Subarachnoid Hemorrhage Induces Dynamic Immune Cell Reactions in the Choroid Plexus
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32116563
PubMed Central
PMC7026251
DOI
10.3389/fncel.2020.00018
Knihovny.cz E-zdroje
- Klíčová slova
- blood-cerebrospinal fluid barrier, choroid plexus, intracranial hypertension, macrophages, subarachnoid hemorrhage,
- Publikační typ
- časopisecké články MeSH
Subarachnoid hemorrhage (SAH) is a specific form of hemorrhagic stroke that frequently causes intracranial hypertension. The choroid plexus (CP) of the brain ventricles is responsible for producing cerebrospinal fluid and forms the blood - cerebrospinal fluid barrier. The aim of the current study was to determine whether SAH induces an immune cell reaction in the CP and whether the resulting increase in intracranial pressure (ICP) itself can lead to cellular changes in the CP. SAH was induced by injecting non-heparinized autologous blood to the cisterna magna. Artificial cerebrospinal fluid (ACSF) instead of blood was used to assess influence of increased ICP alone. SAH and ACSF animals were left to survive for 1, 3, and 7 days. SAH induced significantly increased numbers of M1 (ED1+, CCR7+) and M2 (ED2+, CD206+) macrophages as well as MHC-II+ antigen presenting cells (APC) compared to naïve and ACSF animals. Increased numbers of ED1+ macrophages and APC were found in the CP only 3 and 7 days after ACSF injection, while ED2+ macrophage number did not increase. CD3+ T cells were not found in any of the animals. Following SAH, proliferation activity in the CP gradually increased over time while ACSF application induced higher cellular proliferation only 1 and 3 days after injection. Our results show that SAH induces an immune reaction in the CP resulting in an increase in the number of several macrophage types in the epiplexus position. Moreover, we also found that increased ICP due to ACSF application induced both an immune reaction and increased proliferation of epiplexus cells in the CP. These findings indicate that increased ICP, and not just blood, contributes to cellular changes in the CP following SAH.
Zobrazit více v PubMed
Abraham N. G., Drummond G. (2006). CD163-mediated hemoglobin-heme uptake activates macrophage HO-1, providing an antiinflammatory function. Circ. Res. 99 911–914. 10.1161/01.RES.0000249616.10603.d6 PubMed DOI
Aveleira C. A., Lin C.-M., Abcouwer S. F., Ambrósio A. F., Antonetti D. A. (2010). TNF-α signals through PKCζ/NF-κB to alter the tight junction complex and increase retinal endothelial cell permeability. Diabetes 59 2872–2882. 10.2337/db09-1606 PubMed DOI PMC
Aydin M. D., Kanat A., Turkmenoglu O. N., Yolas C., Gundogdu C., Aydın N. (2014). Changes in number of water-filled vesicles of choroid plexus in early and late phase of experimental rabbit subarachnoid hemorrhage model: the role of petrous ganglion of glossopharyngeal nerve. Acta Neurochir. 156 1311–1317. 10.1007/s00701-014-2088-7 PubMed DOI
Badylak S. F., Valentin J. E., Ravindra A. K., McCabe G. P., Stewart-Akers A. M. (2008). Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng. Part A 14 1835–1842. 10.1089/ten.tea.2007.0264 PubMed DOI
Brendecke S. M., Prinz M. (2015). Do not judge a cell by its cover–diversity of CNS resident, adjoining and infiltrating myeloid cells in inflammation. Semin. Immunopathol. 37 591–605. 10.1007/s00281-015-0520-6 PubMed DOI
Cahill W. J., Calvert J. H., Zhang J. H. (2006). Mechanisms of early brain injury after subarachnoid hemorrhage. J. Cereb. Blood Flow Metab. 26 1341–1353. 10.1038/sj.jcbfm.9600283 PubMed DOI
Chauveau C., Rémy S., Royer P. J., Hill M., Tanguy-Royer S., Hubert F.-X., et al. (2005). Heme oxygenase-1 expression inhibits dendritic cell maturation and proinflammatory function but conserves IL-10 expression. Blood 106 1694–1702. 10.1182/blood-2005-02-0494 PubMed DOI
Chazaud B. (2014). Macrophages: supportive cells for tissue repair and regeneration. Immunobiology 219 172–178. 10.1016/j.imbio.2013.09.001 PubMed DOI
Conzen C., Becker K., Albanna W., Weiss M., Bach A., Lushina N., et al. (2019). The acute phase of experimental subarachnoid hemorrhage: intracranial pressure dynamics and their effect on cerebral blood flow and autoregulation. Transl. Stroke Res. 10 566–582. 10.1007/s12975-018-0674-3 PubMed DOI
d’Avella D., Cicciarello R., Zuccarello M., Albiero F., Romano A., Angileri F. F., et al. (1996). Brain energy metabolism in the acute stage of experimental subarachnoid haemorrhage: local changes in cerebral glucose utilization. Acta Neurochir. 138 737–744. 10.1007/BF01411481 PubMed DOI
Demeestere D., Libert C., Vandenbroucke R. E. (2015). Clinical implications of leukocyte infiltration at the choroid plexus in (neuro)inflammatory disorders. Drug Discov. Today 20 928–941. 10.1016/j.drudis.2015.05.003 PubMed DOI
Dijkstra C. D., Damoiseaux J. G. M. C. (1993). Macrophage heterogenity established by immunocytochemistiry. Prog. Histochem. Cytochem. 27 III–65. 10.1016/S0079-6336(11)80067-7 PubMed DOI
Dijkstra C. D., Döpp E. A., Joling P., Kraal G. (1985). “The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in rat recognized by monoclonal antibodies ED1, ED2 and ED3,” in Microenvironments in the Lymphoid System, ed. Klaus G. G. B. (New York, NY: Springer; ), 409–419. 10.1007/978-1-4613-2463-8_50 PubMed DOI
Fisher C. M., Kistler J. P., Davis J. M. (1980). Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery 6 1–9. 10.1227/00006123-198001000-00001 PubMed DOI
Ge R., Tornero D., Hirota M., Monni E., Laterza C., Lindvall O., et al. (2017). Choroid plexus-cerebrospinal fluid route for monocyte-derived macrophages after stroke. J. Neuroinflammation 14:153. 10.1186/s12974-017-0909-3 PubMed DOI PMC
Gerdes J., Lemke H., Baisch H., Wacker H. H., Schwab U., Stein H. (1984). Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol. 133 1710–1715. PubMed
Germanò A., D’avella D., Imperatore C., Caruso G., Tomasello F. (2000). Time-course of blood-brain barrier permeability changes after experimental subarachnoid haemorrhage. Acta Neurochir. Wien 142 575–580; discussion 580–581. 10.1007/s007010050472 PubMed DOI
Germanò A. F., Dixon C. E., d’Avella D., Hayes R. L., Tomasello F. (1994). Behavioral deficits following experimental subarachnoid hemorrhage in the rat. J. Neurotrauma 11 345–353. 10.1089/neu.1994.11.345 PubMed DOI
Goldmann T., Wieghofer P., Jordão M. J. C., Prutek F., Hagemeyer N., Frenzel K., et al. (2016). Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17 797–805. 10.1038/ni.3423 PubMed DOI PMC
Gram M., Sveinsdottir S., Cinthio M., Sveinsdottir K., Hansson S. R., Mörgelin M., et al. (2014). Extracellular hemoglobin - mediator of inflammation and cell death in the choroid plexus following preterm intraventricular hemorrhage. J. Neuroinflammation 11:200. 10.1186/s12974-014-0200-9 PubMed DOI PMC
Grote E., Hassler W. (1988). The critical first minutes after subarachnoid hemorrhage. Neurosurgery 22 654–661. 10.1227/00006123-198804000-00006 PubMed DOI
Hernangómez M., Klusáková I., Joukal M., Hradilová-Svíženská I., Guaza C., Dubový P. (2016). CD200R1 agonist attenuates glial activation, inflammatory reactions, and hypersensitivity immediately after its intrathecal application in a rat neuropathic pain model. J. Neuroinflammation 13:43. 10.1186/s12974-016-0508-8 PubMed DOI PMC
Hosoya Y., Fujita T. (1973). Scanning electron microscope observation of intraventricular macrophages (kolmer cells) in the rat brain. Arch. Histol. Jpn. 35 133–140. 10.1679/aohc1950.35.133 PubMed DOI
Hu P., Bembrick A. L., Keay K. A., McLachlan E. M. (2007). Immune cell involvement in dorsal root ganglia and spinal cord after chronic constriction or transection of the rat sciatic nerve. Brain Behav. Immun. 21 599–616. 10.1016/j.bbi.2006.10.013 PubMed DOI
Hu P., McLachlan E. M. (2003). Distinct functional types of macrophage in dorsal root ganglia and spinal nerves proximal to sciatic and spinal nerve transections in the rat. Exp. Neurol. 184 590–605. 10.1016/S0014-4886(03)00307-8 PubMed DOI
Hu X., Li P., Guo Y., Wang H., Leak R. K., Chen S., et al. (2012). Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43 3063–3070. 10.1161/STROKEAHA.112.659656 PubMed DOI
Hull T. D., Agarwal A., George J. F. (2014). The mononuclear phagocyte system in homeostasis and disease: a role for heme oxygenase-1. Antioxid. Redox Signal. 20 1770–1788. 10.1089/ars.2013.5673 PubMed DOI PMC
Hylden J. L., Wilcox G. L. (1980). Intrathecal morphine in mice: a new technique. Eur. J. Pharmacol. 67 313–316. 10.1016/0014-2999(80)90515-4 PubMed DOI
Juniantito V., Izawa T., Yamamoto E., Kuwamura M., Yamate J. (2010). The kinetics and distribution of different macrophage populations in the developing rat skin. Histol. Histopathol. 25 985–994. 10.14670/HH-25.985 PubMed DOI
Kamp M. A., Dibué M., Etminan N., Steiger H.-J., Schneider T., Hänggi D. (2013). Evidence for direct impairment of neuronal function by subarachnoid metabolites following SAH. Acta Neurochir. 155 255–260. 10.1007/s00701-012-1559-y PubMed DOI
Kanat A., Turkmenoglu O., Aydin M. D., Yolas C., Aydin N., Gursan N., et al. (2013). Toward changing of the pathophysiologic basis of acute hydrocephalus after subarachnoid hemorrhage: a preliminary experimental study. World Neurosurg. 80 390–395. 10.1016/j.wneu.2012.12.020 PubMed DOI
Karimy J. K., Zhang J., Kurland D. B., Theriault B. C., Duran D., Stokum J. A., et al. (2017). Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat. Med. 23 997–1003. 10.1038/nm.4361 PubMed DOI
Kigerl K. A., Gensel J. C., Ankeny D. P., Alexander J. K., Donnelly D. J., Popovich P. G. (2009). Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 29 13435–13444. 10.1523/JNEUROSCI.3257-09.2009 PubMed DOI PMC
King J. T., Jr. (1997). Epidemiology of aneurysmal subarachnoid hemorrhage. Neuroimaging Clin. N. Am. 7 659–668. PubMed
Lee S., Zhang J. (2012). Heterogeneity of macrophages in injured trigeminal nerves: cytokine/chemokine expressing vs. phagocytic macrophages. Brain Behav. Immun. 26 891–903. 10.1016/j.bbi.2012.03.004 PubMed DOI
Li Q., Barres B. A. (2018). Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 18 225–242. 10.1038/nri.2017.125 PubMed DOI
Lin S., Yin Q., Zhong Q., Lv F.-L., Zhou Y., Li J.-Q., et al. (2012). Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J. Neuroinflammation 9:46. 10.1186/1742-2094-9-46 PubMed DOI PMC
Ling E. A., Kaur C., Lu J. (1998). Origin, nature, and some functional considerations of intraventricular macrophages, with special reference to the epiplexus cells. Microsc. Res. Tech. 41 43–56. 10.1002/(sici)1097-0029(19980401)41:1<43::aid-jemt5>3.0.co;2-v PubMed DOI
Liszczak T. M., Black P. M., Tzouras A., Foley L., Zervas N. T. (1984). Morphological changes of the basilar artery, ventricles, and choroid plexus after experimental SAH. J. Neurosurg. 61 486–493. 10.3171/jns.1984.61.3.0486 PubMed DOI
Ma J., Liu L., Che G., Yu N., Dai F., You Z. (2010). The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer 10:112. 10.1186/1471-2407-10-112 PubMed DOI PMC
Mason D. Y., Cordell J., Brown M., Pallesen G., Ralfkiaer E., Rothbard J., et al. (1989). Detection of T cells in paraffin wax embedded tissue using antibodies against a peptide sequence from the CD3 antigen. J. Clin. Pathol. 42 1194–1200. 10.1136/jcp.42.11.1194 PubMed DOI PMC
Matz P., Turner C., Weinstein P. R., Massa S. M., Panter S. S., Sharp F. R. (1996). Heme-oxygenase-1 induction in glia throughout rat brain following experimental subarachnoid hemorrhage. Brain Res. 713 211–222. 10.1016/0006-8993(95)01511-6 PubMed DOI
McMenamin P. G., Wealthall R. J., Deverall M., Cooper S. J., Griffin B. (2003). Macrophages and dendritic cells in the rat meninges and choroid plexus: three-dimensional localisation by environmental scanning electron microscopy and confocal microscopy. Cell Tissue Res. 313 259–269. 10.1007/s00441-003-0779-0 PubMed DOI
Meeker R. B., Williams K., Killebrew D. A., Hudson L. C. (2012). Cell trafficking through the choroid plexus. Cell Adh. Migr. 6 390–396. 10.4161/cam.21054 PubMed DOI PMC
Miller B. A., Turan N., Chau M., Pradilla G. (2014). Inflammation, vasospasm, and brain injury after subarachnoid hemorrhage. Biomed Res. Int. 2014:384342. 10.1155/2014/384342 PubMed DOI PMC
Naito Y., Takagi T., Higashimura Y. (2014). Heme oxygenase-1 and anti-inflammatory M2 macrophages. Arch. Biochem. Biophys. 564 83–88. 10.1016/j.abb.2014.09.005 PubMed DOI
Petito C. K., Adkins B. (2005). Choroid plexus selectively accumulates T-lymphocytes in normal controls and after peripheral immune activation. J. Neuroimmunol. 162 19–27. 10.1016/j.jneuroim.2004.12.020 PubMed DOI
Prunell G. F., Mathiesen T., Diemer N. H., Svendgaard N.-A. (2003). Experimental subarachnoid hemorrhage: subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models. Neurosurgery 52 165–175; discussion 175–176. 10.1097/00006123-200301000-00022 PubMed DOI
Prunell G. F., Mathiesen T., Svendgaard N.-A. (2002). A new experimental model in rats for study of the pathophysiology of subarachnoid hemorrhage. Neuroreport 13 2553–2556. 10.1097/01.wnr.0000052320.62862.37 PubMed DOI
Rincon F., Rossenwasser R. H., Dumont A. (2013). The epidemiology of admissions of nontraumatic subarachnoid hemorrhage in the United States. Neurosurgery 73 217–223. 10.1227/01.neu.0000430290.93304.33 PubMed DOI
Schipper H. M. (2004). Heme oxygenase expression in human central nervous system disorders. Free Radic. Biol. Med. 37 1995–2011. 10.1016/j.freeradbiomed.2004.09.015 PubMed DOI
Segal M. B., Pollay M. (1977). The secretion of cerebrospinal fluid. Exp. Eye Res. 25 127–148. 10.1016/S0014-4835(77)80012-2 PubMed DOI
Sehba F. A., Pluta R. M., Zhang J. H. (2011). Metamorphosis of subarachnoid hemorrhage research: from delayed vasospasm to early brain injury. Mol. Neurobiol. 43 27–40. 10.1007/s12035-010-8155-z PubMed DOI PMC
Sercombe R., Dinh Y. R. T., Gomis P. (2002). Cerebrovascular inflammation following subarachnoid hemorrhage. Jpn. J. Pharmacol. 88 227–249. 10.1254/jjp.88.227 PubMed DOI
Shechter R., Miller O., Yovel G., Rosenzweig N., London A., Ruckh J., et al. (2013). Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38 555–569. 10.1016/j.immuni.2013.02.012 PubMed DOI PMC
Simard J. M., Geng Z., Woo S. K., Ivanova S., Tosun C., Melnichenko L., et al. (2009). Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. J. Cereb. Blood Flow Metab. 29 317–330. 10.1038/jcbfm.2008.120 PubMed DOI PMC
Simard P. F., Tosun C., Melnichenko L., Ivanova S., Gerzanich V., Simard J. M. (2011). Inflammation of the choroid plexus and ependymal layer of the ventricle following intraventricular hemorrhage. Transl. Stroke Res. 2 227–231. 10.1007/s12975-011-0070-8 PubMed DOI PMC
Solomon R. A., Antunes J. L., Chen R. Y., Bland L., Chien S. (1985). Decrease in cerebral blood flow in rats after experimental subarachnoid hemorrhage: a new animal model. Stroke 16 58–64. 10.1161/01.STR.16.1.58 PubMed DOI
van Gijn J., Rinkel G. J. (2001). Subarachnoid haemorrhage: diagnosis, causes and management. Brain J. Neurol. 124 249–278. 10.1093/brain/124.2.249 PubMed DOI
Wan Y., Hua Y., Garton H. J. L., Novakovic N., Keep R. F., Xi G. (2019). Activation of epiplexus macrophages in hydrocephalus caused by subarachnoid hemorrhage and thrombin. CNS Neurosci. Ther. 25 1134–1141. 10.1111/cns.13203 PubMed DOI PMC
Wang G., Zhang J., Hu X., Zhang L., Mao L., Jiang X., et al. (2013). Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J. Cereb. Blood Flow Metab. 33 1864–1874. 10.1038/jcbfm.2013.146 PubMed DOI PMC
Wilson E. H., Weninger W., Hunter C. A. (2010). Trafficking of immune cells in the central nervous system. J. Clin. Invest. 120 1368–1379. 10.1172/JCI41911 PubMed DOI PMC
Wolburg H., Paulus W. (2009). Choroid plexus: biology and pathology. Acta Neuropathol. 119 75–88. 10.1007/s00401-009-0627-8 PubMed DOI
Xiang J., Routhe L. J., Wilkinson D. A., Hua Y., Moos T., Xi G., et al. (2017). The choroid plexus as a site of damage in hemorrhagic and ischemic stroke and its role in responding to injury. Fluids Barriers CNS 14:8. 10.1186/s12987-017-0056-3 PubMed DOI PMC
Yong C. I., Hwang S.-K., Kim S.-H. (2010). The role of lumbar drainage to prevent shunt-dependent hydrocephalus after coil embolization for aneurysmal subarachnoid hemorrhage in good-grade patients. J. Korean Neurosurg. Soc. 48 480–484. 10.3340/jkns.2010.48.6.480 PubMed DOI PMC
Zamboni L., de Martino C. (1967). Buffered picric acid-formaldehyde: a new, rapid fixative for electron microscopy. J. Cell Biol. 35:148a.
Zeibig S., Büttcher M., Goebel S., Pauli J., Hunger A., Ungerer M., et al. (2019). The scavenger receptor CD68 regulates platelet mediated oxidized low-density lipoprotein (oxLDL) deposition in atherosclerotic vessels at an early stage of atherosclerosis in LDLR-/-/ApoBec-/- mice. Cell. Physiol. Biochem. 52 681–695. 10.33594/000000048 PubMed DOI
Zeni P., Doepker E., Topphoff U. S., Huewel S., Tenenbaum T., Galla H.-J. (2007). MMPs contribute to TNF-α-induced alteration of the blood-cerebrospinal fluid barrier in vitro. Am. J. Physiol. Cell Physiol. 293 C855–C864. 10.1152/ajpcell.00470.2006 PubMed DOI
Zoerle T., Lombardo A., Colombo A., Longhi L., Zanier E. R., Rampini P., et al. (2015). Intracranial pressure after subarachnoid hemorrhage. Crit. Care Med. 43 168–176. 10.1097/CCM.0000000000000670 PubMed DOI
Choroid plexus and the blood-cerebrospinal fluid barrier in disease