Subarachnoid Hemorrhage Increases Level of Heme Oxygenase-1 and Biliverdin Reductase in the Choroid Plexus
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33328892
PubMed Central
PMC7732689
DOI
10.3389/fncel.2020.593305
Knihovny.cz E-zdroje
- Klíčová slova
- biliverdin reductase, choroid plexus, heme oxygenase-1, macrophages, subarachnoid hemorrhage,
- Publikační typ
- časopisecké články MeSH
Subarachnoid hemorrhage is a specific, life-threatening form of hemorrhagic stroke linked to high morbidity and mortality. It has been found that the choroid plexus of the brain ventricles forming the blood-cerebrospinal fluid barrier plays an important role in subarachnoid hemorrhage pathophysiology. Heme oxygenase-1 and biliverdin reductase are two of the key enzymes of the hemoglobin degradation cascade. Therefore, the aim of present study was to investigate changes in protein levels of heme oxygenase-1 and biliverdin reductase in the rat choroid plexus after experimental subarachnoid hemorrhage induced by injection of non-heparinized autologous blood to the cisterna magna. Artificial cerebrospinal fluid of the same volume as autologous blood was injected to mimic increased intracranial pressure in control rats. Immunohistochemical and Western blot analyses were used to monitor changes in the of heme oxygenase-1 and biliverdin reductase levels in the rat choroid plexus after induction of subarachnoid hemorrhage or artificial cerebrospinal fluid application for 1, 3, and 7 days. We found increased levels of heme oxygenase-1 and biliverdin reductase protein in the choroid plexus over the entire period following subarachnoid hemorrhage induction. The level of heme oxygenase-1 was the highest early (1 and 3 days) after subarachnoid hemorrhage indicating its importance in hemoglobin degradation. Increased levels of heme oxygenase-1 were also observed in the choroid plexus epithelial cells at all time points after application of artificial cerebrospinal fluid. Biliverdin reductase protein was detected mainly in the choroid plexus epithelial cells, with levels gradually increasing during subarachnoid hemorrhage. Our results suggest that heme oxygenase-1 and biliverdin reductase are involved not only in hemoglobin degradation but probably also in protecting choroid plexus epithelial cells and the blood-cerebrospinal fluid barrier from the negative effects of subarachnoid hemorrhage.
Department of Neurosurgery St Anne's University Hospital Brno Brno Czechia
Institute of Biophysics of the Czech Academy of Sciences Brno Czechia
Zobrazit více v PubMed
Almeida A. S., Queiroga C. S. F., Sousa M. F. Q., Alves P. M., Vieira H. L. A. (2012). Carbon monoxide modulates apoptosis by reinforcing oxidative metabolism in astrocytes: role of Bcl-2. J. Biol. Chem. 287 10761–10770. 10.1074/jbc.M111.306738 PubMed DOI PMC
Baranano D. E., Rao M., Ferris C. D., Snyder S. H. (2002). Biliverdin reductase: a major physiologic cytoprotectant. PNAS 99 16093–16098. 10.1073/pnas.252626999 PubMed DOI PMC
Basiglio C. L., Arriaga S. M., Pelusa F., Almará A. M., Kapitulnik J., Mottino A. D. (2010). Complement activation and disease: protective effects of hyperbilirubinaemia. Clin. Sci. 118 99–113. 10.1042/CS20080540 PubMed DOI
Blackburn S. L., Kumar P. T., McBride D., Zeineddine H. A., Leclerc J., Choi H. A., et al. (2018). Unique contribution of haptoglobin and haptoglobin genotype in aneurysmal subarachnoid hemorrhage. Front. Physiol. 9:592. 10.3389/fphys.2018.00592 PubMed DOI PMC
Brazda V., Muller P., Brozkova K., Vojtesek B. (2006). Restoring wild-type conformation and DNA-binding activity of mutant p53 is insufficient for restoration of transcriptional activity. Biochem. Biophys. Res. Commun. 351 499–506. 10.1016/j.bbrc.2006.10.065 PubMed DOI
Buehler P. W., Humar R., Schaer D. J. (2020). Haptoglobin therapeutics and compartmentalization of cell-Free hemoglobin toxicity. Trends Mol. Med. 26 683–697. 10.1016/j.molmed.2020.02.004 PubMed DOI
Chang E. F., Claus C. P., Vreman H. J., Wong R. J., Noble-Haeusslein L. J. (2005). Heme regulation in traumatic brain injury: relevance to the adult and developing brain. J. Cereb. Blood Flow Metab. 25 1401–1417. 10.1038/sj.jcbfm.9600147 PubMed DOI
Chen W., Maghzal G. J., Ayer A., Suarna C., Dunn L. L., Stocker R. (2018). Absence of the biliverdin reductase-a gene is associated with increased endogenous oxidative stress. Free Radic. Biol. Med. 115 156–165. 10.1016/j.freeradbiomed.2017.11.020 PubMed DOI
Conzen C., Becker K., Albanna W., Weiss M., Bach A., Lushina N., et al. (2019). The acute phase of experimental subarachnoid hemorrhage: intracranial pressure dynamics and their effect on cerebral blood flow and autoregulation. Transl. Stroke Res. 10 566–582. 10.1007/s12975-018-0674-3 PubMed DOI
d’Avella D., Cicciarello R., Zuccarello M., Albiero F., Romano A., Angileri F. F., et al. (1996). Brain energy metabolism in the acute stage of experimental subarachnoid haemorrhage: local changes in cerebral glucose utilization. Acta Neurochir. 138 737–744. 10.1007/BF01411481 PubMed DOI
Dijkstra C. D., Damoiseaux J. G. (1993). Macrophage heterogeneity established by immune-cytochemistry. Prog. Histochem. Cytochem. 27 1–65. 10.1016/s0079-6336(11)80067-7 PubMed DOI
Dubový P., Brázda V., Klusáková I., Hradilová-Svíženská I. (2013). Bilateral elevation of interleukin-6 protein and mRNA in both lumbar and cervical dorsal root ganglia following unilateral chronic compression injury of the sciatic nerve. J. Neuroinflammation 10:55. 10.1186/1742-2094-10-55 PubMed DOI PMC
Dubový P., Klusáková I., Svíženská I. (2002). A quantitative immunohistochemical study of the endoneurium in the rat dorsal and ventral spinal roots. Histochem. Cell Biol. 117 473–480. 10.1007/s00418-002-0411-5 PubMed DOI
Etminan N., Chang H.-S., Hackenberg K., de Rooij N. K., Vergouwen M. D. I., Rinkel G. J. E., et al. (2019). Worldwide incidence of aneurysmal subarachnoid hemorrhage according to region, time period, blood pressure, and smoking prevalence in the population: a systematic review and meta-analysis. JAMA Neurol. 76 588–597. 10.1001/jamaneurol.2019.0006 PubMed DOI PMC
Ewing J. F., Weber C. M., Maines M. D. (1993). Biliverdin reductase is heat resistant and coexpressed with constitutive and heat shock forms of heme oxygenase in brain. J. Neurochem. 61 1015–1023. 10.1111/j.1471-4159.1993.tb03615.x PubMed DOI
Fabriek B. O., Dijkstra C. D., van den Berg T. K. (2005). The macrophage scavenger receptor CD163. Immunobiology 210 153–160. 10.1016/j.imbio.2005.05.010 PubMed DOI
Galea J., Cruickshank G., Teeling J. L., Boche D., Garland P., Perry V. H., et al. (2012). The intrathecal CD163-haptoglobin-hemoglobin scavenging system in subarachnoid hemorrhage: hemoglobin scavenging in subarachnoid hemorrhage. J. Neurochem. 121 785–792. 10.1111/j.1471-4159.2012.07716.x PubMed DOI PMC
Garton T., Hua Y., Xiang J., Xi G., Keep R. F. (2017a). Challenges for intraventricular hemorrhage research and emerging therapeutic targets. Expert Opin. Ther. Targets 21 1111–1122. 10.1080/14728222.2017.1397628 PubMed DOI PMC
Garton T., Keep R. F., Hua Y., Xi G. (2017b). CD163, a hemoglobin/haptoglobin scavenger receptor, after intracerebral hemorrhage: functions in microglia/macrophages versus neurons. Transl. Stroke Res. 8 612–616. 10.1007/s12975-017-0535-5 PubMed DOI
Germanò A. F., Dixon C. E., d’Avella D., Hayes R. L., Tomasello F. (1994). Behavioral deficits following experimental subarachnoid hemorrhage in the rat. J. Neurotrauma 11 345–353. 10.1089/neu.1994.11.345 PubMed DOI
Gram M., Sveinsdottir S., Cinthio M., Sveinsdottir K., Hansson S. R., Mörgelin M., et al. (2014). Extracellular hemoglobin - mediator of inflammation and cell death in the choroid plexus following preterm intraventricular hemorrhage. J. Neuroinflammation 11:200. 10.1186/s12974-014-0200-9 PubMed DOI PMC
Gram M., Sveinsdottir S., Ruscher K., Hansson S. R., Cinthio M., Åkerström B., et al. (2013). Hemoglobin induces inflammation after preterm intraventricular hemorrhage by methemoglobin formation. J. Neuroinflammation 10:100. 10.1186/1742-2094-10-100 PubMed DOI PMC
Hernangómez M., Klusáková I., Joukal M., Hradilová-Svíženská I., Guaza C., Dubový P. (2016). CD200R1 agonist attenuates glial activation, inflammatory reactions, and hypersensitivity immediately after its intrathecal application in a rat neuropathic pain model. J. Neuroinflammation 13:43. 10.1186/s12974-016-0508-8 PubMed DOI PMC
Hosoya Y., Fujita T. (1973). Scanning electron microscope observation of intraventricular macrophages (Kolmer cells) in the rat brain. Arch. Histol. Jpn. 35 133–140. 10.1679/aohc1950.35.133 PubMed DOI
Hugelshofer M., Buzzi R. M., Schaer C. A., Richter H., Akeret K., Anagnostakou V., et al. (2019). Haptoglobin administration into the subarachnoid space prevents hemoglobin-induced cerebral vasospasm. J. Clin. Invest. 129 5219–5235. 10.1172/JCI130630 PubMed DOI PMC
Hylden J. L., Wilcox G. L. (1980). Intrathecal morphine in mice: a new technique. Eur. J. Pharmacol. 67 313–316. 10.1016/0014-2999(80)90515-4 PubMed DOI
Jansen S., Kress E., Fragoulis A., Wruck C. H. J., Wolf R., Grotzinger J., et al. (2017). Psoriasin has divergent effects on the innate immune responses of murine glial cells. J. Neurochem. 141 86–99. 10.1111/jnc.13959 PubMed DOI
Jansen T., Daiber A. (2012). Direct antioxidant properties of bilirubin and biliverdin. Is there a role for biliverdin reductase? Front. Pharmacol. 3:30. 10.3389/fphar.2012.00030 PubMed DOI PMC
Kapitulnik J. (2004). Bilirubin: an endogenous product of heme degradation with both cytotoxic and cytoprotective properties. Mol. Pharmacol. 66 773–779. 10.1124/mol.104.002832 PubMed DOI
Karimy J. K., Zhang J., Kurland D. B., Theriault B. C., Duran D., Stokum J. A., et al. (2017). Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat. Med. 23 997–1003. 10.1038/nm.4361 PubMed DOI
Kikuchi A., Park S.-Y., Miyatake H., Sun D., Sato M., Yoshida T., et al. (2001). Crystal structure of rat biliverdin reductase. Nat. Struct. Biol. 8 221–225. 10.1038/84955 PubMed DOI
Kwon M., Woo S., Kurland D., Yoon S., Palmer A., Banerjee U., et al. (2015). Methemoglobin is an endogenous toll-like receptor 4 ligand –relevance to subarachnoid hemorrhage. IJMS 16 5028–5046. 10.3390/ijms16035028 PubMed DOI PMC
Ling E.-A., Kaur C., Lu J. (1998). Origin, nature, and some functional considerations of intraventricular macrophages, with special reference to the epiplexus cells. Microsc. Res. Tech. 41 43–56. 10.1002/(SICI)1097-0029(19980401)41:1<43::AID-JEMT5>3.0.CO;2-V PubMed DOI
Liszczak T. M., Black P. M., Tzouras A., Foley L., Zervas N. T. (1984). Morphological changes of the basilar artery, ventricles, and choroid plexus after experimental SAH. J. Neurosurg. 61 486–493. 10.3171/jns.1984.61.3.0486 PubMed DOI
Lucke-Wold B., Logsdon A., Manoranjan B., Turner R., McConnell E., Vates G., et al. (2016). Aneurysmal subarachnoid hemorrhage and neuroinflammation: a comprehensive review. IJMS 17:497. 10.3390/ijms17040497 PubMed DOI PMC
Maines M. D. (2005). New insights into biliverdin reductase functions: linking heme metabolism to cell signaling. Physiology 20 382–389. 10.1152/physiol.00029.2005 PubMed DOI
Matz P., Turner C., Weinstein P. R., Massa S. M., Panter S. S., Sharp F. R. (1996). Heme-oxygenase-1 induction in glia throughout rat brain following experimental subarachnoid hemorrhage. Brain Res. 713 211–222. 10.1016/0006-8993(95)01511-6 PubMed DOI
McDonagh A. F. (2001). Turning green to gold. Nat. Struct. Biol. 8 198–200. 10.1038/84915 PubMed DOI
McDonagh A. F. (2010). The biliverdin–bilirubin antioxidant cycle of cellular protection: missing a wheel? Free Radic. Biol. Med. 49 814–820. 10.1016/j.freeradbiomed.2010.06.001 PubMed DOI
McMenamin P. G., Wealthall R. J., Deverall M., Cooper S. J., Griffin B. (2003). Macrophages and dendritic cells in the rat meninges and choroid plexus: three-dimensional localisation by environmental scanning electron microscopy and confocal microscopy. Cell Tissue Res. 313 259–269. 10.1007/s00441-003-0779-0 PubMed DOI
Mendez N. V., Wharton J. A., Leclerc J. L., Blackburn S. L., Douglas-Escobar M. V., Weiss M. D., et al. (2013). Clinical implications of bilirubin-associated neuroprotection and neurotoxicity. Int. J. Clin. Anesthesiol. 1:1013. PubMed PMC
Morita T., Perrella M. A., Lee M. E., Kourembanas S. (1995). Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP. PNAS 92 1475–1479. 10.1073/pnas.92.5.1475 PubMed DOI PMC
Nakaso K., Kitayama M., Mizuta E., Fukuda H., Ishii T., Nakashima K., et al. (2000). Co-induction of heme oxygenase-1 and peroxiredoxin I in astrocytes and microglia around hemorrhagic region in the rat brain. Neurosci. Lett. 293 49–52. 10.1016/S0304-3940(00)01491-9 PubMed DOI
Nitti M., Piras S., Brondolo L., Marinari U., Pronzato M., Furfaro A. (2018). Heme oxygenase 1 in the nervous system: does it favor neuronal cell survival or induce neurodegeneration? IJMS 19:2260. 10.3390/ijms19082260 PubMed DOI PMC
Noguchi M., Yoshida T., Kikuchi G. (1979). Specific requirement of NADPH-cytochrome c reductase for the microsomal heme oxygenase reaction yielding biliverdin IXα. FEBS Lett. 98 281–284. 10.1016/0014-5793(79)80200-8 PubMed DOI
Polfliet M. M. J., Fabriek B. O., Daniëls W. P., Dijkstra C. D., van den Berg T. K. (2006). The rat macrophage scavenger receptor CD163: expression, regulation and role in inflammatory mediator production. Immunobiology 211 419–425. 10.1016/j.imbio.2006.05.015 PubMed DOI
Prunell G. F., Mathiesen T., Diemer N. H., Svendgaard N.-A. (2003). Experimental subarachnoid hemorrhage: subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models. Neurosurgery 52 165–176. 10.1097/00006123-200301000-00022 PubMed DOI
Prunell G. F., Mathiesen T., Svendgaard N.-A. (2002). A new experimental model in rats for study of the pathophysiology of subarachnoid hemorrhage. NeuroReport 13 2553–2556. 10.1097/00001756-200212200-00034 PubMed DOI
Regan R. F., Panter S. S. (1993). Neurotoxicity of hemoglobin in cortical cell culture. Neurosci. Lett. 153 219–222. 10.1016/0304-3940(93)90326-G PubMed DOI
Sadrzadeh S. M., Anderson D. K., Panter S. S., Hallaway P. E., Eaton J. W. (1987). Hemoglobin potentiates central nervous system damage. J. Clin. Invest. 79 662–664. 10.1172/JCI112865 PubMed DOI PMC
Schallner N., Pandit R., LeBlanc R., Thomas A. J., Ogilvy C. S., Zuckerbraun B. S., et al. (2015). Microglia regulate blood clearance in subarachnoid hemorrhage by heme oxygenase-1. J. Clin. Invest. 125 2609–2625. 10.1172/JCI78443 PubMed DOI PMC
Sedlak T. W., Saleh M., Higginson D. S., Paul B. D., Juluri K. R., Snyder S. H. (2009). Bilirubin and glutathione have complementary antioxidant and cytoprotective roles. PNAS 106 5171–5176. 10.1073/pnas.0813132106 PubMed DOI PMC
Sehba F. A., Pluta R. M., Zhang J. H. (2011). Metamorphosis of subarachnoid hemorrhage research: from delayed vasospasm to early brain injury. Mol. Neurobiol. 43 27–40. 10.1007/s12035-010-8155-z PubMed DOI PMC
Sharma N., Tramutola A., Lanzillotta C., Arena A., Blarzino C., Cassano T. (2019). Loss of biliverdin reductase-A favors tau hyper-phosphorylation in Alzheimer’s disease. Neurobiol. Dis. 125 176–189. 10.1016/j.nbd.2019.02.003 PubMed DOI
Shibahara S., Kitamuro T., Takahashi K. (2002). Heme degradation and human disease: diversity is the soul of life. Antioxid. Redox. Signal. 4 593–602. 10.1089/15230860260220094 PubMed DOI
Simard P. F., Tosun C., Melnichenko L., Ivanova S., Gerzanich V., Simard J. M. (2011). Inflammation of the choroid plexus and ependymal layer of the ventricle following intraventricular hemorrhage. Transl. Stroke Res. 2 227–231. 10.1007/s12975-011-0070-8 PubMed DOI PMC
Solár P., Klusáková I., Jančálek R., Dubový P., Joukal M. (2020a). Subarachnoid hemorrhage induces dynamic immune cell reactions in the choroid plexus. Front. Cell Neurosci. 14:18. 10.3389/fncel.2020.00018 PubMed DOI PMC
Solár P., Zamani A., Kubíčková L., Dubový P., Joukal M. (2020b). Choroid plexus and the blood–cerebrospinal fluid barrier in disease. Fluids Barriers CNS 17:35. 10.1186/s12987-020-00196-2 PubMed DOI PMC
Solomon R. A., Antunes J. L., Chen R. Y., Bland L., Chien S. (1985). Decrease in cerebral blood flow in rats after experimental subarachnoid hemorrhage: a new animal model. Stroke 16 58–64. 10.1161/01.STR.16.1.58 PubMed DOI
Stec D. E., Gordon D. M., Nestor-Kalinoski A. L., Donald M. C., Mitchell Z. L., Creeden J. F. (2020). Biliverdin reductase A (BVRA) knockout in adipocytes induces hypertrophy and reduces mitochondria in white fat of obese mice. Biomolecules 10:387. 10.3390/biom10030387 PubMed DOI PMC
Suzuki H., Kanamaru K., Tsunoda H., Inada H., Kuroki M., Sun H., et al. (1999). Heme oxygenase-1 gene induction as an intrinsic regulation against delayed cerebral vasospasm in rats. J. Clin. Invest. 104 59–66. 10.1172/JCI5357 PubMed DOI PMC
Suzuki H., Muramatsu M., Kojima T., Taki W. (2003). Intracranial heme metabolism and cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke 34 2796–2800. 10.1161/01.STR.0000103743.62248.12 PubMed DOI
Turner C. P., Panter S. S., Sharp F. R. (1999). Anti-oxidants prevent focal rat brain injury as assessed by induction of heat shock proteins (HSP70, HO-1/HSP32, HSP47) following subarachnoid injections of lysed blood. Mol. Brain Res. 65 87–102. 10.1016/S0169-328X(98)00340-4 PubMed DOI
Vermeulen M., Hasan D., Blijenberg B. G., Hijdra A., van Gijn J. (1989). Xanthochromia after subarachnoid haemorrhage needs no revisitation. J. Neurol. Neurosurg. Psychiatry 52 826–828. 10.1136/jnnp.52.7.826 PubMed DOI PMC
Wd L., Wj X., Sh A. (1999). Protective role of heme oxygenase-1 in oxidative stress-induced neuronal injury. J. Neurosci. Res. 56 652–658. 10.1002/(sici)1097-4547(19990615)56:6<652::aid-jnr11<3.0.co;2-5 PubMed DOI
Wegiel B., Otterbein L. E. (2012). Go green: the anti-inflammatory effects of biliverdin reductase. Front. Pharmacol. 3:47. 10.3389/fphar.2012.00047 PubMed DOI PMC
Willis D., Moore A. R., Frederick R., Willoughby D. A. (1996). Heme oxygenase: a novel target for the modulation of inflammatory response. Nat. Med. 2 87–90. 10.1038/nm0196-87 PubMed DOI
Wolburg H., Paulus W. (2010). Choroid plexus: biology and pathology. Acta Neuropathol. 119 75–88. 10.1007/s00401-009-0627-8 PubMed DOI
Xu X., Zhi T., Chao H., Jiang K., Liu Y., Bao Z., et al. (2018). ERK1/2/mTOR/Stat3 pathway-mediated autophagy alleviates traumatic brain injury-induced acute lung injury. Biochim. Biophys. Acta BBA Mol. Basis Dis. 1864 1663–1674. 10.1016/j.bbadis.2018.02.011 PubMed DOI
Yeo N., Terrett L., Gupta A. K. (2019). Contemporary management of aneurysmal subarachnoid hemorrhage: a literature review. JNACC 06 131–139. 10.1055/s-0039-1688898 DOI
Zamboni L., DeMartino C. (1967). Buffered picric-acid formaldehyde: a new rapid fixation for electron microscopy. J. Cell Biol. 35:148.
Zhang L., Zhang Z., Liu B., Jin Y., Tian Y., Xin Y., et al. (2017). The protective effect of heme oxygenase-1 against intestinal barrier dysfunction in cholestatic liver injury is associated with NF-κB inhibition. Mol. Med. 23 215–224. 10.2119/molmed.2017.00078 PubMed DOI PMC
Zhang Y., Ding Y., Lu T., Zhang Y., Xu N., Yu L., et al. (2018). Biliverdin reductase-A improves neurological function in a germinal matrix hemorrhage rat model. Neurobiol. Dis. 110 122–132. 10.1016/j.nbd.2017.11.017 PubMed DOI PMC
Zoerle T., Lombardo A., Colombo A., Longhi L., Zanier E. R., Rampini P., et al. (2015). Intracranial pressure after subarachnoid hemorrhage. Crit. Care Med. 43 168–176. 10.1097/CCM.0000000000000670 PubMed DOI