalence of Chronic Pain and High-Impact Chronic Pain Among Adults—United States, 2016. MMWR Morb. Mortal. Wkly. Rep. 2018;67:1001–1006. doi: 10.15585/mmwr.mm6736a2. PubMed DOI PMC
De La Cruz V.J.A., Dos Santos F., Dyzinger W., Herzog S. Medicina Del Estilo de Vida: Trabajando Juntos Para Revertir La Epidemia de Las Enfermedades Crónicas En Latinoamérica. Cienc. Innovación Salud. 2017;4:1–7. doi: 10.17081/innosa.4.2.2870. DOI
World Health Organization Opioid Overdose. [(accessed on 21 June 2021)]. Available online: https://www.who.int/news-room/fact-sheets/detail/opioid-overdose.
Hern O., Saumeth K.T., Cabrera J.L., Pinz M. Consumos y Costos de Medicamentos: Herramienta para la Gestión de Suministro del Servicio Farmacéutico. Cienc. Innovación Salud. 2015;3:45–52. doi: 10.17081/innosa.3.1.237. DOI
Freire L.F.L., Chingo D.J.A., Saldarriaga L.C.Z., Mera L.M.I., Escalante V.C.G., Villacres A.X.Z., Sanguil A.T.A., Bucheli F.J.J., Velasco S.J.S. Alternativas emergentes en la farmacoterapia de la neuralgia del trigémino. AVFT—Arch. Venez. Farmacol. Ter. 2019;38:34–39.
Ji R.-R., Xu Z.-Z., Gao Y.-J. Emerging Targets in Neuroinflammation-Driven Chronic Pain. Nat. Rev. Drug Discov. 2014;13:533–548. doi: 10.1038/nrd4334. PubMed DOI PMC
Valdes A.M., Ravipati S., Menni C., Abhishek A., Metrustry S., Harris J., Nessa A., Williams F.M.K., Spector T.D., Doherty M., et al. Association of the Resolvin Precursor 17-HDHA, but Not D- or E- Series Resolvins, with Heat Pain Sensitivity and Osteoarthritis Pain in Humans. Sci. Rep. 2017;7:10748. doi: 10.1038/s41598-017-09516-3. PubMed DOI PMC
Chiang N., Serhan C.N. Structural Elucidation and Physiologic Functions of Specialized Pro-Resolving Mediators and Their Receptors. Mol. Asp. Med. 2017;58:114–129. doi: 10.1016/j.mam.2017.03.005. PubMed DOI PMC
Fattori V., Zaninelli T.H., Rasquel-Oliveira F.S., Casagrande R., Verri W.A. Specialized Pro-Resolving Lipid Mediators: A New Class of Non-Immunosuppressive and Non-Opioid Analgesic Drugs. Pharmacol. Res. 2020;151:104549. doi: 10.1016/j.phrs.2019.104549. PubMed DOI
Martini A.C., Berta T., Forner S., Chen G., Bento A.F., Ji R.-R., Rae G.A. Lipoxin A4 Inhibits Microglial Activation and Reduces Neuroinflammation and Neuropathic Pain after Spinal Cord Hemisection. J. Neuroinflamm. 2016;13:75. doi: 10.1186/s12974-016-0540-8. PubMed DOI PMC
Goldberg R.J., Katz J. A Meta-Analysis of the Analgesic Effects of Omega-3 Polyunsaturated Fatty Acid Supplementation for Inflammatory Joint Pain. Pain. 2007;129:210–223. doi: 10.1016/j.pain.2007.01.020. PubMed DOI
Calder P.C. Polyunsaturated Fatty Acids and Inflammatory Processes: New Twists in an Old Tale. Biochimie. 2009;91:791–795. doi: 10.1016/j.biochi.2009.01.008. PubMed DOI
Zhang L.-Y., Jia M.-R., Sun T. The Roles of Special Proresolving Mediators in Pain Relief. Rev. Neurosci. 2018;29:645–660. doi: 10.1515/revneuro-2017-0074. PubMed DOI
Schaller M.S., Zahner G.J., Gasper W.J., Harris W.S., Conte M.S., Hills N.K., Grenon S.M. Relationship between the Omega-3 Index and Specialized pro-Resolving Lipid Mediators in Patients with Peripheral Arterial Disease Taking Fish Oil Supplements. J. Clin. Lipidol. 2017;11:1289–1295. doi: 10.1016/j.jacl.2017.06.011. PubMed DOI PMC
Levy B.D. Resolvins and Protectins: Natural Pharmacophores for Resolution Biology. Prostaglandins Leukot. Essent. Fatty Acids. 2010;82:327–332. doi: 10.1016/j.plefa.2010.02.003. PubMed DOI PMC
Patrignani P., Patrono C. Cyclooxygenase Inhibitors: From Pharmacology to Clinical Read-Outs. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids. 2015;1851:422–432. doi: 10.1016/j.bbalip.2014.09.016. PubMed DOI
Serhan C.N. Pro-Resolving Lipid Mediators Are Leads for Resolution Physiology. Nature. 2014;510:92–101. doi: 10.1038/nature13479. PubMed DOI PMC
Recchiuti A., Serhan C.N. Pro-Resolving Lipid Mediators (SPMs) and Their Actions in Regulating MiRNA in Novel Resolution Circuits in Inflammation. Front. Immunol. 2012;3:298. doi: 10.3389/fimmu.2012.00298. PubMed DOI PMC
Dalli J., Serhan C.N. Pro-Resolving Mediators in Regulating and Conferring Macrophage Function. Front. Immunol. 2017;8:1400. doi: 10.3389/fimmu.2017.01400. PubMed DOI PMC
Serhan C.N. Resolution Phase of Inflammation: Novel Endogenous Anti-Inflammatory and Proresolving Lipid Mediators and Pathways. Annu. Rev. Immunol. 2007;25:101–137. doi: 10.1146/annurev.immunol.25.022106.141647. PubMed DOI
Levy B.D., Clish C.B., Schmidt B., Gronert K., Serhan C.N. Lipid Mediator Class Switching during Acute Inflammation: Signals in Resolution. Nat. Immunol. 2001;2:612–619. doi: 10.1038/89759. PubMed DOI
Serhan C.N., Levy B.D. Resolvins in Inflammation: Emergence of the pro-Resolving Superfamily of Mediators. J. Clin. Investig. 2018;128:2657–2669. doi: 10.1172/JCI97943. PubMed DOI PMC
Serhan C.N., Chiang N., Dalli J., Levy B.D. Lipid Mediators in the Resolution of Inflammation. Cold Spring Harb. Perspect. Biol. 2014;7:a016311. doi: 10.1101/cshperspect.a016311. PubMed DOI PMC
Fiore S., Ryeom S.W., Weller P.F., Serhan C.N. Lipoxin Recognition Sites. Specific Binding of Labeled Lipoxin A4 with Human Neutrophils. J. Biol. Chem. 1992;267:16168–16176. doi: 10.1016/S0021-9258(18)41982-5. PubMed DOI
Minciullo P.L., Catalano A., Mandraffino G., Casciaro M., Crucitti A., Maltese G., Morabito N., Lasco A., Gangemi S., Basile G. Inflammaging and Anti-Inflammaging: The Role of Cytokines in Extreme Longevity. Arch. Immunol. Ther. Exp. 2016;64:111–126. doi: 10.1007/s00005-015-0377-3. PubMed DOI
Serhan C.N., Krishnamoorthy S., Recchiuti A., Chiang N. Novel Anti-Inflammatory--pro-Resolving Mediators and Their Receptors. Curr. Top. Med. Chem. 2011;11:629–647. doi: 10.2174/1568026611109060629. PubMed DOI PMC
McMahon B., Godson C. Lipoxins: Endogenous Regulators of Inflammation. Am. J. Physiol. Renal Physiol. 2004;286:F189–F201. doi: 10.1152/ajprenal.00224.2003. PubMed DOI
Kang Y., Taddeo B., Varai G., Varga J., Fiore S. Mutations of Serine 236–237 and Tyrosine 302 Residues in the Human Lipoxin A4 Receptor Intracellular Domains Result in Sustained Signaling. Biochemistry. 2000;39:13551–13557. doi: 10.1021/bi001196i. PubMed DOI
Bonnekoh H., Scheffel J., Wu J., Hoffmann S., Maurer M., Krause K. Skin and Systemic Inflammation in Schnitzler’s Syndrome Are Associated With Neutrophil Extracellular Trap Formation. Front. Immunol. 2019;10:546. doi: 10.3389/fimmu.2019.00546. PubMed DOI PMC
Barbu E.A., Mendelsohn L., Samsel L., Thein S.L. Pro-Inflammatory Cytokines Associate with NETosis during Sickle Cell Vaso-Occlusive Crises. Cytokine. 2020;127:154933. doi: 10.1016/j.cyto.2019.154933. PubMed DOI PMC
Li X., Yuan K., Zhu Q., Lu Q., Jiang H., Zhu M., Huang G., Xu A. Andrographolide Ameliorates Rheumatoid Arthritis by Regulating the Apoptosis-NETosis Balance of Neutrophils. Int. J. Mol. Sci. 2019;20:5035. doi: 10.3390/ijms20205035. PubMed DOI PMC
Headland S.E., Norling L.V. The Resolution of Inflammation: Principles and Challenges. Semin. Immunol. 2015;27:149–160. doi: 10.1016/j.smim.2015.03.014. PubMed DOI
Romano M., Cianci E., Simiele F., Recchiuti A. Lipoxins and Aspirin-Triggered Lipoxins in Resolution of Inflammation. Eur. J. Pharmacol. 2015;760:49–63. doi: 10.1016/j.ejphar.2015.03.083. PubMed DOI
Chiang N., Bermudez E.A., Ridker P.M., Hurwitz S., Serhan C.N. Aspirin Triggers Antiinflammatory 15-Epi-Lipoxin A4 and Inhibits Thromboxane in a Randomized Human Trial. Proc. Natl. Acad. Sci. USA. 2004;101:15178–15183. doi: 10.1073/pnas.0405445101. PubMed DOI PMC
Serhan C.N., Chiang N., Van Dyke T.E. Resolving Inflammation: Dual Anti-Inflammatory and pro-Resolution Lipid Mediators. Nat. Rev. Immunol. 2008;8:349–361. doi: 10.1038/nri2294. PubMed DOI PMC
O’Meara S.J., Rodgers K., Godson C. Lipoxins: Update and Impact of Endogenous pro-Resolution Lipid Mediators. Rev. Physiol. Biochem. Pharmacol. 2008;160:47–70. doi: 10.1007/112_2006_0606. PubMed DOI
Recchiuti A., Mattoscio D., Isopi E. Roles, Actions, and Therapeutic Potential of Specialized Pro-Resolving Lipid Mediators for the Treatment of Inflammation in Cystic Fibrosis. Front. Pharmacol. 2019;10:252. doi: 10.3389/fphar.2019.00252. PubMed DOI PMC
Ryan A., Godson C. Lipoxins: Regulators of Resolution. Curr. Opin. Pharmacol. 2010;10:166–172. doi: 10.1016/j.coph.2010.02.005. PubMed DOI
Maderna P., Cottell D.C., Berlasconi G., Petasis N.A., Brady H.R., Godson C. Lipoxins Induce Actin Reorganization in Monocytes and Macrophages but Not in Neutrophils: Differential Involvement of Rho GTPases. Am. J. Pathol. 2002;160:2275–2283. doi: 10.1016/S0002-9440(10)61175-3. PubMed DOI PMC
Levy B.D., Serhan C.N. Resolution of Acute Inflammation in the Lung. Annu. Rev. Physiol. 2014;76:467–492. doi: 10.1146/annurev-physiol-021113-170408. PubMed DOI PMC
Serhan C.N., Savill J. Resolution of Inflammation: The Beginning Programs the End. Nat. Immunol. 2005;6:1191–1197. doi: 10.1038/ni1276. PubMed DOI
Dalli J., Serhan C. Macrophage Proresolving Mediators-the When and Where. Microbiol. Spectr. 2016;4 doi: 10.1128/microbiolspec.MCHD-0001-2014. PubMed DOI PMC
Ariel A., Chiang N., Arita M., Petasis N.A., Serhan C.N. Aspirin-Triggered Lipoxin A4 and B4 Analogs Block Extracellular Signal-Regulated Kinase-Dependent TNF-Alpha Secretion from Human T Cells. J. Immunol. 2003;170:6266–6272. doi: 10.4049/jimmunol.170.12.6266. PubMed DOI
Chiurchiù V., Leuti A., Maccarrone M. Bioactive Lipids and Chronic Inflammation: Managing the Fire Within. Front. Immunol. 2018;9:38. doi: 10.3389/fimmu.2018.00038. PubMed DOI PMC
Tungen J.E., Gerstmann L., Vik A., De Matteis R., Colas R.A., Dalli J., Chiang N., Serhan C.N., Kalesse M., Hansen T.V. Resolving Inflammation: Synthesis, Configurational Assignment, and Biological Evaluations of RvD1n-3 DPA. Chemistry. 2019;25:1476–1480. doi: 10.1002/chem.201806029. PubMed DOI PMC
Latremoliere A., Woolf C.J. Central Sensitization: A Generator of Pain Hypersensitivity by Central Neural Plasticity. J. Pain. 2009;10:895–926. doi: 10.1016/j.jpain.2009.06.012. PubMed DOI PMC
Christensen J.E., Andreasen S.O., Christensen J.P., Thomsen A.R. CD11b Expression as a Marker to Distinguish between Recently Activated Effector CD8(+) T Cells and Memory Cells. Int. Immunol. 2001;13:593–600. doi: 10.1093/intimm/13.4.593. PubMed DOI
Chiang N., Dalli J., Colas R.A., Serhan C.N. Identification of Resolvin D2 Receptor Mediating Resolution of Infections and Organ Protection. J. Exp. Med. 2015;212:1203–1217. doi: 10.1084/jem.20150225. PubMed DOI PMC
Chiang N., de la Rosa X., Libreros S., Serhan C.N. Novel Resolvin D2 Receptor Axis in Infectious Inflammation. J. Immunol. 2017;198:842–851. doi: 10.4049/jimmunol.1601650. PubMed DOI PMC
Duffney P.F., Falsetta M.L., Rackow A.R., Thatcher T.H., Phipps R.P., Sime P.J. Key Roles for Lipid Mediators in the Adaptive Immune Response. J. Clin. Investig. 2018;128:2724–2731. doi: 10.1172/JCI97951. PubMed DOI PMC
Kim N., Ramon S., Thatcher T.H., Woeller C.F., Sime P.J., Phipps R.P. Specialized Proresolving Mediators (SPMs) Inhibit Human B-Cell IgE Production. Eur. J. Immunol. 2016;46:81–91. doi: 10.1002/eji.201545673. PubMed DOI PMC
Chen G., Zhang Y.-Q., Qadri Y.J., Serhan C.N., Ji R.-R. Microglia in Pain: Detrimental and Protective Roles in Pathogenesis and Resolution of Pain. Neuron. 2018;100:1292–1311. doi: 10.1016/j.neuron.2018.11.009. PubMed DOI PMC
Dartt D.A., Hodges R.R., Serhan C.N. Immunoresolvent Resolvin D1 Maintains the Health of the Ocular Surface. Adv. Exp. Med. Biol. 2019;1161:13–25. doi: 10.1007/978-3-030-21735-8_3. PubMed DOI PMC
Spite M., Norling L.V., Summers L., Yang R., Cooper D., Petasis N.A., Flower R.J., Perretti M., Serhan C.N. Resolvin D2 Is a Potent Regulator of Leukocytes and Controls Microbial Sepsis. Nature. 2009;461:1287–1291. doi: 10.1038/nature08541. PubMed DOI PMC
Mariani F., Roncucci L. Chemerin/ChemR23 Axis in Inflammation Onset and Resolution. Inflamm. Res. 2015;64:85–95. doi: 10.1007/s00011-014-0792-7. PubMed DOI
Haworth O., Cernadas M., Levy B.D. NK Cells Are Effectors for Resolvin E1 in the Timely Resolution of Allergic Airway Inflammation. J. Immunol. 2011;186:6129–6135. doi: 10.4049/jimmunol.1004007. PubMed DOI PMC
Serhan C.N. Discovery of Specialized Pro-Resolving Mediators Marks the Dawn of Resolution Physiology and Pharmacology. Mol. Asp. Med. 2017;58:1–11. doi: 10.1016/j.mam.2017.03.001. PubMed DOI PMC
Saeki K., Yokomizo T. Identification, Signaling, and Functions of LTB4 Receptors. Semin. Immunol. 2017;33:30–36. doi: 10.1016/j.smim.2017.07.010. PubMed DOI
Wu C., Sun A., Zou Y., Ge J. “Pro-Resolution” and Anti-Inflammation, a Role of RvE1 in Anti-Atherosclerosis and Plaque Stabilization. Med. Hypotheses. 2008;71:252–255. doi: 10.1016/j.mehy.2008.03.031. PubMed DOI
Buckley C.D., Gilroy D.W., Serhan C.N. Proresolving Lipid Mediators and Mechanisms in the Resolution of Acute Inflammation. Immunity. 2014;40:315–327. doi: 10.1016/j.immuni.2014.02.009. PubMed DOI PMC
Correa M.D., López M.R. Activación alternativa del macrófago: La diversidad en las respuestas de una célula de la inmunidad innata ante la complejidad de los eventos de su ambiente. Inmunologia. 2007;26:73–86. doi: 10.1016/S0213-9626(07)70077-X. DOI
Serhan C.N., Dalli J., Colas R.A., Winkler J.W., Chiang N. Protectins and Maresins: New pro-Resolving Families of Mediators in Acute Inflammation and Resolution Bioactive Metabolome. Biochim. Biophys. Acta. 2015;1851:397–413. doi: 10.1016/j.bbalip.2014.08.006. PubMed DOI PMC
Tang S., Wan M., Huang W., Stanton R.C., Xu Y. Maresins: Specialized Proresolving Lipid Mediators and Their Potential Role in Inflammatory-Related Diseases. Mediat. Inflamm. 2018;2018:2380319. doi: 10.1155/2018/2380319. PubMed DOI PMC
Hwang S.-M., Chung G., Kim Y.H., Park C.-K. The Role of Maresins in Inflammatory Pain: Function of Macrophages in Wound Regeneration. Int. J. Mol. Sci. 2019;20:5849. doi: 10.3390/ijms20235849. PubMed DOI PMC
Häcker H., Karin M. Regulation and Function of IKK and IKK-Related Kinases. Sci. STKE. 2006;2006:re13. doi: 10.1126/stke.3572006re13. PubMed DOI
Bitto A., Minutoli L., David A., Irrera N., Rinaldi M., Venuti F.S., Squadrito F., Altavilla D. Flavocoxid, a Dual Inhibitor of COX-2 and 5-LOX of Natural Origin, Attenuates the Inflammatory Response and Protects Mice from Sepsis. Crit. Care. 2012;16:R32. doi: 10.1186/1364-8535-16-R32. PubMed DOI PMC
Kohli P., Levy B.D. Resolvins and Protectins: Mediating Solutions to Inflammation. Br. J. Pharmacol. 2009;158:960–971. doi: 10.1111/j.1476-5381.2009.00290.x. PubMed DOI PMC
Serhan C.N. Novel Chemical Mediators in the Resolution of Inflammation: Resolvins and Protectins. Anesthesiol. Clin. 2006;24:341–364. doi: 10.1016/j.atc.2006.01.003. PubMed DOI
Kytikova O., Novgorodtseva T., Denisenko Y., Antonyuk M., Gvozdenko T. Pro-Resolving Lipid Mediators in the Pathophysiology of Asthma. Medicina. 2019;55:284. doi: 10.3390/medicina55060284. PubMed DOI PMC
Bang S., Xie Y.-K., Zhang Z.-J., Wang Z., Xu Z.-Z., Ji R.-R. GPR37 Regulates Macrophage Phagocytosis and Resolution of Inflammatory Pain. J. Clin. Investig. 2018;128:3568–3582. doi: 10.1172/JCI99888. PubMed DOI PMC
Freire M.O., Van Dyke T.E. Natural Resolution of Inflammation. Periodontology 2000. 2013;63:149–164. doi: 10.1111/prd.12034. PubMed DOI PMC
Totsch S.K., Sorge R.E. Immune System Involvement in Specific Pain Conditions. Mol. Pain. 2017;13:1744806917724559. doi: 10.1177/1744806917724559. PubMed DOI PMC
Chavan S.S., Pavlov V.A., Tracey K.J. Mechanisms and Therapeutic Relevance of Neuro-Immune Communication. Immunity. 2017;46:927–942. doi: 10.1016/j.immuni.2017.06.008. PubMed DOI PMC
Cury Y., Picolo G., Gutierrez V.P., Ferreira S.H. Pain and Analgesia: The Dual Effect of Nitric Oxide in the Nociceptive System. Nitric Oxide. 2011;25:243–254. doi: 10.1016/j.niox.2011.06.004. PubMed DOI
Xu Z.-Z., Zhang L., Liu T., Park J.Y., Berta T., Yang R., Serhan C.N., Ji R.-R. Resolvins RvE1 and RvD1 Attenuate Inflammatory Pain via Central and Peripheral Actions. Nat. Med. 2010;16:592–597. doi: 10.1038/nm.2123. PubMed DOI PMC
Herová M., Schmid M., Gemperle C., Hersberger M. ChemR23, the Receptor for Chemerin and Resolvin E1, Is Expressed and Functional on M1 but Not on M2 Macrophages. J. Immunol. 2015;194:2330–2337. doi: 10.4049/jimmunol.1402166. PubMed DOI
Scholz J., Woolf C.J. The Neuropathic Pain Triad: Neurons, Immune Cells and Glia. Nat. Neurosci. 2007;10:1361–1368. doi: 10.1038/nn1992. PubMed DOI
Bingham B., Ajit S.K., Blake D.R., Samad T.A. The Molecular Basis of Pain and Its Clinical Implications in Rheumatology. Nat. Clin. Pract. Rheumatol. 2009;5:28–37. doi: 10.1038/ncprheum0972. PubMed DOI
Jara-Oseguera A., Simon S.A., Rosenbaum T. TRPV1: On the Road to Pain Relief. Curr. Mol. Pharmacol. 2008;1:255–269. doi: 10.2174/1874467210801030255. PubMed DOI PMC
Campbell J.N., Raja S.N., Meyer R.A., Mackinnon S.E. Myelinated Afferents Signal the Hyperalgesia Associated with Nerve Injury. Pain. 1988;32:89–94. doi: 10.1016/0304-3959(88)90027-9. PubMed DOI
Schmidtko A. Nitric Oxide-Mediated Pain Processing in the Spinal Cord. Handb. Exp. Pharmacol. 2015;227:103–117. doi: 10.1007/978-3-662-46450-2_6. PubMed DOI
Lim J.Y., Park C.-K., Hwang S.W. Biological Roles of Resolvins and Related Substances in the Resolution of Pain. Biomed. Res. Int. 2015;2015:830930. doi: 10.1155/2015/830930. PubMed DOI PMC
Serhan C.N., Chiang N., Dalli J. New Pro-Resolving n-3 Mediators Bridge Resolution of Infectious Inflammation to Tissue Regeneration. Mol. Asp. Med. 2018;64:1–17. doi: 10.1016/j.mam.2017.08.002. PubMed DOI PMC
Schwanke R.C., Marcon R., Bento A.F., Calixto J.B. EPA- and DHA-Derived Resolvins’ Actions in Inflammatory Bowel Disease. Eur. J. Pharmacol. 2016;785:156–164. doi: 10.1016/j.ejphar.2015.08.050. PubMed DOI
Serhan C.N., Dalli J., Karamnov S., Choi A., Park C.-K., Xu Z.-Z., Ji R.-R., Zhu M., Petasis N.A. Macrophage Proresolving Mediator Maresin 1 Stimulates Tissue Regeneration and Controls Pain. FASEB J. 2012;26:1755–1765. doi: 10.1096/fj.11-201442. PubMed DOI PMC
Liao H.-Y., Hsieh C.-L., Huang C.-P., Lin Y.-W. Electroacupuncture Attenuates CFA-Induced Inflammatory Pain by Suppressing Nav1.8 through S100B, TRPV1, Opioid, and Adenosine Pathways in Mice. Sci. Rep. 2017;7:42531. doi: 10.1038/srep42531. PubMed DOI PMC
Yu Y.-Q., Zhao F., Guan S.-M., Chen J. Antisense-Mediated Knockdown of Na(V)1.8, but Not Na(V)1.9, Generates Inhibitory Effects on Complete Freund’s Adjuvant-Induced Inflammatory Pain in Rat. PLoS ONE. 2011;6:e19865. doi: 10.1371/journal.pone.0019865. PubMed DOI PMC
Park C.-K. Maresin 1 Inhibits TRPV1 in Temporomandibular Joint-Related Trigeminal Nociceptive Neurons and TMJ Inflammation-Induced Synaptic Plasticity in the Trigeminal Nucleus. Mediat. Inflamm. 2015;2015:275126. doi: 10.1155/2015/275126. PubMed DOI PMC
Park C.-K., Lü N., Xu Z.-Z., Liu T., Serhan C.N., Ji R.-R. Resolving TRPV1- and TNF-α-Mediated Spinal Cord Synaptic Plasticity and Inflammatory Pain with Neuroprotectin D1. J. Neurosci. 2011;31:15072–15085. doi: 10.1523/JNEUROSCI.2443-11.2011. PubMed DOI PMC
Park C.-K., Xu Z.-Z., Liu T., Lü N., Serhan C.N., Ji R.-R. Resolvin D2 Is a Potent Endogenous Inhibitor for Transient Receptor Potential Subtype V1/A1, Inflammatory Pain, and Spinal Cord Synaptic Plasticity in Mice: Distinct Roles of Resolvin D1, D2, and E1. J. Neurosci. 2011;31:18433–18438. doi: 10.1523/JNEUROSCI.4192-11.2011. PubMed DOI PMC
Huang J., Burston J.J., Li L., Ashraf S., Mapp P.I., Bennett A.J., Ravipati S., Pousinis P., Barrett D.A., Scammell B.E., et al. Targeting the D Series Resolvin Receptor System for the Treatment of Osteoarthritis Pain. Arthritis Rheumatol. 2017;69:996–1008. doi: 10.1002/art.40001. PubMed DOI PMC
Bang S., Yoo S., Yang T.J., Cho H., Kim Y.G., Hwang S.W. Resolvin D1 Attenuates Activation of Sensory Transient Receptor Potential Channels Leading to Multiple Anti-Nociception. Br. J. Pharmacol. 2010;161:707–720. doi: 10.1111/j.1476-5381.2010.00909.x. PubMed DOI PMC
Macpherson L.J., Xiao B., Kwan K.Y., Petrus M.J., Dubin A.E., Hwang S., Cravatt B., Corey D.P., Patapoutian A. An Ion Channel Essential for Sensing Chemical Damage. J. Neurosci. 2007;27:11412–11415. doi: 10.1523/JNEUROSCI.3600-07.2007. PubMed DOI PMC
Sommer C., Birklein F. Fighting off Pain with Resolvins. Nat. Med. 2010;16:518–520. doi: 10.1038/nm0510-518. PubMed DOI
Arita M., Bianchini F., Aliberti J., Sher A., Chiang N., Hong S., Yang R., Petasis N.A., Serhan C.N. Stereochemical Assignment, Antiinflammatory Properties, and Receptor for the Omega-3 Lipid Mediator Resolvin E1. J. Exp. Med. 2005;201:713–722. doi: 10.1084/jem.20042031. PubMed DOI PMC
Meesawatsom P., Burston J., Hathway G., Bennett A., Chapman V. Inhibitory Effects of Aspirin-Triggered Resolvin D1 on Spinal Nociceptive Processing in Rat Pain Models. J. Neuroinflamm. 2016;13:233. doi: 10.1186/s12974-016-0676-6. PubMed DOI PMC
Woolf C.J., Salter M.W. Neuronal Plasticity: Increasing the Gain in Pain. Science. 2000;288:1765–1768. doi: 10.1126/science.288.5472.1765. PubMed DOI
Liu X.J., Gingrich J.R., Vargas-Caballero M., Dong Y.N., Sengar A., Beggs S., Wang S.-H., Ding H.K., Frankland P.W., Salter M.W. Treatment of Inflammatory and Neuropathic Pain by Uncoupling Src from the NMDA Receptor Complex. Nat. Med. 2008;14:1325–1332. doi: 10.1038/nm.1883. PubMed DOI PMC
Ren K., Hylden J.L.K., Williams G.M., Ruda M.A., Dubner R. The Effects of a Non-Competitive NMDA Receptor Antagonist, MK-801, on Behavioral Hyperalgesia and Dorsal Horn Neuronal Activity in Rats with Unilateral Inflammation. Pain. 1992;50:331–344. doi: 10.1016/0304-3959(92)90039-E. PubMed DOI
Quan-Xin F., Fan F., Xiang-Ying F., Shu-Jun L., Shi-Qi W., Zhao-Xu L., Xu-Jie Z., Qing-Chuan Z., Wei W. Resolvin D1 Reverses Chronic Pancreatitis-Induced Mechanical Allodynia, Phosphorylation of NMDA Receptors, and Cytokines Expression in the Thoracic Spinal Dorsal Horn. BMC Gastroenterol. 2012;12:148. doi: 10.1186/1471-230X-12-148. PubMed DOI PMC
Oehler B., Mohammadi M., Perpina Viciano C., Hackel D., Hoffmann C., Brack A., Rittner H.L. Peripheral Interaction of Resolvin D1 and E1 with Opioid Receptor Antagonists for Antinociception in Inflammatory Pain in Rats. Front. Mol. Neurosci. 2017;10:242. doi: 10.3389/fnmol.2017.00242. PubMed DOI PMC
Yaksh T.L. Substance P Release from Knee Joint Afferent Terminals: Modulation by Opioids. Brain Res. 1988;458:319–324. doi: 10.1016/0006-8993(88)90474-X. PubMed DOI
Beaudry H., Dubois D., Gendron L. Activation of Spinal Mu- and Delta-Opioid Receptors Potently Inhibits Substance P Release Induced by Peripheral Noxious Stimuli. J. Neurosci. 2011;31:13068–13077. doi: 10.1523/JNEUROSCI.1817-11.2011. PubMed DOI PMC
Khasabova I.A., Harding-Rose C., Simone D.A., Seybold V.S. Differential Effects of CB1 and Opioid Agonists on Two Populations of Adult Rat Dorsal Root Ganglion Neurons. J. Neurosci. 2004;24:1744–1753. doi: 10.1523/JNEUROSCI.4298-03.2004. PubMed DOI PMC
Jin Y.H., Nishioka H., Wakabayashi K., Fujita T., Yonehara N. Effect of Morphine on the Release of Excitatory Amino Acids in the Rat Hind Instep: Pain Is Modulated by the Interaction between the Peripheral Opioid and Glutamate Systems. Neuroscience. 2006;138:1329–1339. doi: 10.1016/j.neuroscience.2005.12.049. PubMed DOI
Celik M.Ö., Labuz D., Henning K., Busch-Dienstfertig M., Gaveriaux-Ruff C., Kieffer B.L., Zimmer A., Machelska H. Leukocyte Opioid Receptors Mediate Analgesia via Ca(2+)-Regulated Release of Opioid Peptides. Brain Behav. Immun. 2016;57:227–242. doi: 10.1016/j.bbi.2016.04.018. PubMed DOI
Chuang T.K., Killam K.F., Chuang L.F., Kung H.F., Sheng W.S., Chao C.C., Yu L., Chuang R.Y. Mu Opioid Receptor Gene Expression in Immune Cells. Biochem. Biophys. Res. Commun. 1995;216:922–930. doi: 10.1006/bbrc.1995.2709. PubMed DOI
Toskulkao T., Pornchai R., Akkarapatumwong V., Vatanatunyakum S., Govitrapong P. Alteration of Lymphocyte Opioid Receptors in Methadone Maintenance Subjects. Neurochem. Int. 2010;56:285–290. doi: 10.1016/j.neuint.2009.10.013. PubMed DOI
Machelska H., Celik M.Ö. Opioid Receptors in Immune and Glial Cells-Implications for Pain Control. Front. Immunol. 2020;11:300. doi: 10.3389/fimmu.2020.00300. PubMed DOI PMC
Luo X., Gu Y., Tao X., Serhan C.N., Ji R.-R. Resolvin D5 Inhibits Neuropathic and Inflammatory Pain in Male but Not Female Mice: Distinct Actions of D-Series Resolvins in Chemotherapy-Induced Peripheral Neuropathy. Front. Pharmacol. 2019;10:745. doi: 10.3389/fphar.2019.00745. PubMed DOI PMC
Krishnamoorthy S., Recchiuti A., Chiang N., Yacoubian S., Lee C.-H., Yang R., Petasis N.A., Serhan C.N. Resolvin D1 Binds Human Phagocytes with Evidence for Proresolving Receptors. Proc. Natl. Acad. Sci. USA. 2010;107:1660–1665. doi: 10.1073/pnas.0907342107. PubMed DOI PMC
Serhan C.N., Hong S., Gronert K., Colgan S.P., Devchand P.R., Mirick G., Moussignac R.-L. Resolvins: A Family of Bioactive Products of Omega-3 Fatty Acid Transformation Circuits Initiated by Aspirin Treatment That Counter Proinflammation Signals. J. Exp. Med. 2002;196:1025–1037. doi: 10.1084/jem.20020760. PubMed DOI PMC
Qu L., Caterina M.J. Accelerating the Reversal of Inflammatory Pain with NPD1 and Its Receptor GPR37. J. Clin. Investig. 2018;128:3246–3249. doi: 10.1172/JCI122203. PubMed DOI PMC
Chen O., Donnelly C.R., Ji R.-R. Regulation of Pain by Neuro-Immune Interactions between Macrophages and Nociceptor Sensory Neurons. Curr. Opin. Neurobiol. 2020;62:17–25. doi: 10.1016/j.conb.2019.11.006. PubMed DOI PMC
Pannell M., Labuz D., Celik M.Ö., Keye J., Batra A., Siegmund B., Machelska H. Adoptive Transfer of M2 Macrophages Reduces Neuropathic Pain via Opioid Peptides. J. Neuroinflamm. 2016;13:262. doi: 10.1186/s12974-016-0735-z. PubMed DOI PMC
Wang J.C.-F., Strichartz G.R. Prevention of Chronic Post-Thoracotomy Pain in Rats by Intrathecal Resolvin D1 and D2: Effectiveness of Perioperative and Delayed Drug Delivery. J. Pain. 2017;18:535–545. doi: 10.1016/j.jpain.2016.12.012. PubMed DOI PMC
Pamplona F.A., Ferreira J., de Lima O.M., Duarte F.S., Bento A.F., Forner S., Villarinho J.G., Bellocchio L., Wotjak C.T., Lerner R., et al. Anti-Inflammatory Lipoxin A4 Is an Endogenous Allosteric Enhancer of CB1 Cannabinoid Receptor. Proc. Natl. Acad. Sci. USA. 2012;109:21134–21139. doi: 10.1073/pnas.1202906109. PubMed DOI PMC
Zhang H., He S., Hu Y., Zheng H. Antagonism of Cannabinoid Receptor 1 Attenuates the Anti-Inflammatory Effects of Electroacupuncture in a Rodent Model of Migraine. Acupunct. Med. 2016;34:463–470. doi: 10.1136/acupmed-2016-011113. PubMed DOI
Xu Z.-Z., Berta T., Ji R.-R. Resolvin E1 Inhibits Neuropathic Pain and Spinal Cord Microglial Activation Following Peripheral Nerve Injury. J. Neuroimmune Pharmacol. 2013;8:37–41. doi: 10.1007/s11481-012-9394-8. PubMed DOI PMC
Hernangómez M., Klusáková I., Joukal M., Hradilová-Svíženská I., Guaza C., Dubový P. CD200R1 Agonist Attenuates Glial Activation, Inflammatory Reactions, and Hypersensitivity Immediately after Its Intrathecal Application in a Rat Neuropathic Pain Model. J. Neuroinflamm. 2016;13:43. doi: 10.1186/s12974-016-0508-8. PubMed DOI PMC
Gao Y.-J., Ji R.-R. Activation of JNK Pathway in Persistent Pain. Neurosci. Lett. 2008;437:180–183. doi: 10.1016/j.neulet.2008.03.017. PubMed DOI PMC
Tsuda M., Inoue K., Salter M.W. Neuropathic Pain and Spinal Microglia: A Big Problem from Molecules in “Small” Glia. Trends Neurosci. 2005;28:101–107. doi: 10.1016/j.tins.2004.12.002. PubMed DOI
Svensson C.I., Zattoni M., Serhan C.N. Lipoxins and Aspirin-Triggered Lipoxin Inhibit Inflammatory Pain Processing. J. Exp. Med. 2007;204:245–252. doi: 10.1084/jem.20061826. PubMed DOI PMC
Miao G.-S., Liu Z.-H., Wei S.-X., Luo J.-G., Fu Z.-J., Sun T. Lipoxin A4 Attenuates Radicular Pain Possibly by Inhibiting Spinal ERK, JNK and NF-ΚB/P65 and Cytokine Signals, but Not P38, in a Rat Model of Non-Compressive Lumbar Disc Herniation. Neuroscience. 2015;300:10–18. doi: 10.1016/j.neuroscience.2015.04.060. PubMed DOI
Liu J., Peng L., Li J. The Lipoxin A4 Receptor Agonist BML-111 Alleviates Inflammatory Injury and Oxidative Stress in Spinal Cord Injury. Med. Sci. Monit. 2020;26:e919883. doi: 10.12659/MSM.919883. PubMed DOI PMC
Ji R.-R., Suter M.R. P38 MAPK, Microglial Signaling, and Neuropathic Pain. Mol. Pain. 2007;3:33. doi: 10.1186/1744-8069-3-33. PubMed DOI PMC
Diamond P., Doran P., Brady H.R., McGinty A. Suppressors of Cytokine Signalling (SOCS): Putative Modulators of Cytokine Bioactivity in Health and Disease. J. Nephrol. 2000;13:9–14. PubMed
Hu S., Mao-Ying Q.-L., Wang J., Wang Z.-F., Mi W.-L., Wang X.-W., Jiang J.-W., Huang Y.-L., Wu G.-C., Wang Y.-Q. Lipoxins and Aspirin-Triggered Lipoxin Alleviate Bone Cancer Pain in Association with Suppressing Expression of Spinal Proinflammatory Cytokines. J. Neuroinflamm. 2012;9:278. doi: 10.1186/1742-2094-9-278. PubMed DOI PMC
Zhang L.-Y., Liu Z.-H., Zhu Q., Wen S., Yang C.-X., Fu Z.-J., Sun T. Resolvin D2 Relieving Radicular Pain Is Associated with Regulation of Inflammatory Mediators, Akt/GSK-3β Signal Pathway and GPR18. Neurochem. Res. 2018;43:2384–2392. doi: 10.1007/s11064-018-2666-9. PubMed DOI
Xu Z.-Z., Liu X.-J., Berta T., Park C.-K., Lü N., Serhan C.N., Ji R.-R. Neuroprotectin/Protectin D1 Protects against Neuropathic Pain in Mice after Nerve Trauma. Ann. Neurol. 2013;74:490–495. doi: 10.1002/ana.23928. PubMed DOI PMC
Gao J., Tang C., Tai L.W., Ouyang Y., Li N., Hu Z., Chen X. Pro-Resolving Mediator Maresin 1 Ameliorates Pain Hypersensitivity in a Rat Spinal Nerve Ligation Model of Neuropathic Pain. J. Pain Res. 2018;11:1511–1519. doi: 10.2147/JPR.S160779. PubMed DOI PMC
Fukumoto M., Takeuchi T., Koubayashi E., Harada S., Ota K., Kojima Y., Higuchi K. Induction of Brain-Derived Neurotrophic Factor in Enteric Glial Cells Stimulated by Interleukin-1β via a c-Jun N-Terminal Kinase Pathway. J. Clin. Biochem. Nutr. 2020;66:103–109. doi: 10.3164/jcbn.19-55. PubMed DOI PMC
Yu Y.-B., Zuo X.-L., Zhao Q.-J., Chen F.-X., Yang J., Dong Y.-Y., Wang P., Li Y.-Q. Brain-Derived Neurotrophic Factor Contributes to Abdominal Pain in Irritable Bowel Syndrome. Gut. 2012;61:685–694. doi: 10.1136/gutjnl-2011-300265. PubMed DOI
Reischer G., Heinke B., Sandkühler J. Interferon-γ Facilitates the Synaptic Transmission between Primary Afferent C-Fibres and Lamina I Neurons in the Rat Spinal Dorsal Horn via Microglia Activation. Mol. Pain. 2020;16:1744806920917249. doi: 10.1177/1744806920917249. PubMed DOI PMC
Coull J.A.M., Beggs S., Boudreau D., Boivin D., Tsuda M., Inoue K., Gravel C., Salter M.W., De Koninck Y. BDNF from Microglia Causes the Shift in Neuronal Anion Gradient Underlying Neuropathic Pain. Nature. 2005;438:1017–1021. doi: 10.1038/nature04223. PubMed DOI
Kim D., Kim M.A., Cho I.-H., Kim M.S., Lee S., Jo E.-K., Choi S.-Y., Park K., Kim J.S., Akira S., et al. A Critical Role of Toll-like Receptor 2 in Nerve Injury-Induced Spinal Cord Glial Cell Activation and Pain Hypersensitivity. J. Biol. Chem. 2007;282:14975–14983. doi: 10.1074/jbc.M607277200. PubMed DOI
Zhuang Z.-Y., Kawasaki Y., Tan P.-H., Wen Y.-R., Huang J., Ji R.-R. Role of the CX3CR1/P38 MAPK Pathway in Spinal Microglia for the Development of Neuropathic Pain Following Nerve Injury-Induced Cleavage of Fractalkine. Brain Behav. Immun. 2007;21:642–651. doi: 10.1016/j.bbi.2006.11.003. PubMed DOI PMC
Wu L., Liu Z.J., Miao S., Zou L.B., Cai L., Wu P., Ye D.Y., Wu Q., Li H.H. Lipoxin A4 Ameliorates Cerebral Ischaemia/Reperfusion Injury through Upregulation of Nuclear Factor Erythroid 2-Related Factor 2. Neurol. Res. 2013;35:968–975. doi: 10.1179/1743132813Y.0000000242. PubMed DOI
Wu Y., Zhai H., Wang Y., Li L., Wu J., Wang F., Sun S., Yao S., Shang Y. Aspirin-Triggered Lipoxin A₄ Attenuates Lipopolysaccharide-Induced Intracellular ROS in BV2 Microglia Cells by Inhibiting the Function of NADPH Oxidase. Neurochem. Res. 2012;37:1690–1696. doi: 10.1007/s11064-012-0776-3. PubMed DOI
Arita M., Ohira T., Sun Y.-P., Elangovan S., Chiang N., Serhan C.N. Resolvin E1 Selectively Interacts with Leukotriene B4 Receptor BLT1 and ChemR23 to Regulate Inflammation. J. Immunol. 2007;178:3912–3917. doi: 10.4049/jimmunol.178.6.3912. PubMed DOI
Liu Z.-Q., Zhang H.-B., Wang J., Xia L.-J., Zhang W. Lipoxin A4 Ameliorates Ischemia/Reperfusion Induced Spinal Cord Injury in Rabbit Model. Int. J. Clin. Exp. Med. 2015;8:12826–12833. PubMed PMC
Leuti A., Maccarrone M., Chiurchiù V. Proresolving Lipid Mediators: Endogenous Modulators of Oxidative Stress. Oxid. Med. Cell. Longev. 2019;2019:8107265. doi: 10.1155/2019/8107265. PubMed DOI PMC
Tsujino H., Kondo E., Fukuoka T., Dai Y., Tokunaga A., Miki K., Yonenobu K., Ochi T., Noguchi K. Activating Transcription Factor 3 (ATF3) Induction by Axotomy in Sensory and Motoneurons: A Novel Neuronal Marker of Nerve Injury. Mol. Cell. Neurosci. 2000;15:170–182. doi: 10.1006/mcne.1999.0814. PubMed DOI
Ohuchi K., Ono Y., Joho M., Tsuruma K., Ogami S., Yamane S., Funato M., Kaneko H., Nakamura S., Hara H., et al. A Docosahexaenoic Acid-Derived Pro-Resolving Agent, Maresin 1, Protects Motor Neuron Cells Death. Neurochem. Res. 2018;43:1413–1423. doi: 10.1007/s11064-018-2556-1. PubMed DOI
Serhan C.N., Chiang N., Dalli J. The Resolution Code of Acute Inflammation: Novel pro-Resolving Lipid Mediators in Resolution. Semin. Immunol. 2015;27:200–215. doi: 10.1016/j.smim.2015.03.004. PubMed DOI PMC
Paragomi P., Rahimian R., Kazemi M.H., Gharedaghi M.H., Khalifeh-Soltani A., Azary S., Javidan A.N., Moradi K., Sakuma S., Dehpour A.R. Antinociceptive and Antidiarrheal Effects of Pioglitazone in a Rat Model of Diarrhoea-Predominant Irritable Bowel Syndrome: Role of Nitric Oxide. Clin. Exp. Pharmacol. Physiol. 2014;41:118–126. doi: 10.1111/1440-1681.12188. PubMed DOI
Piovezan A.P., Batisti A.P., Benevides M.L.A.C.S., Turnes B.L., Martins D.F., Kanis L., Duarte E.C.W., Cavalheiro A.J., Bueno P.C.P., Seed M.P., et al. Hydroalcoholic Crude Extract of Casearia Sylvestris Sw. Reduces Chronic Post-Ischemic Pain by Activation of pro-Resolving Pathways. J. Ethnopharmacol. 2017;204:179–188. doi: 10.1016/j.jep.2017.03.059. PubMed DOI
Abdelmoaty S., Wigerblad G., Bas D.B., Codeluppi S., Fernandez-Zafra T., El-Awady E.-S., Moustafa Y., Abdelhamid A.E.S., Brodin E., Svensson C.I. Spinal Actions of Lipoxin A4 and 17(R)-Resolvin D1 Attenuate Inflammation-Induced Mechanical Hypersensitivity and Spinal TNF Release. PLoS ONE. 2013;8:e75543. doi: 10.1371/journal.pone.0075543. PubMed DOI PMC
Lu T., Wu X., Wei N., Liu X., Zhou Y., Shang C., Duan Y., Dong Y. Lipoxin A4 Protects against Spinal Cord Injury via Regulating Akt/Nuclear Factor (Erythroid-Derived 2)-like 2/Heme Oxygenase-1 Signaling. Biomed. Pharmacother. 2018;97:905–910. doi: 10.1016/j.biopha.2017.10.092. PubMed DOI
Wang Z.F., Li Q., Liu S.B., Mi W.-L., Hu S., Zhao J., Tian Y., Mao-Ying Q.L., Jiang J.W., Ma H.J., et al. Aspirin-Triggered Lipoxin A4 Attenuates Mechanical Allodynia in Association with Inhibiting Spinal JAK2/STAT3 Signaling in Neuropathic Pain in Rats. Neuroscience. 2014;273:65–78. doi: 10.1016/j.neuroscience.2014.04.052. PubMed DOI
Sun T., Yu E., Yu L., Luo J., Li H., Fu Z. LipoxinA(4) Induced Antinociception and Decreased Expression of NF-ΚB and pro-Inflammatory Cytokines after Chronic Dorsal Root Ganglia Compression in Rats. Eur. J. Pain. 2012;16:18–27. doi: 10.1016/j.ejpain.2011.05.005. PubMed DOI
Tian Y., Liu M., Mao-Ying Q.-L., Liu H., Wang Z.-F., Zhang M.-T., Wang J., Li Q., Liu S.-B., Mi W.-L., et al. Early Single Aspirin-Triggered Lipoxin Blocked Morphine Anti-Nociception Tolerance through Inhibiting NALP1 Inflammasome: Involvement of PI3k/Akt Signaling Pathway. Brain Behav. Immun. 2015;50:63–77. doi: 10.1016/j.bbi.2015.06.016. PubMed DOI
Huang L., Wang C.-F., Serhan C.N., Strichartz G. Enduring Prevention and Transient Reduction of Postoperative Pain by Intrathecal Resolvin D1. Pain. 2011;152:557–565. doi: 10.1016/j.pain.2010.11.021. PubMed DOI PMC
Liu Z., Miao G., Wang J., Yang C., Fu Z., Sun T. Resolvin D1 Inhibits Mechanical Hypersensitivity in Sciatica by Modulating the Expression of Nuclear Factor-ΚB, Phospho-Extracellular Signal-Regulated Kinase, and Pro- and Antiinflammatory Cytokines in the Spinal Cord and Dorsal Root Ganglion. Anesthesiology. 2016;124:934–944. doi: 10.1097/ALN.0000000000001010. PubMed DOI
Zhang L., Terrando N., Xu Z.-Z., Bang S., Jordt S.-E., Maixner W., Serhan C.N., Ji R.-R. Distinct Analgesic Actions of DHA and DHA-Derived Specialized Pro-Resolving Mediators on Post-Operative Pain after Bone Fracture in Mice. Front. Pharmacol. 2018;9:412. doi: 10.3389/fphar.2018.00412. PubMed DOI PMC
Klein C.P., Sperotto N.D.M., Maciel I.S., Leite C.E., Souza A.H., Campos M.M. Effects of D-Series Resolvins on Behavioral and Neurochemical Changes in a Fibromyalgia-like Model in Mice. Neuropharmacology. 2014;86:57–66. doi: 10.1016/j.neuropharm.2014.05.043. PubMed DOI
Fonseca F.C., Orlando R.M., Turchetti-Maia R.M., de Francischi J.N. Comparative Effects of the Ω3 Polyunsaturated Fatty Acid Derivatives Resolvins E1 and D1 and Protectin DX in Models of Inflammation and Pain. J. Inflamm. Res. 2017;10:119–133. doi: 10.2147/JIR.S142424. PubMed DOI PMC
Barden A., Mas E., Croft K.D., Phillips M., Mori T.A. Short-Term n-3 Fatty Acid Supplementation but Not Aspirin Increases Plasma Proresolving Mediators of Inflammation. J. Lipid Res. 2014;55:2401–2407. doi: 10.1194/jlr.M045583. PubMed DOI PMC
Tjonahen E., Oh S.F., Siegelman J., Elangovan S., Percarpio K.B., Hong S., Arita M., Serhan C.N. Resolvin E2: Identification and Anti-Inflammatory Actions: Pivotal Role of Human 5-Lipoxygenase in Resolvin E Series Biosynthesis. Chem. Biol. 2006;13:1193–1202. doi: 10.1016/j.chembiol.2006.09.011. PubMed DOI
Isobe Y., Arita M., Iwamoto R., Urabe D., Todoroki H., Masuda K., Inoue M., Arai H. Stereochemical Assignment and Anti-Inflammatory Properties of the Omega-3 Lipid Mediator Resolvin E3. J. Biochem. 2013;153:355–360. doi: 10.1093/jb/mvs151. PubMed DOI
A.T. Resolve SARL A Multicenter, Double-Masked, Parallel-Group, Vehicle-Controlled Study to Assess the Efficacy and Safety of RX-10045 Nanomicellar Ophthalmic Solution for Treatment of Ocular Inflammation and Pain in Subjects Undergoing Cataract Surgery. [(accessed on 10 July 2021)];2019 Available online: clinicaltrials.gov.
Ramsden C.E., Faurot K.R., Zamora D., Palsson O.S., MacIntosh B.A., Gaylord S., Taha A.Y., Rapoport S.I., Hibbeln J.R., Davis J.M., et al. Targeted Alterations in Dietary N-3 and n-6 Fatty Acids Improve Life Functioning and Reduce Psychological Distress among Patients with Chronic Headache: A Secondary Analysis of a Randomized Trial. Pain. 2015;156:587–596. doi: 10.1097/01.j.pain.0000460348.84965.47. PubMed DOI PMC
Tajmirriahi M., Sohelipour M., Basiri K., Shaygannejad V., Ghorbani A., Saadatnia M. The Effects of Sodium Valproate with Fish Oil Supplementation or Alone in Migraine Prevention: A Randomized Single-Blind Clinical Trial. Iran. J. Neurol. 2012;11:21–24. PubMed PMC
Caturla N., Funes L., Pérez-Fons L., Micol V. A Randomized, Double-Blinded, Placebo-Controlled Study of the Effect of a Combination of Lemon Verbena Extract and Fish Oil Omega-3 Fatty Acid on Joint Management. J. Altern. Complement. Med. 2011;17:1051–1063. doi: 10.1089/acm.2010.0410. PubMed DOI PMC
Tomer A., Kasey S., Connor W.E., Clark S., Harker L.A., Eckman J.R. Reduction of Pain Episodes and Prothrombotic Activity in Sickle Cell Disease by Dietary N-3 Fatty Acids. Thromb. Haemost. 2001;85:966–974. doi: 10.1055/s-0037-1615948. PubMed DOI
Durán A.M., Salto L.M., Câmara J., Basu A., Paquien I., Beeson W.L., Firek A., Cordero-MacIntyre Z., De León M. Effects of Omega-3 Polyunsaturated Fatty-Acid Supplementation on Neuropathic Pain Symptoms and Sphingosine Levels in Mexican-Americans with Type 2 Diabetes. Diabetes Metab. Syndr. Obes. Targets Ther. 2019;12:109–120. doi: 10.2147/DMSO.S187268. PubMed DOI PMC
Barden A.E., Moghaddami M., Mas E., Phillips M., Cleland L.G., Mori T.A. Specialised Pro-Resolving Mediators of Inflammation in Inflammatory Arthritis. Prostaglandins Leukot. Essent. Fatty Acids. 2016;107:24–29. doi: 10.1016/j.plefa.2016.03.004. PubMed DOI
Kremer J.M., Lawrence D.A., Jubiz W., DiGiacomo R., Rynes R., Bartholomew L.E., Sherman M. Dietary Fish Oil and Olive Oil Supplementation in Patients with Rheumatoid Arthritis. Clinical and Immunologic Effects. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 1990;33:810–820. doi: 10.1002/art.1780330607. PubMed DOI
Geusens P., Wouters C., Nijs J., Jiang Y., Dequeker J. Long-Term Effect of Omega-3 Fatty Acid Supplementation in Active Rheumatoid Arthritis. A 12-Month, Double-Blind, Controlled Study. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 1994;37:824–829. doi: 10.1002/art.1780370608. PubMed DOI
Tulleken J.E., Limburg P.C., Muskiet F.A., van Rijswijk M.H. Vitamin E Status during Dietary Fish Oil Supplementation in Rheumatoid Arthritis. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 1990;33:1416–1419. doi: 10.1002/art.1780330914. PubMed DOI
Galarraga B., Khan F., Kumar P., Pullar T., Belch J.J.F. C-Reactive Protein: The Underlying Cause of Microvascular Dysfunction in Rheumatoid Arthritis. Rheumatology. 2008;47:1780–1784. doi: 10.1093/rheumatology/ken386. PubMed DOI
Lamon-Fava S., So J., Mischoulon D., Ziegler T.R., Dunlop B.W., Kinkead B., Schettler P.J., Nierenberg A.A., Felger J.C., Maddipati K.R., et al. Dose- and Time-Dependent Increase in Circulating Anti-Inflammatory and pro-Resolving Lipid Mediators Following Eicosapentaenoic Acid Supplementation in Patients with Major Depressive Disorder and Chronic Inflammation. Prostaglandins Leukot. Essent. Fatty Acids. 2021;164:102219. doi: 10.1016/j.plefa.2020.102219. PubMed DOI PMC
Abdelhalim S.M.N.S. Comparative Effectiveness of the Different Treatment Modalities for Management of Vaso-Occlusive Painful Crisis in Pediatric Sickle Cell Disease. [(accessed on 10 July 2021)];2021 Available online: clinicaltrials.gov.
Kenney K. Targeted Alteration in Omega-3 and Omega-6 Fatty Acids for Post-Traumatic Headache (Nutrition for PTH) [(accessed on 10 July 2021)];2018 Available online: clinicaltrials.gov.
Universidade do Porto Effects of an Anti-Inflammatory Nutritional Intervention in Disease Assessment Parameters, Inflammatory Markers, and Quality of Life of Patients with Fibromyalgia. [(accessed on 10 July 2021)];2020 Available online: clinicaltrials.gov.
Costenbader K.H. Vitamin D and Fish Oil for Autoimmune Disease, Inflammation and Knee Pain. [(accessed on 10 July 2021)];2021 Available online: clinicaltrials.gov.
University of North Carolina Chapel Hill Pilot, Double-Blind, Randomized Controlled, Multi-Center Study of the Effects of Fish Oil and Vitamin D in the Prevention of Chronic Pain Following Major Thermal Burn Injury. [(accessed on 10 July 2021)];2020 Available online: clinicaltrials.gov.
Swisse Wellness Pty Ltd. A Randomised, Double-Blind, Placebo Controlled Study to Investigate the Effect on Knee Pain Reduction and Safety of Swisse High Strength Deep Sea Krill Oil (Superba BOOST) in Adults with Mild to Moderate Osteoarthritis of the Knee. [(accessed on 10 July 2021)];2020 Available online: clinicaltrials.gov.
Endometriosis: An Immunologist's Perspective
Specialized Proresolving Lipid Mediators: A Potential Therapeutic Target for Atherosclerosis