When the ball is in the female's court: How the scramble-competition mating system of the North American red squirrel has shaped male physiology and testosterone dynamics
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28648995
DOI
10.1016/j.ygcen.2017.06.016
PII: S0016-6480(16)30388-4
Knihovny.cz E-zdroje
- Klíčová slova
- ACTH challenge, Aggression, Corticosteroid binding globulin, Energy mobilization, Free cortisol, Seasonal reproductive changes, Stress response,
- MeSH
- adrenokortikotropní hormon farmakologie MeSH
- chov MeSH
- energetický metabolismus účinky léků MeSH
- hydrokortison krev MeSH
- kompetitivní chování * MeSH
- krevní glukóza metabolismus MeSH
- Sciuridae krev fyziologie MeSH
- sexuální chování zvířat * MeSH
- testosteron krev MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adrenokortikotropní hormon MeSH
- hydrokortison MeSH
- krevní glukóza MeSH
- testosteron MeSH
Male reproductive success in most mammals is determined by their success in direct inter-male competition through aggression and conflict, resulting in female-defense mating systems being predominant. This is linked to male testosterone levels and its dynamics. However, in certain environments, a scramble-competition mating system has evolved, where female reproductive behavior takes precedence and male testosterone dynamics are unlikely to be related to inter-male competition. We studied the North American red squirrel (Tamiasciurus hudsonicus), a species with a well-established scramble-competition system. Using an ACTH hormonal challenge protocol as a proxy for competitive interactions, we compared the testosterone dynamics in breeding males in late winter with that in nonbreeding males in late spring in the Yukon. To gain an integrated picture of their physiological state, we also assessed changes in their stress response, body mass, energy mobilization, and indices of immune function. Testosterone levels at the base bleed were high in breeding males (2.72ng/mL) and virtually absent in non-breeding males (0.04ng/mL). Breeding males were in better condition (heavier body mass, higher hematocrit, and higher erythrocytes), had higher indices of immune function (neutrophil:lymphocyte ratio), but a similar ability to mobilize energy (glucose) compared with non-breeding males. Though total cortisol was higher in non-breeding males, free cortisol was twice as high in breeding males as their corticosteroid binding globulin levels were half as high. In response to the ACTH challenge, testosterone levels in breeding males declined 49% over the first hour and increased 36% over the next hour; in non-breeding males levels showed no change. Free cortisol increased only modestly (26% in breeding males; 23% in non-breeding males). Glucose levels changed similarly in breeding and nonbreeding males, declining for the first 30min and then increasing for the next 60min. Thus, testosterone and components of the stress axis function in a profoundly different manner in male red squirrels than in males of mammals with female-defense mating systems. There are four probable interrelated reasons for these adaptations in male red squirrels: the marginal benefits of each mating, the constraints of mate searching away from their own resource-based territories, energy mobilization in a harsh environment, and a long life span.
Citace poskytuje Crossref.org