CD200R1 agonist attenuates glial activation, inflammatory reactions, and hypersensitivity immediately after its intrathecal application in a rat neuropathic pain model
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26891688
PubMed Central
PMC4759712
DOI
10.1186/s12974-016-0508-8
PII: 10.1186/s12974-016-0508-8
Knihovny.cz E-zdroje
- MeSH
- antigeny povrchové farmakologie terapeutické užití MeSH
- časové faktory MeSH
- CD antigeny metabolismus MeSH
- cytokiny genetika metabolismus MeSH
- fyzikální stimulace škodlivé účinky MeSH
- gliový fibrilární kyselý protein metabolismus MeSH
- hyperalgezie farmakoterapie etiologie MeSH
- ischialgie komplikace farmakoterapie MeSH
- krysa rodu Rattus MeSH
- mícha účinky léků metabolismus MeSH
- modely nemocí na zvířatech MeSH
- neuroglie účinky léků metabolismus MeSH
- orexinové receptory MeSH
- potkani Wistar MeSH
- práh bolesti účinky léků MeSH
- receptory buněčného povrchu antagonisté a inhibitory terapeutické užití MeSH
- regulace genové exprese účinky léků MeSH
- spinální injekce MeSH
- zánět farmakoterapie etiologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigens, CD200 MeSH Prohlížeč
- antigeny povrchové MeSH
- CD antigeny MeSH
- CD200R1 protein, human MeSH Prohlížeč
- cytokiny MeSH
- gliový fibrilární kyselý protein MeSH
- orexinové receptory MeSH
- receptory buněčného povrchu MeSH
BACKGROUND: Interaction of CD200 with its receptor CD200R has an immunoregulatory role and attenuates various types of neuroinflammatory diseases. METHODS: Immunofluorescence staining, western blot analysis, and RT-PCR were used to investigate the modulatory effects of CD200 fusion protein (CD200Fc) on activation of microglia and astrocytes as well as synthesis of pro- (TNF, IL-1β, IL-6) and anti-inflammatory (IL-4, IL-10) cytokines in the L4-L5 spinal cord segments in relation to behavioral signs of neuropathic pain after unilateral sterile chronic constriction injury (sCCI) of the sciatic nerve. Withdrawal thresholds for mechanical hypersensitivity and latencies for thermal hypersensitivity were measured in hind paws 1 day before operation; 1, 3, and 7 days after sCCI operation; and then 5 and 24 h after intrathecal application of artificial cerebrospinal fluid or CD200Fc. RESULTS: Seven days from sCCI operation and 5 h from intrathecal application, CD200Fc reduced mechanical and thermal hypersensitivity when compared with control animals. Simultaneously, CD200Fc attenuated activation of glial cells and decreased proinflammatory and increased anti-inflammatory cytokine messenger RNA (mRNA) levels. Administration of CD200Fc also diminished elevation of CD200 and CD200R proteins as a concomitant reaction of the modulatory system to increased neuroinflammatory reactions after nerve injury. The anti-inflammatory effect of CD200Fc dropped at 24 h after intrathecal application. CONCLUSIONS: Intrathecal administration of the CD200R1 agonist CD200Fc induces very rapid suppression of neuroinflammatory reactions associated with glial activation and neuropathic pain development. This may constitute a promising and novel therapeutic approach for the treatment of neuropathic pain.
Zobrazit více v PubMed
Berger JV, Knaepen L, Janssen SPM, Jaken RJP, Marcus MAE, Joosten EAJ, et al. Cellular and molecular insights into neuropathy-induced pain hypersensitivity for mechanism-based treatment approaches. Brain Res Rev. 2011;67(1–2):282–310. doi: 10.1016/j.brainresrev.2011.03.003. PubMed DOI
Campbell JN, Meyer RA. Mechanisms of neuropathic pain. Neuron. 2006;52(1):77–92. doi: 10.1016/j.neuron.2006.09.021. PubMed DOI PMC
Marchand F, Perretti M, McMahon SB. Role of the immune system in chronic pain. Nature Rev Neurosci. 2005;6(7):521–32. doi: 10.1038/nrn1700. PubMed DOI
Watkins LR, Hutchinson MR, Ledeboer A, Wieseler-Frank J, Milligan ED, Maier SF. Glia as the “bad guys”: implications for improving clinical pain control and the clinical utility of opioids. Brain Behav Immun. 2007;21(2):131–46. doi: 10.1016/j.bbi.2006.10.011. PubMed DOI PMC
Swett JE, Torigoe Y, Elie VR, Bourassa CM, Miller PG. Sensory neurons of the rat sciatic-nerve. Exp Neurol. 1991;114(1):82–103. doi: 10.1016/0014-4886(91)90087-S. PubMed DOI
Klusakova I, Dubovy P. Experimental models of peripheral neuropathic pain based on traumatic nerve injuries—an anatomical perspective. Ann Anat. 2009;191(3):248–59. doi: 10.1016/j.aanat.2009.02.007. PubMed DOI
Moalem G, Tracey DJ. Immune and inflammatory mechanisms in neuropathic pain. Brain Res Rev. 2006;51(2):240–64. doi: 10.1016/j.brainresrev.2005.11.004. PubMed DOI
Choi H-S, Roh D-H, Yoon S-Y, Moon J-Y, Choi S-R, Kwon S-G, et al. Microglial interleukin-1 beta in the ipsilateral dorsal horn inhibits the development of mirror-image contralateral mechanical allodynia through astrocyte activation in a rat model of inflammatory pain. Pain. 2015;156(6):1046–59. PubMed
Gao YJ, Ji RR. Targeting astrocyte signaling for chronic pain. Neurotherapeutics. 2010;7(4):482–93. doi: 10.1016/j.nurt.2010.05.016. PubMed DOI PMC
Milligan ED, Twining C, Chacur M, Biedenkapp J, O’Connor K, Poole S, et al. Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci. 2003;23(3):1026–40. PubMed PMC
Yamamoto Y, Terayama R, Kishimoto N, Maruhama K, Mizutani M, Iida S, et al. Activated microglia contribute to convergent nociceptive inputs to spinal dorsal horn neurons and the development of neuropathic pain. Neurochem Res. 2015;40(5):1000–12. doi: 10.1007/s11064-015-1555-8. PubMed DOI
Gao YJ, Ji RR. Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther. 2010;126(1):56–68. doi: 10.1016/j.pharmthera.2010.01.002. PubMed DOI PMC
Brazda V, Klusakova I, Svizenska IH, Dubovy P. Dynamic response to peripheral nerve injury detected by in situ hybridization of IL-6 and its receptor mRNAs in the dorsal root ganglia is not strictly correlated with signs of neuropathic pain. Mol Pain. 2013;9:42. doi: 10.1186/1744-8069-9-42. PubMed DOI PMC
Dubovy P, Brazda V, Klusakova I, Hradilova-Svizenska I. Bilateral elevation of interleukin-6 protein and mRNA in both lumbar and cervical dorsal root ganglia following unilateral chronic compression injury of the sciatic nerve. J Neuroinflamm. 2013;10:55. doi: 10.1186/1742-2094-10-55. PubMed DOI PMC
Hatashita S, Sekiguchi M, Kobayashi H, Konno SI, Kikuchi SI. Contralateral neuropathic pain and neuropathology in dorsal root ganglion and spinal cord following hemilateral nerve injury in rats. Spine. 2008;33(12):1344–51. doi: 10.1097/BRS.0b013e3181733188. PubMed DOI
Dubovy P. Wallerian degeneration and peripheral nerve conditions for both axonal regeneration and neuropathic pain induction. Ann Anat. 2011;194(4):267–75. doi: 10.1016/j.aanat.2011.02.011. PubMed DOI
Wright GJ, Cherwinski H, Foster-Cuevas M, Brooke G, Puklavec MJ, Bigler M, et al. Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J Immunol. 2003;171(6):3034–46. doi: 10.4049/jimmunol.171.6.3034. PubMed DOI
Hatherley D, Lea SM, Johnson S, Barclay AN. Structures of CD200/CD200 receptor family and implications for topology, regulation, and evolution. Structure. 2013;21(5):820–32. doi: 10.1016/j.str.2013.03.008. PubMed DOI PMC
Koning N, Bo L, Hoek RM, Huitinga I. Downregulation of macrophage inhibitory molecules in multiple sclerosis lesions. Ann Neurol. 2007;62(5):504–14. doi: 10.1002/ana.21220. PubMed DOI
Dentesano G, Straccia M, Ejarque-Ortiz A, Tusell JM, Serratosa J, Saura J, et al. Inhibition of CD200R1 expression by C/EBP beta in reactive microglial cells. J Neuroinflamm. 2012;9:165. doi: 10.1186/1742-2094-9-165. PubMed DOI PMC
Dentesano G, Serratosa J, Tusell JM, Ramon P, Valente T, Saura J, et al. CD200R1 and CD200 expression are regulated by PPAR-gamma in activated glial cells. Glia. 2014;62(6):982–98. doi: 10.1002/glia.22656. PubMed DOI
Gao S, Hao B, Yang XF, Chen WQ. Decreased CD200R expression on monocyte-derived macrophages correlates with Th17/Treg imbalance and disease activity in rheumatoid arthritis patients. Inflamm Res. 2014;63(6):441–50. doi: 10.1007/s00011-014-0716-6. PubMed DOI
Koning N, Swaab DF, Hoek RM, Huitinga I. Distribution of the immune inhibitory molecules CD200 and CD200R in the normal central nervous system and multiple sclerosis lesions suggests neuron-glia and glia-glia interactions. J Neuropathol Exp Neurol. 2009;68(2):159–67. doi: 10.1097/NEN.0b013e3181964113. PubMed DOI
Costello DA, Lyons A, Denieffe S, Browne TC, Cox FF, Lynch MA. Long term potentiation is impaired in membrane glycoprotein CD200-deficient mice. A role for toll-like receptor activation. J Biol Chem. 2011;286(40):34722–32. doi: 10.1074/jbc.M111.280826. PubMed DOI PMC
Walker DG, Dalsing-Hernandez JE, Campbell NA, Lue LF. Decreased expression of CD200 and CD200 receptor in Alzheimer’s disease: a potential mechanism leading to chronic inflammation. Exp Neurol. 2009;215(1):5–19. doi: 10.1016/j.expneurol.2008.09.003. PubMed DOI PMC
Wang XJ, Ye M, Zhang YH, Chen SD. CD200-CD200R regulation of microglia activation in the pathogenesis of Parkinson’s disease. J Neuroimmun Pharmacol. 2007;2(3):259–64. doi: 10.1007/s11481-007-9075-1. PubMed DOI
Chitnis T, Imitola J, Wang Y, Elyaman W, Chawla P, Sharuk M, et al. Elevated neuronal expression of CD200 protects Wld(s) mice from inflammation-mediated neurodegeneration. Am J Pathol. 2007;170(5):1695–712. doi: 10.2353/ajpath.2007.060677. PubMed DOI PMC
Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200) Science. 2000;290(5497):1768–71. doi: 10.1126/science.290.5497.1768. PubMed DOI
Meuth SG, Simon OJ, Gnimm A, Melzer N, Herrmann AM, Spitzer P, et al. CNS inflammation and neuronal degeneration is aggravated by impaired CD200-CD200R-mediated macrophage silencing. J Neuroimmunol. 2008;194(1–2):62–9. doi: 10.1016/j.jneuroim.2007.11.013. PubMed DOI
Lyons A, McQuillan K, Deighan BF, O’Reilly J-A, Downer EJ, Murphy AC, et al. Decreased neuronal CD200 expression in IL-4-deficient mice results in increased neuroinflammation in response to lipopolysaccharide. Brain Beh Immun. 2009;23(7):1020–7. doi: 10.1016/j.bbi.2009.05.060. PubMed DOI
Koning N, van Eijk M, Pouwels W, Brouwer MSM, Voehringer D, Huitinga I, et al. Expression of the inhibitory CD200 receptor is associated with alternative macrophage activation. J Innate Immun. 2010;2(2):195–200. doi: 10.1159/000252803. PubMed DOI
Cox FF, Carney D, Miller AM, Lynch MA. CD200 fusion protein decreases microglial activation in the hippocampus of aged rats. Brain Beh Immun. 2012;26(5):789–96. doi: 10.1016/j.bbi.2011.10.004. PubMed DOI
Hernangomez M, Mestre L, Correa FG, Loria F, Mecha M, Inigo PM, et al. CD200-CD200R1 interaction contributes to neuroprotective effects of anandamide on experimentally induced inflammation. Glia. 2012;60(9):1437–50. doi: 10.1002/glia.22366. PubMed DOI
Liu YR, Bando Y, Vargas-Lowy D, Elyaman W, Khoury SJ, Huang T, et al. CD200R1 agonist attenuates mechanisms of chronic disease in a murine model of multiple sclerosis. J Neurosci. 2010;30(6):2025–38. doi: 10.1523/JNEUROSCI.4272-09.2010. PubMed DOI PMC
Simelyte E, Criado G, Essex D, Uger RA, Feldmann M, Williams RO. CD200-Fc, a novel antiarthritic biologic agent that targets proinflammatory cytokine expression in the joints of mice with collagen-induced arthritis. Arthritis Rheum. 2008;58(4):1038–43. doi: 10.1002/art.23378. PubMed DOI
Ding Y, Yang H, Xiang W, He X, Liao W, Yi Z. CD200R1 agonist attenuates LPS-induced inflammatory response in human renal proximal tubular epithelial cells by regulating TLR4-MyD88-TAK1-mediated NF-kappa B and MAPK pathway. Biochem Biophys Res Comm. 2015;460(2):287–94. doi: 10.1016/j.bbrc.2015.03.026. PubMed DOI
Hylden JLK, Wilcox GL. Intrathecal morphine in mice—a new technique. Eur J Pharmacol. 1980;67(2–3):313–6. doi: 10.1016/0014-2999(80)90515-4. PubMed DOI
Zamboni L, Demartin C. Buffered picric acid-formaldehyde—a new rapid fixative for electron microscopy. J Cell Biol. 1967;35(2P2):A148.
Brazda V, Muller P, Brozkova K, Vojtesek B. Restoring wild-type conformation and DNA-binding activity of mutant p53 is insufficient for restoration of transcriptional activity. Biochem Biophys Res Comm. 2006;351(2):499–506. doi: 10.1016/j.bbrc.2006.10.065. PubMed DOI
Ren Y, Yang B, Yin Y, Leng X, Jiang Y, Zhang L, et al. Aberrant CD200/CD200R1 expression and its potential role in Th17 cell differentiation, chemotaxis and osteoclastogenesis in rheumatoid arthritis. Rheumatology. 2015;54(4):712–21. doi: 10.1093/rheumatology/keu362. PubMed DOI
Austin PJ, Moalem-Taylor G. Animal models of neuropathic pain due to nerve injury. Neuromethods. 2013;78:239–60. doi: 10.1007/978-1-62703-233-9_14. DOI
Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain. 1988;33(1):87–107. doi: 10.1016/0304-3959(88)90209-6. PubMed DOI
Maves TJ, Pechman PS, Gebhart GF, Meller ST. Possible chemical contribution from chromic gut sutures produces disorders of pain sensation like those seen in man. Pain. 1993;54(1):57–69. doi: 10.1016/0304-3959(93)90100-4. PubMed DOI
Pineau I, Lacroix S. Endogenous signals initiating inflammation in the injured nervous system. Glia. 2009;57(4):351–61. doi: 10.1002/glia.20763. PubMed DOI
Guo W, Wang H, Watanabe M, Shimizu K, Zou SP, LaGraize SC, et al. Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J Neurosci. 2007;27(22):6006–18. doi: 10.1523/JNEUROSCI.0176-07.2007. PubMed DOI PMC
Clark AK, Yip PK, Grist J, Gentry C, Staniland AA, Marchand F, et al. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci U S A. 2007;104(25):10655–60. doi: 10.1073/pnas.0610811104. PubMed DOI PMC
Raghavendra V, Tanga F, DeLeo JA. Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J Pharmacol Exp Ther. 2003;306(2):624–30. doi: 10.1124/jpet.103.052407. PubMed DOI
Gorczynski RM, Cattral MS, Chen ZG, Hu JA, Lei J, Min WP, et al. An immunoadhesin incorporating the molecule OX-2 is a potent immunosuppressant that prolongs allo- and xenograft survival. J Immunol. 1999;163(3):1654–60. PubMed
Wang W, Mei XP, Huang J, Wei YY, Wang YY, Wu SX, et al. Crosstalk between spinal astrocytes and neurons in nerve injury-induced neuropathic pain. Plos One. 2009;4(9):10. PubMed PMC
Padi SSV, Kulkarni SK. Minocycline prevents the development of neuropathic pain, but not acute pain: possible anti-inflammatory and antioxidant mechanisms. Eur J Pharmacol. 2008;601(1–3):79–87. doi: 10.1016/j.ejphar.2008.10.018. PubMed DOI
Morioka N, Zhang FF, Nakamura Y, Kitamura T, Hisaoka-Nakashima K, Nakata Y. Tumor necrosis factor-mediated downregulation of spinal astrocytic connexin43 leads to increased glutamatergic neurotransmission and neuropathic pain in mice. Brain Beh Immun. 2015;49:293–310. doi: 10.1016/j.bbi.2015.06.015. PubMed DOI
Beggs S, Salter MW. Stereological and somatotopic analysis of the spinal microglial response to peripheral nerve injury. Brain Beh Immun. 2007;21(5):624–33. doi: 10.1016/j.bbi.2006.10.017. PubMed DOI PMC
Blackbeard J, O’Dea KP, Wallace VCJ, Segerdahl A, Pheby T, Takata M, et al. Quantification of the rat spinal microglial response to peripheral nerve injury as revealed by immunohistochemical image analysis and flow cytometry. J Neurosci Meth. 2007;164(2):207–17. doi: 10.1016/j.jneumeth.2007.04.013. PubMed DOI PMC
Ji RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? Pain. 2013;154:S10–28. doi: 10.1016/j.pain.2013.06.022. PubMed DOI PMC
Mika J, Osikowicz M, Rojewska E, Korostynski M, Wawrzczak-Bargiela A, Przewlocki R, et al. Differential activation of spinal microglial and astroglial cells in a mouse model of peripheral neuropathic pain. Eur J Pharmacol. 2009;623(1–3):65–72. doi: 10.1016/j.ejphar.2009.09.030. PubMed DOI
Lyons A, Downer EJ, Crotty S, Nolan YM, Mills KHG, Lynch MA. CD200 ligand-receptor interaction modulates microglial activation in vivo and in vitro: a role for IL-4. J Neurosci. 2007;27(31):8309–13. doi: 10.1523/JNEUROSCI.1781-07.2007. PubMed DOI PMC
Cregg JM, DePaul MA, Filous AR, Lang BT, Tran A, Silver J. Functional regeneration beyond the glial scar. Exp Neurol. 2014;253:197–207. doi: 10.1016/j.expneurol.2013.12.024. PubMed DOI PMC
Nolte C, Matyash M, Pivneva T, Schipke CG, Ohlemeyer C, Hanisch UK, et al. GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia. 2001;33(1):72–86. doi: 10.1002/1098-1136(20010101)33:1<72::AID-GLIA1007>3.0.CO;2-A. PubMed DOI
Lan L, Yuan H, Duan L, Cao R, Gao B, Shen J, et al. Blocking the glial function suppresses subcutaneous formalin-induced nociceptive behavior in the rat. Neurosci Res. 2007;57(1):112–9. doi: 10.1016/j.neures.2006.09.014. PubMed DOI
Mika J, Zychowska M, Popiolek-Barczyk K, Rojewska E, Przewlocka B. Importance of glial activation in neuropathic pain. Eur J Pharmacol. 2013;716(1–3):106–19. doi: 10.1016/j.ejphar.2013.01.072. PubMed DOI
Feng XM, Zhang FJ, Dong R, Li WY, Liu J, Zhao X, et al. Intrathecal administration of clonidine attenuates spinal neuroimmune activation in a rat model of neuropathic pain with existing hyperalgesia. Eur J Pharmacol. 2009;614(1–3):38–43. doi: 10.1016/j.ejphar.2009.04.044. PubMed DOI
Kersten C, Cameron MG, Laird B, Mjaland S. Epidermal growth factor receptor—inhibition (EGFR-I) in the treatment of neuropathic pain. Br J Anaesth. 2015;115(5):761–7. doi: 10.1093/bja/aev326. PubMed DOI
Xin Q, Cheng B, Pan Y, Liu H, Yang C, Chen J, et al. Neuroprotective effects of apelin-13 on experimental ischemic stroke through suppression of inflammation. Peptides. 2015;63:55–62. doi: 10.1016/j.peptides.2014.09.016. PubMed DOI
Zhang S, Wang XJ, Tian LP, Pan J, Lu GQ, Zhang YJ, et al. CD200-CD200R dysfunction exacerbates microglial activation and dopaminergic neurodegeneration in a rat model of Parkinson’s disease. J Neuroinflamm. 2011;8:154. doi: 10.1186/1742-2094-8-154. PubMed DOI PMC
Narita M, Yoshida T, Nakajima M, Narita M, Miyatake M, Takagi T, et al. Direct evidence for spinal cord microglia in the development of a neuropathic pain-like state in mice. J Neurochem. 2006;97(5):1337–48. doi: 10.1111/j.1471-4159.2006.03808.x. PubMed DOI
Kleinschnitz C, Brinkhoff J, Sommer C, Stoll G. Contralateral cytokine gene induction after peripheral nerve lesions: dependence on the mode of injury and NMDA receptor signaling. Mol Brain Res. 2005;136(1–2):23–8. doi: 10.1016/j.molbrainres.2004.12.015. PubMed DOI
Latremoliere A, Mauborgne A, Masson J, Bourgoin S, Kayser V, Hamon M, et al. Differential implication of proinflammatory cytokine interleukin-6 in the development of cephalic versus extracephalic neuropathic pain in rats. J Neurosci. 2008;28(34):8489–501. doi: 10.1523/JNEUROSCI.2552-08.2008. PubMed DOI PMC
Uceyler N, Tscharke A, Sommer C. Early cytokine gene expression in mouse CNS after peripheral nerve lesion. Neurosci Lett. 2008;436(2):259–64. doi: 10.1016/j.neulet.2008.03.037. PubMed DOI
Sacerdote P, Franchi S, Moretti S, Castelli M, Procacci P, Magnaghi V, et al. Cytokine modulation is necessary for efficacious treatment of experimental neuropathic pain. J Neuroimmun Pharmacol. 2013;8(1):202–11. doi: 10.1007/s11481-012-9428-2. PubMed DOI
Wilkerson JL, Gentry KR, Dengler EC, Wallace JA, Kerwin AA, Armijo LM, et al. Intrathecal cannabilactone CB2R agonist, AM1710, controls pathological pain and restores basal cytokine levels. Pain. 2012;153(5):1091–106. doi: 10.1016/j.pain.2012.02.015. PubMed DOI PMC
Milligan ED, Sloane EM, Langer SJ, Cruz PE, Chacur M, Spataro L, et al. Controlling neuropathic pain by adeno-associated virus driven production of the anti-inflammatory cytokine, interleukin-10. Mol Pain. 2005;1:9. doi: 10.1186/1744-8069-1-9. PubMed DOI PMC
Uceyler N, Topuzoglu T, Schiesser P, Hahnenkamp S, Sommer C. IL-4 deficiency is associated with mechanical hypersensitivity in mice. Plos One. 2011;6(12):e28205. doi: 10.1371/journal.pone.0028205. PubMed DOI PMC
Lyons A, Downer EJ, Costello DA, Murphy N, Lynch MA. Dok2 mediates the CD200Fc attenuation of A beta-induced changes in glia. J Neuroinflamm. 2012;9:107. doi: 10.1186/1742-2094-9-107. PubMed DOI PMC
Cox FF, Berezin V, Bock E, Lynch MA. The neural cell adhesion molecule-derived peptide, FGL, attenuates lipopolysaccharide-induced changes in glia in a cd200-dependent manner. Neurosci. 2013;235:141–8. doi: 10.1016/j.neuroscience.2012.12.030. PubMed DOI
Specialized Pro-Resolving Lipid Mediators: The Future of Chronic Pain Therapy?
Subarachnoid Hemorrhage Induces Dynamic Immune Cell Reactions in the Choroid Plexus