Exploring the Immunological Aspects and Treatments of Recurrent Pregnancy Loss and Recurrent Implantation Failure
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
CZ.02.1.01/0.0/0.0/16_019/0000868
Ministry of Education, Youth, and Sport, Czech Republic.
EXCELES Project LX22NPO5103
National Institute of Virology and Bacteriology
PubMed
39941063
PubMed Central
PMC11818386
DOI
10.3390/ijms26031295
PII: ijms26031295
Knihovny.cz E-resources
- Keywords
- HLA, NK cells, T regulatory cells, Th1, Th17, Th2, cytokines, macrophages, recurrent implantation failure, recurrent pregnancy loss,
- MeSH
- Abortion, Habitual * immunology therapy MeSH
- Embryo Implantation * immunology MeSH
- Immunotherapy methods MeSH
- Humans MeSH
- Pregnancy MeSH
- Check Tag
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Recurrent pregnancy loss (RPL) is defined as the occurrence of two or more consecutive pregnancy losses before 24 weeks of gestation. It affects 3-5% of women who are attempting to conceive. RPL can stem from a variety of causes and is frequently associated with psychological distress and a diminished quality of life. By contrast, recurrent implantation failure (RIF) refers to the inability to achieve a successful pregnancy after three or more high-quality embryo transfers or at least two instances of egg donation. RIF shares several causative factors with RPL. The immunological underpinnings of these conditions involve alterations in uterine NK cells, reductions in M2 macrophages and myeloid-derived suppressor cells, an increased Th1/Th2 ratio, a decreased Treg/Th17 ratio, the presence of shared ≥3 HLA alleles between partners, and autoimmune disorders. Various therapeutic approaches have been employed to address these immunological concerns, achieving varying degrees of success, although some therapies remain contentious within the medical community. This review intends to explore the immunological factors implicated in RPL and RIF and to analyze the immunological treatments employed for these conditions, which may include steroids, intravenous immunoglobulins, calcineurin inhibitors, anti-TNF antibodies, intralipid infusions, granulocyte colony-stimulating factor, and lymphocyte immunotherapy.
See more in PubMed
Tomkiewicz J., Darmochwał-Kolarz D. The Diagnostics and Treatment of Recurrent Pregnancy Loss. J. Clin. Med. 2023;12:4768. doi: 10.3390/jcm12144768. PubMed DOI PMC
The ESHRE Guideline Group on RPL. Bender Atik R., Christiansen O.B., Elson J., Kolte A.M., Lewis S., Middeldorp S., Nelen W., Peramo B., Quenby S., et al. ESHRE guideline: Recurrent pregnancy loss. Hum. Reprod. Open. 2018;2018:hoy004. doi: 10.1093/hropen/hoy004. PubMed DOI PMC
Practice Committee of the American Society for Reproductive Medicine Evaluation and treatment of recurrent pregnancy loss: A committee opinion. Fertil. Steril. 2012;98:1103–1111. doi: 10.1016/j.fertnstert.2012.06.048. PubMed DOI
Who: Recommended Definitions, Terminology, and Format for Statistical Tables Related to The Perinatal Period And Use of A New Certificate For the Cause of Perinatal Deaths. Acta Obstet. Gynecol. Scand. 1977;56:247–256. doi: 10.3109/00016347709162009. PubMed DOI
Dimitriadis E., Menkhorst E., Saito S., Kutteh W.H., Brosens J.J. Recurrent pregnancy loss. Nat. Rev. Dis. Primers. 2020;6:98. doi: 10.1038/s41572-020-00228-z. PubMed DOI
Dong P., Wen X.Z., Liu J., Yan C., Yuan J., Luo L., Hu Q.F., Li J. Simultaneous detection of decidual Th1/Th2 and NK1/NK2 immunophenotyping in unknown recurrent miscarriage using 8-color flow cytometry with FSC/Vt extended strategy. Biosci. Rep. 2017;37:BSR20170150. doi: 10.1042/BSR20170150. PubMed DOI PMC
Kohl Schwartz A.S., Wölfler M.M., Mitter V., Rauchfuss M., Haeberlin F., Eberhard M., von Orelli S., Imthurn B., Imesch P., Fink D., et al. Endometriosis, especially mild disease: A risk factor for miscarriages. Fertil. Steril. 2017;108:806–814.e2. doi: 10.1016/j.fertnstert.2017.08.025. PubMed DOI
Harb H.M., Ghosh J., Al-Rshoud F., Karunakaran B., Gallos I.D., Coomarasamy A. Hydrosalpinx and pregnancy loss: A systematic review and meta-analysis. Reprod. Biomed. Online. 2019;38:427–441. doi: 10.1016/j.rbmo.2018.12.020. PubMed DOI
Zhang L., Li H., Han L., Zhang L., Zu Z., Zhang J. Association between semen parameters and recurrent pregnancy loss: An umbrella review of meta-analyses. J. Obstet. Gynaecol. Res. 2024;50:545–556. doi: 10.1111/jog.15886. PubMed DOI
Deshmukh H., Way S.S. Immunological Basis for Recurrent Fetal Loss and Pregnancy Complications. Annu. Rev. Pathol. 2019;14:185–210. doi: 10.1146/annurev-pathmechdis-012418-012743. PubMed DOI PMC
Bagkou Dimakou D., Lissauer D., Tamblyn J., Coomarasamy A., Richter A. Understanding human immunity in idiopathic recurrent pregnancy loss. Eur. J. Obstet. Gynecol. Reprod. Biol. 2022;270:17–29. doi: 10.1016/j.ejogrb.2021.12.024. PubMed DOI
Bashiri A., Halper K.I., Orvieto R. Recurrent Implantation Failure-update overview on etiology, diagnosis, treatment and future directions. Reprod. Biol. Endocrinol. 2018;16:121. doi: 10.1186/s12958-018-0414-2. PubMed DOI PMC
Comins Boo A., Segovia A.G., del Prado N.N., de la Fuente L., Alonso J., Ramon S.S. Evidence-based Update: Immunological Evaluation of Recurrent Implantation Failure. Reprod. Immunol. Open Access. 2016;1:24. doi: 10.21767/2476-1974.100024. DOI
Wu Y., Li L., Liu L., Yang X., Yan P., Yang K., Zhang X. Autologous peripheral blood mononuclear cells intrauterine instillation to improve pregnancy outcomes after recurrent implantation failure: A systematic review and meta-analysis. Arch. Gynecol. Obstet. 2019;300:1445–1459. doi: 10.1007/s00404-019-05275-w. PubMed DOI
Wu H., You Q., Jiang Y., Mu F. Tumor necrosis factor inhibitors as therapeutic agents for recurrent spontaneous abortion. Mol. Med. Rep. 2021;24:847. doi: 10.3892/mmr.2021.12487. PubMed DOI
Saadaoui M., Singh P., Ortashi O., Al Khodor S. Role of the vaginal microbiome in miscarriage: Exploring the relationship. Front. Cell. Infect. Microbiol. 2023;13:1232825. doi: 10.3389/fcimb.2023.1232825. PubMed DOI PMC
Mrozikiewicz A.E., Ożarowski M., Jędrzejczak P. Biomolecular Markers of Recurrent Implantation Failure—A Review. Int. J. Mol. Sci. 2021;22:10082. doi: 10.3390/ijms221810082. PubMed DOI PMC
Wang Q., Sun Y., Fan R., Wang M., Ren C., Jiang A., Yang T. Role of inflammatory factors in the etiology and treatment of recurrent implantation failure. Reprod. Biol. 2022;22:100698. doi: 10.1016/j.repbio.2022.100698. PubMed DOI
Ma J., Gao W., Li D. Recurrent implantation failure: A comprehensive summary from etiology to treatment. Front. Endocrinol. 2023;13:1061766. doi: 10.3389/fendo.2022.1061766. PubMed DOI PMC
Fathi M., Omrani M.A., Kadkhoda S., Ghahghaei-Nezamabadi A., Ghafouri-Fard S. Impact of miRNAs in the pathoetiology of recurrent implantation failure. Mol. Cell Probes. 2024;74:101955. doi: 10.1016/j.mcp.2024.101955. PubMed DOI
Liu L., Liu Y., Tian Y., Cao Y., Wang T., Mi S., Yang R., Liu S., Ma X., Wang J. Identification of Differentially Expressed mRNAs and lncRNAs Contributes to Elucidation of Underlying Pathogenesis and Therapeutic Strategy of Recurrent Implantation Failure. Reprod. Sci. 2024 doi: 10.1007/s43032-024-01630-8. PubMed DOI
Zahir M., Tavakoli B., Zaki-Dizaji M., Hantoushzadeh S., Majidi Zolbin M. Non-coding RNAs in Recurrent implantation failure. Clin. Chim. Acta. 2024;553:117731. doi: 10.1016/j.cca.2023.117731. PubMed DOI
Colamatteo A., Fusco C., Micillo T., D’Hooghe T., de Candia P., Alviggi C., Longobardi S., Matarese G. Immunobiology of pregnancy: From basic science to translational medicine. Trends Mol. Med. 2023;29:711–725. doi: 10.1016/j.molmed.2023.05.009. PubMed DOI
Zhao F., Hu X., Ying C. Advances in Research on the Relationship between Vaginal Microbiota and Adverse Pregnancy Outcomes and Gynecological Diseases. Microorganisms. 2023;11:991. doi: 10.3390/microorganisms11040991. PubMed DOI PMC
Moreno I., Codoñer F.M., Vilella F., Valbuena D., Martinez-Blanch J.F., Jimenez-Almazán J., Alonso R., Alamá P., Remohí J., Pellicer A., et al. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am. J. Obstet. Gynecol. 2016;215:684–703. doi: 10.1016/j.ajog.2016.09.075. PubMed DOI
Garmendia J.V., De Sanctis C.V., Hajdúch M., De Sanctis J.B. Microbiota and Recurrent Pregnancy Loss (RPL); More than a Simple Connection. Microorganisms. 2024;12:1641. doi: 10.3390/microorganisms12081641. PubMed DOI PMC
Jia D., Sun F., Han S., Lu L., Sun Y., Song Q. Adverse outcomes in subsequent pregnancies in women with a history of recurrent spontaneous abortion: A meta-analysis. J. Obstet. Gynaecol. Res. 2024;50:281–297. doi: 10.1111/jog.15848. PubMed DOI
Field K., Murphy D.J. Perinatal outcomes in a subsequent pregnancy among women who have experienced recurrent miscarriage: A retrospective cohort study. Hum. Reprod. 2015;30:1239–1245. doi: 10.1093/humrep/dev044. PubMed DOI
Fang Y., Jingjing F., Tiantain C., Huanhuan X., Qiaohua H. Impact of the number of previous embryo implantation failures on IVF/ICSI-ET pregnancy outcomes in patients younger than 40 years: A retrospective cohort study. Front. Endocrinol. 2023;14:1243402. doi: 10.3389/fendo.2023.1243402. PubMed DOI PMC
Cimadomo D., Rienzi L., Conforti A., Forman E., Canosa S., Innocenti F., Poli M., Hynes J., Gemmell L., Vaiarelli A., et al. Opening the black box: Why do euploid blastocysts fail to implant? A systematic review and meta-analysis. Hum. Reprod. Update. 2023;29:570–633. doi: 10.1093/humupd/dmad010. PubMed DOI
Nitu R., Neamtu R., Lordache O., Stelea L., Dahma G., Sacarin G., Socol G., Boarta A., Silaghi C., Puichita D., et al. Cross-Sectional Analysis of Intimacy Problems, Stress Levels, and Couple Satisfaction among Women with Thrombophilia Affected by Recurrent Pregnancy Loss. Int J Environ Res Public Health. 2023;20:1208. doi: 10.3390/ijerph20021208. PubMed DOI PMC
Chen S., Chang S., Kuo P., Chen C. Stress, anxiety and depression perceived by couples with recurrent miscarriage. Int J Nurs Pract. 2020;26:e12796. doi: 10.1111/ijn.12796. PubMed DOI
Quenby S., Gallos I.D., Dhillon-Smith R.K., Podesek M., Stephenson M.D., Fisher J., Brosens J.J., Brewin J., Ramhorst R., Lucas E.S., et al. Miscarriage matters: The epidemiological, physical, psychological, and economic costs of early pregnancy loss. Lancet. 2021;397:1658–1667. doi: 10.1016/S0140-6736(21)00682-6. PubMed DOI
Voss P., Schick M., Langer L., Ainsworth A., Ditzen B., Strowitzki T., Wischmann T., Kuon R.J. Recurrent pregnancy loss: A shared stressor---couple-orientated psychological research findings. Fertil Steril. 2020;114:1288–1296. doi: 10.1016/j.fertnstert.2020.08.1421. PubMed DOI
Mínguez-Alarcón L., Williams P.L., Souter I., Ford J.B., Hauser R., Chavarro J.E. Women’s preconception psychological stress and birth outcomes in a fertility clinic: The EARTH study. Front Glob Womens Health. 2024;5:1293255. doi: 10.3389/fgwh.2024.1293255. PubMed DOI PMC
Marshall J.S., Warrington R., Watson W., Kim H.L. An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol. 2018;14((Suppl. 2)):49. doi: 10.1186/s13223-018-0278-1. PubMed DOI PMC
Garmendia J.V., De Sanctis J.B. A Brief Analysis of Tissue-Resident NK Cells in Pregnancy and Endometrial Diseases: The Importance of Pharmacologic Modulation. Immuno. 2021;1:174–193. doi: 10.3390/immuno1030011. DOI
Lanier L.L. Five decades of natural killer cell discovery. J. Exp. Med. 2024;221:e20231222. doi: 10.1084/jem.20231222. PubMed DOI PMC
Rao V.A., Kurian N.K., Rao K.A. Cytokines, NK cells, and regulatory T cell functions in normal pregnancy and reproductive failures. Am. J. Reprod. Immunol. 2023;89:e13667. doi: 10.1111/aji.13667. PubMed DOI
Cavalcante M.B., da Silva P.H.A., Carvalho T.R., Sampaio O.G.M., Câmara F.E.A., Cavalcante C.T.M.B., Barini R., Kwak-Kim J. Peripheral blood natural killer cell cytotoxicity in recurrent miscarriage: A systematic review and meta-analysis. J. Reprod. Immunol. 2023;158:103956. doi: 10.1016/j.jri.2023.103956. PubMed DOI
Sacks G., Yang Y., Gowen E., Smith S., Fay L., Chapman M. Detailed Analysis of Peripheral Blood Natural Killer Cells in Women with Repeated IVF Failure. Am. J. Reprod. Immunol. 2012;67:434–442. doi: 10.1111/j.1600-0897.2012.01105.x. PubMed DOI
Cai J.Y., Tang Y.Y., Deng X.H., Li Y.J., Liang G., Meng Y.Q., Zhou H. Recurrent Implantation Failure May Be Identified by a Combination of Diagnostic Biomarkers: An Analysis of Peripheral Blood Lymphocyte Subsets. Front. Endocrinol. 2024;13:865807. doi: 10.3389/fendo.2022.865807. PubMed DOI PMC
Sacks G. Enough! Stop the arguments and get on with the science of natural killer cell testing. Hum. Reprod. 2015;30:1526–1531. doi: 10.1093/humrep/dev096. PubMed DOI
Dons’koi B.V. Accentuated hypo- and hyper-NK lymphocyte CD8 expression is a marker of NK subsets’ misbalance and is predictive for reproductive failures. Immunobiology. 2015;220:649–655. doi: 10.1016/j.imbio.2014.11.015. PubMed DOI
Dons’koi B.V., Chernyshov V.P., Sirenko V.Y., Strelko G.V., Osypchuk D.V. Peripheral blood natural killer cells activation status determined by CD69 upregulation predicts implantation outcome in IVF. Immunobiology. 2014;219:167–171. doi: 10.1016/j.imbio.2013.09.002. PubMed DOI
Gothe J.P., de Mattos A.C., Silveira C.F., Malavazi K.C. Exploring Natural Killer Cell Testing in Embryo Implantation and Reproductive Failure: An Overview of Techniques and Controversies. Reprod. Sci. 2024;31:603–632. doi: 10.1007/s43032-023-01372-z. PubMed DOI
Zhang J., Lye S.J. The immune potential of decidua-resident CD16+CD56+ NK cells in human pregnancy. Hum. Immunol. 2021;82:332–339. doi: 10.1016/j.humimm.2021.01.014. PubMed DOI
Salazar M.D., Wang W.J., Skariah A., He Q., Field K., Nixon M., Reed R., Dambaeva S., Beaman K., Gilman-Sachs A., et al. Post-hoc evaluation of peripheral blood natural killer cell cytotoxicity in predicting the risk of recurrent pregnancy losses and repeated implantation failures. J. Reprod. Immunol. 2022;150:103487. doi: 10.1016/j.jri.2022.103487. PubMed DOI
Singh N., Dogra Y., Kumar P., Mathur S., Sharma A., Patel G. Establishment of Cut-off Values for Uterine and Peripheral Blood Natural Killer Cells During the Peri-implantation Period in Fertile Controls and Women with Unexplained Recurrent Implantation Failure. J. Reprod. Infert. 2023;24:248–256. doi: 10.18502/jri.v24i4.14152. PubMed DOI PMC
Santillán I., Fernández Lozano I., Illán J., Verdú V., Coca S., Bajo-Arenas J., Martinez F. Where and when should natural killer cells be tested in women with repeated implantation failure? J. Reprod. Immunol. 2015;108:142–148. doi: 10.1016/j.jri.2014.12.009. PubMed DOI
Sfakianoudis K., Rapani A., Grigoriadis S., Pantou A., Maziotis E., Kokkini G., Tsirligkani C., Bolaris S., Nikolettos K., Chronopoulou M., et al. The Role of Uterine Natural Killer Cells on Recurrent Miscarriage and Recurrent Implantation Failure: From Pathophysiology to Treatment. Biomedicines. 2021;9:1425. doi: 10.3390/biomedicines9101425. PubMed DOI PMC
Bagkou Dimakou D., Tamblyn J., Justin C., Coomarasamy A., Richter A. Diagnosis and management of idiopathic recurrent pregnancy loss (RPL): Current immune testing and immunomodulatory treatment practice in the United Kingdom. J. Reprod. Immunol. 2022;153:103662. doi: 10.1016/j.jri.2022.103662. PubMed DOI
Seshadri S., Sunkara S.K. Natural killer cells in female infertility and recurrent miscarriage: A systematic review and meta-analysis. Hum. Reprod. Update. 2013;20:429–438. doi: 10.1093/humupd/dmt056. PubMed DOI
Lachapelle M., Miron P., Hemmings R., Roy D. Endometrial T, B, and NK cells in patients with recurrent spontaneous abortion. Altered profile and pregnancy outcome. J. Immunol. 1996;156:4027–4034. doi: 10.4049/jimmunol.156.10.4027. PubMed DOI
Ho Y.K., Chen H.H., Huang C.C., Lee C.I., Lin P.Y., Lee M.S., Lee T.H. Peripheral CD56+CD16+ NK Cell Populations in the Early Follicular Phase Are Associated With Successful Clinical Outcomes of Intravenous Immunoglobulin Treatment in Women With Repeated Implantation Failure. Front. Endocrinol. 2020;10:937. doi: 10.3389/fendo.2019.00937. PubMed DOI PMC
Fukui A., Fujii S., Yamaguchi E., Kimura H., Sato S., Saito Y. Natural Killer Cell Subpopulations and Cytotoxicity for Infertile Patients Undergoing In Vitro Fertilization. Am. J. Reprod. Immunol. 1999;41:413–422. doi: 10.1111/j.1600-0897.1999.tb00456.x. PubMed DOI
Strobel L., Vomstein K., Kyvelidou C., Hofer-Tollinger S., Feil K., Kuon R.J., Ebner S., Troppmair J., Toth B. Different Background: Natural Killer Cell Profiles in Secondary versus Primary Recurrent Pregnancy Loss. J. Clin. Med. 2021;10:194. doi: 10.3390/jcm10020194. PubMed DOI PMC
Fukui A., Kwak-Kim J., Ntrivalas E., Gilman-Sachs A., Lee S.K., Beaman K. Intracellular cytokine expression of peripheral blood natural killer cell subsets in women with recurrent spontaneous abortions and implantation failures. Fertil. Steril. 2008;89:157–165. doi: 10.1016/j.fertnstert.2007.02.012. PubMed DOI
Díaz-Peña R., de Los Santos M.J., Lucia A., Castro-Santos P. Understanding the role of killer cell immunoglobulin-like receptors in pregnancy complications. J. Assist. Reprod. Genet. 2019;36:827–835. doi: 10.1007/s10815-019-01426-9. PubMed DOI PMC
Lin Q.D., Qiu L.H. Pathogenesis, diagnosis, and treatment of recurrent spontaneous abortion with immune type. Front. Med. China. 2010;4:275–279. doi: 10.1007/s11684-010-0101-y. PubMed DOI
Dambaeva S.V., Lee D.H., Sung N., Chen C.Y., Bao S., Gilman-Sachs A., Kwak-Kim J., Beaman K.D. Recurrent Pregnancy Loss in Women with Killer Cell Immunoglobulin-Like Receptor KIR2DS1 is Associated with an Increased HLA-C2 Allelic Frequency. Am. J. Reprod. Immunol. 2016;75:94–103. doi: 10.1111/aji.12453. PubMed DOI
Akbari S., Shahsavar F., Karami R., Yari F., Anbari K., Ahmadi S.A.Y. Recurrent Spontaneous Abortion (RPL) and Maternal KIR Genes: A Comprehensive Meta-Analysis. JBRA Assist. Reprod. 2020;24:197–213. doi: 10.5935/1518-0557.20190067. PubMed DOI PMC
Yang X., Yang E., Wang W., He Q., Jubiz G., Katukurundage D., Dambaeva S., Beaman K.D., Kwak-Kim J. Decreased HLA-C1 alleles in couples of KIR2DL2 positive women with recurrent pregnancy loss. J. Reprod. Immunol. 2020;142:103186. doi: 10.1016/j.jri.2020.103186. PubMed DOI
Feyaerts D., Benner M., Comitini G., Shadmanfar W., van der Heijden O.W.H., Joosten I., van der Molen R.G. NK cell receptor profiling of endometrial and decidual NK cells reveals pregnancy-induced adaptations. Front. Immunol. 2024;15:1353556. doi: 10.3389/fimmu.2024.1353556. PubMed DOI PMC
Maftei R., Doroftei B., Popa R., Harabor V., Adam A.M., Popa C., Harabor A., Adam G., Nechita A., Vasilache I.A., et al. The Influence of Maternal KIR Haplotype on the Reproductive Outcomes after Single Embryo Transfer in IVF Cycles in Patients with Recurrent Pregnancy Loss and Implantation Failure—A Single Center Experience. J. Clin. Med. 2023;12:1905. doi: 10.3390/jcm12051905. PubMed DOI PMC
Nowak I., Wilczyńska K., Wilczyński J.R., Malinowski A., Radwan P., Radwan M., Kuśnierczyk P. KIR, LILRB and their Ligands’ Genes as Potential Biomarkers in Recurrent Implantation Failure. Arch. Immunol. Ther. Exp. 2017;65:391–399. doi: 10.1007/s00005-017-0474-6. PubMed DOI PMC
Braun A.S., Vomstein K., Reiser E., Tollinger S., Kyvelidou C., Feil K., Toth B. NK and T Cell Subtypes in the Endometrium of Patients with Recurrent Pregnancy Loss and Recurrent Implantation Failure: Implications for Pregnancy Success. J. Clin. Med. 2023;12:5585. doi: 10.3390/jcm12175585. PubMed DOI PMC
Morin S.J., Treff N.R., Tao X., Scott R.T., 3rd, Franasiak J.M., Juneau C.R., Maguire M., Scott R.T. Combination of uterine natural killer cell immunoglobulin receptor haplotype and trophoblastic HLA-C ligand influences the risk of pregnancy loss: A retrospective cohort analysis of direct embryo genotyping data from euploid transfers. Fertil. Steril. 2017;107:677–683.e2. doi: 10.1016/j.fertnstert.2016.12.004. PubMed DOI
Khalaf W.S., Mahmoud M.R.A., Elkhatib W.F., Hashem H.R., Soliman W.E. Phenotypic characterization of NKT-like cells and evaluation of specifically related cytokines for the prediction of unexplained recurrent miscarriage. Heliyon. 2021;7:e08409. doi: 10.1016/j.heliyon.2021.e08409. PubMed DOI PMC
Xu Q.H., Liu H., Wang L.L., Zhu Q., Zhang Y.J., Muyayalo K.P., Liao A.H. Roles of γδT cells in pregnancy and pregnancy-related complications. Am. J. Reprod. Immunol. 2021;86:e13487. doi: 10.1111/aji.13487. PubMed DOI
Li L., Liu Y., Zhou W., Yang C., Feng T., Li H. Human chorionic gonadotrophin indirectly activates peripheral γδT cells to produce interleukin-10 during early pregnancy. Immun. Inflamm. Dis. 2024;12:e1119. doi: 10.1002/iid3.1119. PubMed DOI PMC
Zhang D., Yu Y., Duan T., Zhou Q. The role of macrophages in reproductive-related diseases. Heliyon. 2022;8:e11686. doi: 10.1016/j.heliyon.2022.e11686. PubMed DOI PMC
Nagamatsu T., Schust D.J. The Contribution of Macrophages to Normal and Pathological Pregnancies. Am. J. Reprod. Immunol. 2010;63:460–471. doi: 10.1111/j.1600-0897.2010.00813.x. PubMed DOI
Tsao F.Y., Wu M.Y., Chang Y.L., Wu C.T., Ho H.N. M1 macrophages decrease in the deciduae from normal pregnancies but not from spontaneous abortions or unexplained recurrent spontaneous abortions. J. Formos. Med. Assoc. 2018;117:204–211. doi: 10.1016/j.jfma.2017.03.011. PubMed DOI
Robertson S.A., Moldenhauer L.M., Green E.S., Care A.S., Hull M.L. Immune determinants of endometrial receptivity: A biological perspective. Fertil. Steril. 2022;117:1107–1120. doi: 10.1016/j.fertnstert.2022.04.023. PubMed DOI
Wang W.J., Hao C.F., Lin Q.D. Dysregulation of macrophage activation by decidual regulatory T cells in unexplained recurrent miscarriage patients. J. Reprod. Immunol. 2011;92:97–102. doi: 10.1016/j.jri.2011.08.004. PubMed DOI
Quenby S., Bates M., Doig T., Brewster J., Lewis-Jones D.I., Johnson P.M., Vince G. Pre-implantation endometrial leukocytes in women with recurrent miscarriage. Hum. Reprod. 1999;14:2386–2391. doi: 10.1093/humrep/14.9.2386. PubMed DOI
Krop J., Tian X., van der Hoorn M.L., Eikmans M. The Mac Is Back: The Role of Macrophages in Human Healthy and Complicated Pregnancies. Int. J. Mol. Sci. 2023;24:5300. doi: 10.3390/ijms24065300. PubMed DOI PMC
Tremellen K.P., Russell P. The distribution of immune cells and macrophages in the endometrium of women with recurrent reproductive failure. II: Adenomyosis and macrophages. J. Reprod. Immunol. 2012;93:58–63. PubMed
Wei R., Lai N., Zhao L., Zhang Z., Zhu X., Guo Q., Chu C., Fu X., Li X. Dendritic cells in pregnancy and pregnancy-associated diseases. Biomed. Pharmacother. 2021;133:110921. doi: 10.1016/j.biopha.2020.110921. PubMed DOI
Saito S. Role of immune cells in the establishment of implantation and maintenance of pregnancy and immunomodulatory therapies for patients with repeated implantation failure and recurrent pregnancy loss. Reprod. Med. Biol. 2024;23:e12600. doi: 10.1002/rmb2.12600. PubMed DOI PMC
Liu S., Wei H., Li Y., Huang C., Lian R., Xu J., Chen L., Zeng Y. Downregulation of ILT4+dendritic cells in recurrent miscarriage and recurrent implantation failure. Am. J. Reprod. Immunol. 2018;80:e12998. doi: 10.1111/aji.12998. PubMed DOI
Zhu X.X., Yin X.Q., Hei G.Z., Wei R., Guo Q., Zhao L., Zhang Z., Chu C., Fu X.X., Xu K., et al. Increased miR-6875-5p inhibits plasmacytoid dendritic cell differentiation via the STAT3/E2-2 pathway in recurrent spontaneous abortion. Mol. Hum. Reprod. 2021;27:gaab044. doi: 10.1093/molehr/gaab044. PubMed DOI PMC
Huang C., Zhang H., Chen X., Diao L., Lian R., Zhang X., Hu L., Zeng Y. Association of peripheral blood dendritic cells with recurrent pregnancy loss: A case-controlled study. Am. J. Reprod. Immunol. 2016;76:326–332. doi: 10.1111/aji.12550. PubMed DOI
Kwiatek M., Gęca T., Krzyżanowski A., Malec A., Kwaśniewska A. Peripheral Dendritic Cells and CD4+CD25+Foxp3+ Regulatory T Cells in the First Trimester of Normal Pregnancy and in Women with Recurrent Miscarriage. PLoS ONE. 2015;10:e0124747. doi: 10.1371/journal.pone.0124747. PubMed DOI PMC
Sivridis E., Giatromanolaki A., Agnantis N., Anastasiadis P. Mast cell distribution and density in the normal uterus--metachromatic staining using lectins. Eur. J. Obstet. Gynecol. Reprod. Biol. 2001;98:109–113. doi: 10.1016/S0301-2115(00)00564-9. PubMed DOI
Norrby K. On Connective Tissue Mast Cells as Protectors of Life, Reproduction, and Progeny. Int. J. Mol. Sci. 2024;25:4499. doi: 10.3390/ijms25084499. PubMed DOI PMC
Lampiasi N. Interactions between Macrophages and Mast Cells in the Female Reproductive System. Int. J. Mol. Sci. 2022;23:5414. doi: 10.3390/ijms23105414. PubMed DOI PMC
Derbala Y., Elazzamy H., Bilal M., Reed R., Salazar Garcia M.D., Skariah A., Dambaeva S., Fernandez E., Germain A., Gilman-Sachs A., et al. Mast cell-induced immunopathology in recurrent pregnancy losses. Am J Reprod Immunol. 2019;82:e13128. doi: 10.1111/aji.13128. PubMed DOI
McCallion A., Nasirzadeh Y., Lingegowda H., Miller J.E., Khalaj K., Ahn S., Monsanto S.P., Bidarimath M., Sisnett D.J., Craig A.W., et al. Estrogen mediates inflammatory role of mast cells in endometriosis pathophysiology. Front Immunol. 2022;13:961599. doi: 10.3389/fimmu.2022.961599. PubMed DOI PMC
Dunn T.N., Cope D.I., Tang S., Sirupangi T., Parks S.E., Liao Z., Yuan F., Creighton C.J., Masand R.P., Alpuing Radilla L., et al. Inhibition of CSF1R and KIT With Pexidartinib Reduces Inflammatory Signaling and Cell Viability in Endometriosis. Endocrinology. 2024;165:bqae003. doi: 10.1210/endocr/bqae003. PubMed DOI PMC
Blumenthal R.D., Samoszuk M., Taylor A.P., Brown G., Alisauskas R., Goldenberg D.M. Degranulating eosinophils in human endometriosis. Am. J. Pathol. 2020;156:1581–1588. doi: 10.1016/S0002-9440(10)65030-4. PubMed DOI PMC
Hornung D., Dohrn K., Sotlar K., Greb R.R., Wallwiener D., Kiesel L., Taylor R.N. Localization in tissues and secretion of eotaxin by cells from normal endometrium and endometriosis. J. Clin. Endocrinol. Metab. 2000;85:2604–2608. doi: 10.1210/jc.85.7.2604. PubMed DOI
Naseri S., Rosenberg-Hasson Y., Maecker H.T., Avrutsky M.I., Blumenthal P.D. A cross-sectional study comparing the inflammatory profile of menstrual effluent vs. peripheral blood. Health Sci. Rep. 2023;6:e1038. doi: 10.1002/hsr2.1038. PubMed DOI PMC
Wang X., Jia Y., Li D., Guo X., Zhou Z., Qi M., Wang G., Wang F. The Abundance and Function of Neutrophils in the Endometriosis Systemic and Pelvic Microenvironment. Mediat. Inflamm. 2023;2023:1481489. doi: 10.1155/2023/1481489. PubMed DOI PMC
Hebeda C.B., Savioli A.C., Scharf P., de Paula-Silva M., Gil C.D., Farsky S.H.P., Sandri S. Neutrophil depletion in the pre-implantation phase impairs pregnancy index, placenta and fetus development. Front. Immunol. 2022;13:969336. doi: 10.3389/fimmu.2022.969336. PubMed DOI PMC
Ghafourian M., Abuhamidy A., Karami N. Increase of peripheral blood TCD8+cells in women with recurrent miscarriage. J. Obstet. Gynaecol. 2013;34:36–39. doi: 10.3109/01443615.2013.817980. PubMed DOI
Morita K., Tsuda S., Kobayashi E., Hamana H., Tsuda K., Shima T., Nakashima A., Ushijima A., Kishi H., Saito S. Analysis of TCR Repertoire and PD-1 Expression in Decidual and Peripheral CD8+ T Cells Reveals Distinct Immune Mechanisms in Miscarriage and Preeclampsia. Front. Immunol. 2020;11:1082. doi: 10.3389/fimmu.2020.01082. PubMed DOI PMC
Carbone J., Sarmiento E., Gallego A., Lanio N., Navarro J., Garcia S., Fernández-Cruz E. Peripheral blood T- and B-cell immunophenotypic abnormalities in selected women with unexplained recurrent miscarriage. J. Reprod. Immunol. 2016;113:50–53. doi: 10.1016/j.jri.2015.11.003. PubMed DOI
Huang C., Xiang Z., Zhang Y., Li Y., Xu J., Zhang H., Zeng Y., Tu W. NKG2D as a Cell Surface Marker on γδ-T Cells for Predicting Pregnancy Outcomes in Patients With Unexplained Repeated Implantation Failure. Front. Immunol. 2021;12:631077. doi: 10.3389/fimmu.2021.631077. PubMed DOI PMC
Yu L., Wang L., Wang L., Yan S., Chen S., Xu Q., Su D., Wang X. Identification and validation of immune cells and hub genes alterations in recurrent implantation failure: A GEO data mining study. Front. Genet. 2023;13:1094978. doi: 10.3389/fgene.2022.1094978. PubMed DOI PMC
Wang X., Ma Z., Hong Y., Zhao A., Qiu L., Lu P., Lin Q. The Skewed TCR-BV Repertoire Displayed at the Maternal-Fetal Interface of Women with Unexplained Pregnancy Loss. Am. J. Reprod. Immunol. 2005;54:84–95. doi: 10.1111/j.1600-0897.2005.00291.x. PubMed DOI
Robertson S.A., Care A.S., Moldenhauer L.M. Regulatory T cells in embryo implantation and the immune response to pregnancy. J. Clin. Investig. 2018;128:4224–4235. doi: 10.1172/JCI122182. PubMed DOI PMC
Yang H., Qiu L., Chen G., Ye Z., Lü C., Lin Q. Proportional change of CD4+CD25+ regulatory T cells in decidua and peripheral blood in unexplained recurrent spontaneous abortion patients. Fertil. Steril. 2008;89:656–661. doi: 10.1016/j.fertnstert.2007.03.037. PubMed DOI
Li Q.H., Zhao Q.Y., Yang W.J., Jiang A.F., Ren C.E., Meng Y.H. Beyond Immune Balance: The Pivotal Role of Decidual Regulatory T Cells in Unexplained Recurrent Spontaneous Abortion. J. Inflamm. Res. 2024;17:2697–2710. doi: 10.2147/JIR.S459263. PubMed DOI PMC
Wang W.J., Hao C.F., Qu Q.L., Wang X., Qiu L.H., Lin Q.D. The deregulation of regulatory T cells on interleukin-17-producing T helper cells in patients with unexplained early recurrent miscarriage. Hum. Reprod. 2010;25:2591–2596. doi: 10.1093/humrep/deq198. PubMed DOI
Garmendia J.V., Blanca I., Peña M.J., De Sanctis C.V., De Sanctis J.B. Unlocking the Puzzle: Investigating the Role of Interleukin 17 Genetic Polymorphisms, Circulating Lymphocytes, and Serum Levels in Venezuelan Women with Recurrent Pregnancy Loss. Immuno. 2024;4:301–311. doi: 10.3390/immuno4040019. DOI
Heitmann R.J., Weitzel R.P., Feng Y., Segars J.H., Tisdale J.F., Wolff E.F. Maternal T Regulatory Cell Depletion Impairs Embryo Implantation Which Can Be Corrected With Adoptive T Regulatory Cell Transfer. Reprod. Sci. 2017;24:1014–1024. doi: 10.1177/1933719116675054. PubMed DOI PMC
Granne I., Shen M., Rodriguez-Caro H., Chadha G., O’Donnell E., Brosens J.J., Quenby S., Child T., Southcombe J.H. Characterisation of peri-implantation endometrial Treg and identification of an altered phenotype in recurrent pregnancy loss. Mucosal Immunol. 2022;15:120–129. doi: 10.1038/s41385-021-00451-1. PubMed DOI PMC
Moldenhauer L.M., Foyle K.L., Wilson J.J., Wong Y.Y., Sharkey D.J., Green E.S., Barry S.C., Hull M.L., Robertson S.A. A disrupted FOXP3 transcriptional signature underpins systemic regulatory T cell insufficiency in early pregnancy failure. iScience. 2024;27:108994. doi: 10.1016/j.isci.2024.108994. PubMed DOI PMC
Winger E.E., Reed J.L. Low Circulating CD4+ CD25+ Foxp3+ T Regulatory Cell Levels Predict Miscarriage Risk in Newly Pregnant Women with a History of Failure. Am. J. Reprod. Immunol. 2011;66:320–328. doi: 10.1111/j.1600-0897.2011.00992.x. PubMed DOI
Jin L.P., Chen Q.Y., Zhang T., Guo P.F., Li D.J. The CD4+CD25 bright regulatory T cells and CTLA-4 expression in peripheral and decidual lymphocytes are down-regulated in human miscarriage. Clin. Immunol. 2009;133:402–410. doi: 10.1016/j.clim.2009.08.009. PubMed DOI
Tang C., Hu W. The role of Th17 and Treg cells in normal pregnancy and unexplained recurrent spontaneous abortion (URSA): New insights into immune mechanisms. Placenta. 2023;142:18–26. doi: 10.1016/j.placenta.2023.08.065. PubMed DOI
Farshchi M., Abdollahi E., Saghafi N., Hosseini A., Fallahi S., Rostami S., Rostami P., Rafatpanah H., Habibagahi M. Evaluation of Th17 and Treg cytokines in patients with unexplained recurrent pregnancy loss. J. Clin. Transl. Res. 2022;8:256–265. PubMed PMC
Franasiak J.M., Alecsandru D., Forman E.J., Gemmell L.C., Goldberg J.M., Llarena N., Margolis C., Laven J., Schoenmakers S., Seli E. A review of the pathophysiology of recurrent implantation failure. Fertil. Steril. 2021;116:1436–1448. doi: 10.1016/j.fertnstert.2021.09.014. PubMed DOI
Berdiaki A., Vergadi E., Makrygiannakis F., Vrekoussis T., Makrigiannakis A. Repeated implantation failure is associated with increased Th17/Treg cell ratio, during the secretory phase of the human endometrium. J. Reprod. Immunol. 2024;161:104170. doi: 10.1016/j.jri.2023.104170. PubMed DOI
Niafar M., Samaie V., Soltani-Zangbar M.S., Motavalli R., Dolati S., Danaii S., Mehdizadeh A., Yousefi M. The association of Treg and Th17 cells development factors and anti-TPO autoantibodies in patients with recurrent pregnancy loss. BMC Res. Notes. 2023;16:302. doi: 10.1186/s13104-023-06579-6. PubMed DOI PMC
Wang W.J., Salazar Garcia M.D., Deutsch G., Sung N., Yang X., He Q., Jubiz G., Bilal M., Dambaeva S., Gilman-Sachs A., et al. PD-1 and PD-L1 expression on T-cell subsets in women with unexplained recurrent pregnancy losses. Am. J. Reprod. Immunol. 2020;83:e13230. doi: 10.1111/aji.13230. PubMed DOI
Wang W., Sung N., Gilman-Sachs A., Kwak-Kim J. T Helper (Th) Cell Profiles in Pregnancy and Recurrent Pregnancy Losses: Th1/Th2/Th9/Th17/Th22/Tfh Cells. Front. Immunol. 2020;11:2025. doi: 10.3389/fimmu.2020.02025. PubMed DOI PMC
Weng J., Couture C., Girard S. Innate and Adaptive Immune Systems in Physiological and Pathological Pregnancy. Biology. 2023;12:402. doi: 10.3390/biology12030402. PubMed DOI PMC
Muzzio D., Zenclussen A.C., Jensen F. The Role of B Cells in Pregnancy: The Good and the Bad. Am. J. Reprod. Immunol. 2013;69:408–412. doi: 10.1111/aji.12079. PubMed DOI
Eblen A.C., Gercel-Taylor C., Shields L.B.E., Sanfilippo J.S., Nakajima S.T., Taylor D.D. Alterations in humoral immune responses associated with recurrent pregnancy loss. Fertil. Steril. 2000;73:305–313. doi: 10.1016/S0015-0282(99)00505-1. PubMed DOI
Marron K., Walsh D., Harrity C. Detailed endometrial immune assessment of both normal and adverse reproductive outcome populations. J. Assist. Reprod. Genet. 2019;36:199–210. doi: 10.1007/s10815-018-1300-8. PubMed DOI PMC
Vujisić S., Lepej S.Ž., Akšamija A., Jerković L., Sokolić B., Kupešić S., Vince A. B- and T-cells in the Follicular Fluid and Peripheral Blood of Patients Undergoing IVF/ET Procedures. Am. J. Reprod. Immunol. 2004;52:379–385. doi: 10.1111/j.1600-0897.2004.00238.x. PubMed DOI
Liu J.C., Zeng Q., Duan Y.G., Yeung W.S.B., Li R.H.W., Ng E.H.Y., Cheung K.W., Zhang Q., Chiu P.C.N. B cells: Roles in physiology and pathology of pregnancy. Front. Immunol. 2024;15:1456171. doi: 10.3389/fimmu.2024.1456171. PubMed DOI PMC
Danaii S., Ghorbani F., Ahmadi M., Abbaszadeh H., Koushaeian L., Soltani-Zangbar M.S., Mehdizadeh A., Hojjat-Farsangi M., Kafil H.S., Aghebati-Maleki L., et al. IL-10-producing B cells play important role in the pathogenesis of recurrent pregnancy loss. Int. Immunopharmacol. 2020;87:106806. doi: 10.1016/j.intimp.2020.106806. PubMed DOI
Bronte V., Brandau S., Chen S.H., Colombo M.P., Frey A.B., Greten T.F., Mandruzzato S., Murray P.J., Ochoa A., Ostrand-Rosenberg S., et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 2016;7:12150. doi: 10.1038/ncomms12150. PubMed DOI PMC
Ostrand-Rosenberg S., Sinha P., Figley C., Long R., Park D., Carter D., Clements V.K. Frontline Science: Myeloid-derived suppressor cells (MDSCs) facilitate maternal–fetal tolerance in mice. J. Leukoc. Biol. 2016;101:1091–1101. doi: 10.1189/jlb.1HI1016-306RR. PubMed DOI PMC
Köstlin N., Hofstädter K., Ostermeir A.L., Spring B., Leiber A., Haen S., Abele H., Bauer P., Pollheimer J., Hartl D., et al. Granulocytic Myeloid-Derived Suppressor Cells Accumulate in Human Placenta and Polarize toward a Th2 Phenotype. J. Immunol. 2016;196:1132–1145. doi: 10.4049/jimmunol.1500340. PubMed DOI
Bartmann C., Junker M., Segerer S.E., Häusler S.F., Krockenberger M., Kämmerer U. CD33+/HLA-DRnegand CD33+/HLA-DR+/−Cells: Rare Populations in the Human Decidua with Characteristics of MDSC. Am. J. Reprod. Immunol. 2016;75:539–556. doi: 10.1111/aji.12492. PubMed DOI
Pan T., Zhong L., Wu S., Cao Y., Yang Q., Cai Z., Cai X., Zhao W., Ma N., Zhang W., et al. 17β-Oestradiol enhances the expansion and activation of myeloid-derived suppressor cells via signal transducer and activator of transcription (STAT)-3 signalling in human pregnancy. Clin. Exp. Immunol. 2016;185:86–97. doi: 10.1111/cei.12790. PubMed DOI PMC
Li C., Zhang X., Kang X., Chen C., Guo F., Wang Q., Zhao A. Upregulated TRAIL and Reduced DcR2 Mediate Apoptosis of Decidual PMN-MDSC in Unexplained Recurrent Pregnancy Loss. Front. Immunol. 2020;11:1345. doi: 10.3389/fimmu.2020.01345. PubMed DOI PMC
Jiang H., Zhu M., Guo P., Bi K., Lu Z., Li C., Zhai M., Wang K., Cao Y. Impaired myeloid-derived suppressor cells are associated with recurrent implantation failure: A case-control study. J. Reprod. Immunol. 2021;145:103316. doi: 10.1016/j.jri.2021.103316. PubMed DOI
Marin N.S., Fuente-Muñoz E., Gil-Laborda R., Villegas Á., Alonso-Arenilla B., Cristóbal I., Pilar-Suárez L., Jiménez-Huete A., Calvo M., Sarria B., et al. Myeloid-derived suppressor cells as a potential biomarker for recurrent pregnancy loss and recurrent implantation failure. Am. J. Reprod. Immunol. 2023;90:e13783. doi: 10.1111/aji.13783. PubMed DOI
Pantos K., Grigoriadis S., Maziotis E., Pistola K., Xystra P., Pantou A., Kokkali G., Pappas A., Lambropoulou M., Sfakianoudis K., et al. The Role of Interleukins in Recurrent Implantation Failure: A Comprehensive Review of the Literature. Int. J. Mol. Sci. 2022;23:2198. doi: 10.3390/ijms23042198. PubMed DOI PMC
Dong X., Zhou M., Li X., Huang H., Sun Y. Gene profiling reveals the role of inflammation, abnormal uterine muscle contraction and vascularity in recurrent implantation failure. Front. Genet. 2023;14:1108805. doi: 10.3389/fgene.2023.1108805. PubMed DOI PMC
Kalu E., Bhaskaran S., Thum M.Y., Vishwanatha R., Croucher C., Sherriff E., Ford B., Bansal A.S. Serial Estimation of Th1:Th2 Cytokines Profile in Women Undergoing In-Vitro Fertilization-Embryo Transfer. Am. J. Reprod. Immunol. 2008;59:206–211. doi: 10.1111/j.1600-0897.2007.00565.x. PubMed DOI
Piekarska K., Dratwa M., Radwan P., Radwan M., Bogunia-Kubik K., Nowak I. Pro- and anti-inflammatory cytokines and growth factors in patients undergoing in vitro fertilization procedure treated with prednisone. Front. Immunol. 2023;14:1250488. doi: 10.3389/fimmu.2023.1250488. PubMed DOI PMC
Mukherjee N., Sharma R., Modi D. Immune alterations in recurrent implantation failure. Am. J. Reprod. Immunol. 2022;89:e13563. doi: 10.1111/aji.13563. PubMed DOI
Guo L., Guo A., Yang F., Li L., Yan J., Deng X., Dai C., Li Y. Alterations of Cytokine Profiles in Patients With Recurrent Implantation Failure. Front. Endocrinol. 2022;13:949123. doi: 10.3389/fendo.2022.949123. PubMed DOI PMC
Yang X., Tian Y., Zheng L., Luu T., Kwak-Kim J. The Update Immune-Regulatory Role of Pro- and Anti-Inflammatory Cytokines in Recurrent Pregnancy Losses. Int. J. Mol. Sci. 2023;24:132. doi: 10.3390/ijms24010132. PubMed DOI PMC
Kwak-Kim J.Y.H., Chung-Bang H., Ng S., Ntrivalas E., Mangubat C., Beaman K., Beer A., Gilman-Sachs A. Increased T helper 1 cytokine responses by circulating T cells are present in women with recurrent pregnancy losses and in infertile women with multiple implantation failures after IVF. Hum. Reprod. 2003;18:767–773. doi: 10.1093/humrep/deg156. PubMed DOI
Sereshki N., Gharagozloo M., Ostadi V., Ghahiri A., Roghaei M., Mehrabian F., Andalib A., Hassanzadeh A., Hosseini H., Rezaei A.A. Variations in T-helper 17 and Regulatory T Cells during The Menstrual Cycle in Peripheral Blood of Women with Recurrent Spontaneous Abortion. Int. J. Fertil. Steril. 2014;8:59–66. PubMed PMC
Inagaki N., Stern C., McBain J., Lopata A., Kornman L., Wilkinson D. Analysis of intra-uterine cytokine concentration and matrix-metalloproteinase activity in women with recurrent failed embryo transfer. Hum. Reprod. 2003;18:608–615. doi: 10.1093/humrep/deg139. PubMed DOI
Wang W.J., Zhang H., Chen Z.Q., Zhang W., Liu X.M., Fang J.Y., Liu F.J., Kwak-Kim J. Endometrial TGF-β, IL-10, IL-17 and autophagy are dysregulated in women with recurrent implantation failure with chronic endometritis. Reprod. Biol. Endocrinol. 2019;17:2. doi: 10.1186/s12958-018-0444-9. PubMed DOI PMC
Sheikhansari G., Soltani-Zangbar M.S., Pourmoghadam Z., Kamrani A., Azizi R., Aghebati-Maleki L., Danaii S., Koushaeian L., Hojat-Farsangi M., Yousefi M. Oxidative stress, inflammatory settings, and microRNA regulation in the recurrent implantation failure patients with metabolic syndrome. Am. J. Reprod. Immunol. 2019;82:e13170. doi: 10.1111/aji.13170. PubMed DOI
O’Hern Perfetto C., Fan X., Dahl S., Krieg S.A., Westphal L.M., Lathi R.B., Nayak N.R. Expression of interleukin-22 in decidua of patients with early pregnancy and unexplained recurrent pregnancy loss. J. Assist. Reprod. Genet. 2015;32:977–984. doi: 10.1007/s10815-015-0481-7. PubMed DOI PMC
Wang W.J., Liu F.J., Qu H.M., Hao C.F., Qu Q.L., Bao H.C., Wang X.R. Regulation of the expression of Th17 cells and regulatory T cells by IL-27 in patients with unexplained early recurrent miscarriage. J. Reprod. Immunol. 2013;99:39–45. doi: 10.1016/j.jri.2013.04.002. PubMed DOI
Ma Y., Ma M., Ye S., Liu Y., Zhao X., Wang Y. Association of IL-17 and IL-27 polymorphisms with susceptibility to recurrent pregnancy loss and pre-eclampsia: A systematic review and meta-analysis. Immun. Inflamm. Dis. 2023;11:e1057. doi: 10.1002/iid3.1057. PubMed DOI PMC
Zhao L., Fu J., Ding F., Liu J., Li L., Song Q., Fu Y. IL-33 and Soluble ST2 Are Associated With Recurrent Spontaneous Abortion in Early Pregnancy. Front. Physiol. 2021;12:789829. doi: 10.3389/fphys.2021.789829. PubMed DOI PMC
Yue C., Zhang B., Ying C. Elevated Serum Level of IL-35 Associated with the Maintenance of Maternal-Fetal Immune Tolerance in Normal Pregnancy. PLoS ONE. 2015;10:e0128219. doi: 10.1371/journal.pone.0128219. PubMed DOI PMC
Karaer A., Cigremis Y., Celik E., Urhan Gonullu R. Prokineticin 1 and leukemia inhibitory factor mRNA expression in the endometrium of women with idiopathic recurrent pregnancy loss. Fertil. Steril. 2014;102:1091–1095.e1. doi: 10.1016/j.fertnstert.2014.07.010. PubMed DOI
Raghupathy R., Al-Mutawa E., Al-Azemi M., Makhseed M., Azizieh F., Szekeres-Bartho J. Progesterone-induced blocking factor (PIBF) modulates cytokine production by lymphocytes from women with recurrent miscarriage or preterm delivery. J. Reprod. Immunol. 2009;80:91–99. doi: 10.1016/j.jri.2009.01.004. PubMed DOI
Kashyap N., Begum A., Ray Das C., Datta R., Verma M.K., Dongre A., Husain S.A., Ahmad Khan L., Deka Bose P. Aberrations in the progesterone pathway and the Th1/Th2 cytokine dichotomy—An evaluation of RPL predisposition in the northeast Indian population. Am. Reprod. Immunol. 2023;90:e13745. doi: 10.1111/aji.13745. PubMed DOI
Amjadi F., Zandieh Z., Mehdizadeh M., Aghajanpour S., Raoufi E., Aghamajidi A., Aflatoonian R. The uterine immunological changes may be responsible for repeated implantation failure. J. Reprod. Immunol. 2020;138:103080. doi: 10.1016/j.jri.2020.103080. PubMed DOI
Laitinen T. A Set of MHC Haplotypes Found Among Finnish Couples Suffering From Recurrent Spontaneous Abortions. Am. J. Reprod. Immunol. 1993;29:148–154. doi: 10.1111/j.1600-0897.1993.tb00580.x. PubMed DOI
Hsiao T.W., Chung M.T., Wen J.Y., Lin Y., Lin L.Y., Tsai Y. HLA sharing and maternal HLA expression in couples with recurrent pregnancy loss in Taiwan. Taiwan J. Obstet. Gynecol. 2022;61:854–857. doi: 10.1016/j.tjog.2021.11.039. PubMed DOI
Gharesi-Fard B., Askarinejad-Behbahani R., Behdin S. The effect of HLA-DRB1 sharing between the couples with recurrent pregnancy loss on the pregnancy outcome after leukocyte therapy. Iran. J. Immunol. 2014;11:13–20. PubMed
Wang X.P., Lin Q., Peng L., Ma Z., Zhao A. Association of HLA-DQB1 coding region with unexplained recurrent spontaneous abortion. Chin. Med. J. 2004;117:492–497. PubMed
Ho H.N., Yang Y.S., Hsieh R.P., Lin H.R., Chen S., Huang S., Lee T.Y., Gill T.J. Sharing of human leukocyte antigens in couples with unexplained infertility affects the success of in vitro fertilization and tubal embryo transfer. Am. J. Obstet. Gynecol. 1994;170:63–71. doi: 10.1016/S0002-9378(94)70385-X. PubMed DOI
Weckstein L.N., Patrizio P., Balmaceda J.P., Asch R.H., Branch D.W. Human leukocyte antigen compatibility and failure to achieve a viable pregnancy with assisted reproductive technology. Acta Eur. Fertil. 1991;22:103–107. PubMed
Balasch J., Jové I., Martorell J., Gayà A., Vanrell J.A. Histocompatibility in in vitro fertilization couples. Fertil Steril. 1993;59:456–458. doi: 10.1016/S0015-0282(16)55687-8. PubMed DOI
Hiby S.E., Regan L., Lo W., Farrell L., Carrington M., Moffett A. Association of maternal killer-cell immunoglobulin-like receptors and parental HLA-C genotypes with recurrent miscarriage. Hum. Reprod. 2008;23:972–976. doi: 10.1093/humrep/den011. PubMed DOI
Hiby S.E., Apps R., Sharkey A.M., Farrell L.E., Gardner L., Mulder A., Claas F.H., Walker J.J., Redman C.W., Morgan L., et al. Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J. Clin. Investig. 2010;120:4102–4110. doi: 10.1172/JCI43998. PubMed DOI PMC
Yang X., Meng T. Killer-cell immunoglobulin-like receptor/human leukocyte antigen-C combination and ‘great obstetrical syndromes’ (Review) Exp Ther Med. 2021;22:1178. doi: 10.3892/etm.2021.10612. PubMed DOI PMC
Gil Laborda R., de Frías E.R., Subhi-Issa N., de Albornoz E.C., Meliá E., Órdenes M., Verdú V., Vidal J., Suárez E., Santillán I., et al. Centromeric AA motif in KIR as an optimal surrogate marker for precision definition of alloimmune reproductive failure. Sci. Rep. 2024;14:3354. doi: 10.1038/s41598-024-53766-x. PubMed DOI PMC
Dahl M., Djurisic S., Hviid T.V. The many faces of human leukocyte antigen-G: Relevance to the fate of pregnancy. J. Immunol. Res. 2014;2014:591489. doi: 10.1155/2014/591489. PubMed DOI PMC
Fan W., Huang Z., Li S., Xiao Z. The HLA-G 14-bp polymorphism and recurrent implantation failure: A meta-analysis. J. Assist. Reprod. Genet. 2017;34:1559–1565. doi: 10.1007/s10815-017-0994-3. PubMed DOI PMC
Hu L., He D., Zeng H. Association of parental HLA-G polymorphisms with soluble HLA-G expressions and their roles on recurrent implantation failure: A systematic review and meta-analysis. Front. Immunol. 2022;13:988370. doi: 10.3389/fimmu.2022.988370. PubMed DOI PMC
Nowak I., Wilczyńska K., Radwan P., Wiśniewski A., Krasiński R., Radwan M., Wilczyński J.R., Malinowski A., Kuśnierczyk P. Association of Soluble HLA-G Plasma Level and HLA-G Genetic Polymorphism With Pregnancy Outcome of Patients Undergoing in vitro Fertilization Embryo Transfer. Front. Immunol. 2020;10:2982. doi: 10.3389/fimmu.2019.02982. PubMed DOI PMC
Zych M., Roszczyk A., Kniotek M., Dąbrowski F., Zagożdżon R. Differences in Immune Checkpoints Expression (TIM-3 and PD-1) on T Cells in Women with Recurrent Miscarriages-Preliminary Studies. J. Clin. Med. 2021;10:4182. doi: 10.3390/jcm10184182. PubMed DOI PMC
Zych M., Roszczyk A., Dąbrowski F., Kniotek M., Zagożdżon R. Soluble Forms of Immune Checkpoints and Their Ligands as Potential Biomarkers in the Diagnosis of Recurrent Pregnancy Loss-A Preliminary Study. Int. J. Mol. Sci. 2023;25:499. doi: 10.3390/ijms25010499. PubMed DOI PMC
Esparvarinha M., Madadi S., Aslanian-Kalkhoran L., Nickho H., Dolati S., Pia H., Danaii S., Taghavi S., Yousefi M. Dominant immune cells in pregnancy and pregnancy complications: T helper cells (TH1/TH2, TH17/Treg cells), NK cells, MDSCs, and the immune checkpoints. Cell Biol. Int. 2023;47:507–519. doi: 10.1002/cbin.11955. PubMed DOI
Qian C., Pan C., Liu J., Wu L., Pan J., Liu C., Zhang H. Differential expression of immune checkpoints (OX40/OX40L and PD-1/PD-L1) in decidua of unexplained recurrent spontaneous abortion women. Hum. Immunol. 2024;85:110745. doi: 10.1016/j.humimm.2023.110745. PubMed DOI
Zych M., Kniotek M., Roszczyk A., Dąbrowski F., Jędra R., Zagożdżon R. Surface Immune Checkpoints as Potential Biomarkers in Physiological Pregnancy and Recurrent Pregnancy Loss. Int. J. Mol. Sci. 2024;25:9378. doi: 10.3390/ijms25179378. PubMed DOI PMC
Opatrny L., David M., Kahn S.R., Shrier I., Rey E. Association between antiphospholipid antibodies and recurrent fetal loss in women without autoimmune disease: A metaanalysis. J. Rheumatol. 2006;33:2214–2221. PubMed
Thangaratinam S., Tan A., Knox E., Kilby M.D., Franklyn J., Coomarasamy A. Association between thyroid autoantibodies and miscarriage and preterm birth: Metaanalysis of evidence. BMJ. 2011;342:1–8. doi: 10.1136/bmj.d2616. PubMed DOI PMC
Cavalcante M.B., Cavalgante C.T., Sarno M., Da Silva A., Barini R. Antinuclear antibodies and recurrent miscarriage: Systematic review and meta-analysis. Am. J. Reprod. Immunol. 2020;83:13215. doi: 10.1111/aji.13215. PubMed DOI
Chen S., Yang G., Wu P., Sun Y., Dai F., He Y., Qian H., Liu Y., Shi G. Antinuclear antibodies positivity is a risk factor of recurrent pregnancy loss: A meta-analysis. Semin. Arthritis Rheum. 2020;50:534–543. doi: 10.1016/j.semarthrit.2020.03.016. PubMed DOI
Alijotas-Reig J., Esteve-Valverde E., Ferrer-Oliveras R., Llurba E., Gris J.M. Tumor Necrosis Factor-Alpha and Pregnancy: Focus on Biologics. An Updated and Comprehensive Review. Clin. Rev. Allergy Immunol. 2017;53:40–53. doi: 10.1007/s12016-016-8596-x. PubMed DOI
Lockwood C.J., Romero R., Feinberg R.F., Clyne L.P., Coster B., Hobbins J.C. The prevalence and biologic significance of lupus anticoagulant and antic ardiolipin antibodies in a general obstetric population. Am. J. Obstet. Gynecol. 1989;161:369–373. doi: 10.1016/0002-9378(89)90522-X. PubMed DOI
Bahar A.M., Kwak J.Y.H., Beer A.E., Kim J.H., Nelson L.A., Beaman K.D., Gilman-Sachs A. Antibodies to phospholipids and nuclear antigens in non-pregnant women with unexplained spontaneous recurrent abortions. J. Reprod. Immunol. 1993;24:213–222. doi: 10.1016/0165-0378(93)90076-T. PubMed DOI
Kwak J.Y.H., Beer A.E., Cubillos J., Muñoz Sandoval P., Mendoza J., Espinel F. Biological Basis of Fetoplacental Antigenic Determinants in the Induction of the Antiphospholipid Antibody Syndrome and Recurrent Pregnancy Loss. Ann. N. Y. Acad. Sci. 1994;731:242–245. doi: 10.1111/j.1749-6632.1994.tb55776.x. PubMed DOI
Rai R.S., Regan L., Clifford K., Pickering W., Dave M., Mackie I., McNally T., Cohen H. Immunology: Antiphospholipid antibodies and β2-glycoprotein-I in 500 women with recurrent miscarriage: Results of a comprehensive screening approach. Hum. Reprod. 1995;10:2001–2005. doi: 10.1093/oxfordjournals.humrep.a136224. PubMed DOI
Del Porto F., Ferrero S., Cifani N., Sesti G., Proietta M. Antiphospholipid antibodies and idiopathic infertility. Lupus. 2022;31:347–353. doi: 10.1177/09612033221076735. PubMed DOI
D’Ippolito S., Ticconi C., Tersigni C., Garofalo S., Martino C., Lanzone A., Scambia G., Di Simone N. The pathogenic role of autoantibodies in recurrent pregnancy loss. Am. J. Reprod. Immunol. 2019;83:e13200. doi: 10.1111/aji.13200. PubMed DOI
Gibbins K.J., Mumford S.L., Sjaarda L.A., Branch D.W., Perkins N.J., Ye A., Schisterman E.F., Silver R.M. Preconception antiphospholipid antibodies and risk of subsequent early pregnancy loss. Lupus. 2018;27:1437–1445. doi: 10.1177/0961203318776089. PubMed DOI PMC
Papadimitriou E., Boutzios G., Mathioudakis A.G., Vlahos N.F., Vlachoyiannopoulos P., Mastorakos G. Presence of antiphospholipid antibodies is associated with increased implantation failure following in vitro fertilization technique and embryo transfer: A systematic review and meta-analysis. PLoS ONE. 2022;17:e0260759. doi: 10.1371/journal.pone.0260759. PubMed DOI PMC
Jarne-Borràs M., Miró-Mur F., Anunciación-Llunell A., Alijotas-Reig J. Antiphospholipid antibodies in women with recurrent embryo implantation failure: A systematic review and meta-analysis. Autoimmun. Rev. 2022;21:103101. doi: 10.1016/j.autrev.2022.103101. PubMed DOI
Tan X.F., Xu L., Li T.T., Wu Y.T., Ma W.W., Ding J.Y., Dong H.L. Serum antiphospholipid antibody status may not be associated with the pregnancy outcomes of patients undergoing in vitro fertilization. Medicine. 2022;101:e29146. doi: 10.1097/MD.0000000000029146. PubMed DOI PMC
Tan X., Ding J., Pu D., Wu J. Anti-phospholipid antibody may reduce endometrial receptivity during the window of embryo implantation. J. Gynecol. Obstet. Hum. Reprod. 2021;50:101912. doi: 10.1016/j.jogoh.2020.101912. PubMed DOI
Matalon S.T., Blank M.B., Ornoy A., Shoenfeld Y. The Association Between Anti-Thyroid Antibodies and Pregnancy Loss. Am. J. Reprod. Immunol. Microbiol. 2001;45:72–77. doi: 10.1111/j.8755-8920.2001.450202.x. PubMed DOI
Valeff N.J., Ventimiglia M.S., Diao L., Jensen F. Lupus and recurrent pregnancy loss: The role of female sex hormones and B cells. Front. Endocrinol. 2023;14:1233883. doi: 10.3389/fendo.2023.1233883. PubMed DOI PMC
Gao R., Zeng X., Qin L. Systemic autoimmune diseases and recurrent pregnancy loss: Research progress in diagnosis and treatment. Chin. Med. J. 2021;134:2140–2142. doi: 10.1097/CM9.0000000000001691. PubMed DOI PMC
Mankee A., Petri M., Magder L.S. Lupus anticoagulant, disease activity and low complement in the first trimester are predictive of pregnancy loss. Lupus Sci. Med. 2015;2:e000095. doi: 10.1136/lupus-2015-000095. PubMed DOI PMC
Ticconi C., Inversetti A., Logruosso E., Ghio M., Casadei L., Selmi C., Di Simone N. Antinuclear antibodies positivity in women in reproductive age: From infertility to adverse obstetrical outcomes—A meta-analysis. J. Reprod. Immunol. 2023;155:103794. doi: 10.1016/j.jri.2022.103794. PubMed DOI
Hardy C.J., Palmer B.P., Morton S.J., Muir K.R., Powell R.J. Pregnancy outcome and family size in systemic lupus erythematosus: A case-control study. Rheumatology. 1999;38:559–563. doi: 10.1093/rheumatology/38.6.559. PubMed DOI
Singh M., Fayaz F.F.A., Wang J., Wambua S., Subramanian A., Reynolds J.A., Nirantharakumar K., Crowe F., MuM-PreDiCT Pregnancy complications and autoimmune diseases in women: Systematic review and meta-analysis. BMC Med. 2024;22:339. doi: 10.1186/s12916-024-03550-5. PubMed DOI PMC
Motak-Pochrzest H., Malinowski A. Does autoimmunity play a role in the risk of implantation failures? Neuro Endocrinol. Lett. 2018;38:575–578. PubMed
Salmeri N., Gennarelli G., Vanni V.S., Ferrari S., Ruffa A., Rovere-Querini P., Pagliardini L., Candiani M., Papaleo E. Concomitant Autoimmunity in Endometriosis Impairs Endometrium-Embryo Crosstalk at the Implantation Site: A Multicenter Case-Control Study. J. Clin. Med. 2023;12:3557. doi: 10.3390/jcm12103557. PubMed DOI PMC
Ballester C., Grobost V., Roblot P., Pourrat O., Pierre F., Laurichesse-Delmas H., Gallot D., Aubard Y., Bezanahary H., Fauchais A.L. Pregnancy and primary Sjögren’s syndrome: Management and outcomes in a multicentre retrospective study of 54 pregnancies. Scand. J. Rheumatol. 2017;46:56–63. doi: 10.3109/03009742.2016.1158312. PubMed DOI
Gupta S., Gupta N. Sjögren Syndrome and Pregnancy: A Literature Review. Perm J. 2017;21:16-047. doi: 10.7812/TPP/16-047. PubMed DOI PMC
Imbroane M.R., LeMoine F., Gibson K.S. Autoimmune Condition Diagnosis Following Recurrent Pregnancy Loss. Am. J. Reprod. Immunol. 2024;92:e70006. doi: 10.1111/aji.70006. PubMed DOI
Masucci L., D’Ippolito S., De Maio F., Quaranta G., Mazzarella R., Bianco D.M., Castellani R., Inversetti A., Sanguinetti M., Gasbarrini A., et al. Celiac Disease Predisposition and Genital Tract Microbiota in Women Affected by Recurrent Pregnancy Loss. Nutrients. 2023;15:221. doi: 10.3390/nu15010221. PubMed DOI PMC
Arvanitakis K., Siargkas A., Germanidis G., Dagklis T., Tsakiridis I. Adverse pregnancy outcomes in women with celiac disease: A systematic review and meta-analysis. Ann. Gastroenterol. 2023;36:12–24. doi: 10.20524/aog.2022.0764. PubMed DOI PMC
Tersigni C., Castellani R., de Waure C., Fattorossi A., De Spirito M., Gasbarrini A., Scambia G., Di Simone N. Celiac disease and reproductive disorders: Meta-analysis of epidemiologic associations and potential pathogenic mechanisms. Hum. Reprod. Update. 2014;20:582–593. doi: 10.1093/humupd/dmu007. PubMed DOI
Saccone G., Berghella V., Sarno L., Maruotti G.M., Cetin I., Greco L., Khashan A.S., McCarthy F., Martinelli D., Fortunato F., et al. Celiac disease and obstetric complications: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2016;214:225–234. doi: 10.1016/j.ajog.2015.09.080. PubMed DOI
Di Simone N., Silano M., Castellani R., Di Nicuolo F., D’Alessio M.C., Franceschi F., Tritarelli A., Leone A.M., Tersigni C., Gasbarrini G., et al. Anti-tissue transglutaminase antibodies from celiac patients are responsible for trophoblast damage via apoptosis in vitro. Am. J. Gastroenterol. 2010;105:2254–2261. doi: 10.1038/ajg.2010.233. PubMed DOI
Di Simone N., De Spirito M., Di Nicuolo F., Tersigni C., Castellani R., Silano M., Maulucci G., Papi M., Marana R., Scambia G., et al. Potential new mechanisms of placental damage in celiac disease: Anti-transglutaminase antibodies impair human endometrial angiogenesis. Biol. Reprod. 2013;89:88. doi: 10.1095/biolreprod.113.109637. PubMed DOI
D’Ippolito S., Gasbarrini A., Castellani R., Rocchetti S., Sisti L.G., Scambia G., Di Simone N. Human leukocyte antigen (HLA) DQ2/DQ8 prevalence in recurrent pregnancy loss women. Autoimmun. Rev. 2016;15:638–643. doi: 10.1016/j.autrev.2016.02.009. PubMed DOI
Królik M., Wrześniak M., Jezela-Stanek A. Possible effect of the HLA-DQ2/DQ8 polymorphism on autoimmune parameters and lymphocyte subpopulation in recurrent pregnancy losses. J. Reprod. Immunol. 2022;149:103467. doi: 10.1016/j.jri.2021.103467. PubMed DOI
Huang C., Liang P., Diao L., Liu C., Chen X., Li G., Chen C., Zeng Y. Thyroid Autoimmunity is Associated with Decreased Cytotoxicity T Cells in Women with Repeated Implantation Failure. Int. J. Environ. Res. Public Health. 2015;12:10352–10361. doi: 10.3390/ijerph120910352. PubMed DOI PMC
Huisman P., Krogh J., Nielsen C.H., Nielsen H.S., Feldt-Rasmussen U., Bliddal S. Thyroglobulin antibodies in women with recurrent pregnancy loss: A Systematic Review and Meta-Analysis. Thyroid. 2023;33:1287–1301. doi: 10.1089/thy.2023.0292. PubMed DOI
Zhong Y., Ying Y., Wu H., Zhou C., Xu Y., Wang Q., Li J., Shen X., Jin L. Relationship between Antithyroid Antibody and Pregnancy Outcome following in Vitro Fertilization and Embryo Transfer. Int. J. Med. Sci. 2012;9:121–125. doi: 10.7150/ijms.3467. PubMed DOI PMC
Abdolmohammadi-Vahid S., Danaii S., Hamdi K., Jadidi-Niaragh F., Ahmadi M., Yousefi M. Novel immunotherapeutic approaches for treatment of infertility. Biomed. Pharmacother. 2016;84:1449–1459. doi: 10.1016/j.biopha.2016.10.062. PubMed DOI
Stewart-Akers A.M., Krasnow J.S., Brekosky J., Deloia J.A. Endometrial Leukocytes Are Altered Numerically and Functionally in Women with Implantation Defects. Am. J. Reprod. Immunol. 1998;39:1–11. doi: 10.1111/j.1600-0897.1998.tb00326.x. PubMed DOI
Dhillon-Smith R.K., Middleton L.J., Sunner K.K., Cheed V., Baker K., Farrell-Carver S., Bender-Atik R., Agrawal R., Bhatia K., Edi-Osagie E., et al. Levothyroxine in Women with Thyroid Peroxidase Antibodies before Conception. N. Engl. J. Med. 2019;380:1316–1325. doi: 10.1056/NEJMoa1812537. PubMed DOI
van Dijk M.M., Vissenberg R., Fliers E., van der Post J.A.M., van der Hoorn M.P., de Weerd S., Kuchenbecker W.K., Hoek A., Sikkema J.M., Verhoeve H.R., et al. Levothyroxine in euthyroid thyroid peroxidase antibody positive women with recurrent pregnancy loss (T4LIFE trial): A multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 2022;10:322–329. doi: 10.1016/S2213-8587(22)00045-6. PubMed DOI
Leng T., Li X., Zhang H. Levothyroxine treatment for subclinical hypothyroidism improves the rate of live births in pregnant women with recurrent pregnancy loss: A randomized clinical trial. Gynecol. Endocrinol. 2022;38:488–494. doi: 10.1080/09513590.2022.2063831. PubMed DOI
Rao M., Zeng Z., Zhao S., Tang L. Effect of levothyroxine supplementation on pregnancy outcomes in women with subclinical hypothyroidism and thyroid autoimmunity undergoing in vitro fertilization/intracytoplasmic sperm injection: An updated meta-analysis of randomized controlled trials. Reprod. Biol. Endocrinol. 2018;16:92. doi: 10.1186/s12958-018-0410-6. PubMed DOI PMC
Yu M., Long Y., Wang Y., Zhang R., Tao L. Effect of levothyroxine on the pregnancy outcomes in recurrent pregnancy loss women with subclinical hypothyroidism and thyroperoxidase antibody positivity: A systematic review and meta-analysis. J. Matern.-Fetal Neonatal Med. 2023;36:2233039. doi: 10.1080/14767058.2023.2233039. PubMed DOI
[(accessed on 19 January 2025)]. Available online: https://www.eshre.eu/Guidelines-and-Legal/Guidelines/Recurrent-pregnancy-loss.
Gaál Z. Role of microRNAs in Immune Regulation with Translational and Clinical Applications. Int. J. Mol. Sci. 2024;25:1942. doi: 10.3390/ijms25031942. PubMed DOI PMC
Dong J., Warner L.M., Lin L.L., Chen M.C., O’Connell R.M., Lu L.F. miR-155 promotes T reg cell development by safeguarding medullary thymic epithelial cell maturation. J. Exp. Med. 2021;218:e20192423. doi: 10.1084/jem.20192423. PubMed DOI PMC
Zolfaghari M.A., Motavalli R., Soltani-Zangbar M.S., Parhizkar F., Danaii S., Aghebati-Maleki L., Noori M., Dolati S., Ahmadi M., Samadi Kafil H., et al. A new approach to the preeclampsia puzzle; MicroRNA-326 in CD4+ lymphocytes might be as a potential suspect. J. Reprod. Immunol. 2021;145:103317. doi: 10.1016/j.jri.2021.103317. PubMed DOI
Winger E.E., Reed J.L., Ji X. First-trimester maternal cell microRNA is a superior pregnancy marker to immunological testing for predicting adverse pregnancy outcome. J. Reprod. Immunol. 2015;110:22–35. doi: 10.1016/j.jri.2015.03.005. PubMed DOI
Patronia M.M., Potiris A., Mavrogianni D., Drakaki E., Karampitsakos T., Machairoudias P., Topis S., Zikopoulos A., Vrachnis D., Moustakli E., et al. The Expression of microRNAs and Their Involvement in Recurrent Pregnancy Loss. J. Clin. Med. 2024;13:3361. doi: 10.3390/jcm13123361. PubMed DOI PMC
Xu N., Zhou X., Shi W., Ye M., Cao X., Chen S., Xu C. Integrative analysis of circulating microRNAs and the placental transcriptome in recurrent pregnancy loss. Front. Physiol. 2022;13:893744. doi: 10.3389/fphys.2022.893744. PubMed DOI PMC
Wang X., Li B., Wang J., Lei J., Liu C., Ma Y., Zhao H. Evidence that miR-133a causes recurrent spontaneous abortion by reducing HLA-G expression. Reprod. Biomed. Online. 2012;25:415–424. doi: 10.1016/j.rbmo.2012.06.022. PubMed DOI
Li L., Feng T., Zhou W., Liu Y., Li H. miRNAs in decidual NK cells: Regulators worthy of attention during pregnancy. Reprod. Biol. Endocrinol. 2021;19:150. doi: 10.1186/s12958-021-00812-2. PubMed DOI PMC
Guo C., Yin X., Yao S. The effect of MicroRNAs variants on idiopathic recurrent pregnancy loss. J. Assist. Reprod. Genet. 2023;40:1589–1595. doi: 10.1007/s10815-023-02827-7. PubMed DOI PMC
Thapliyal A., Tomar A.K., Naglot S., Dhiman S., Datta S.K., Sharma J.B., Singh N., Yadav S. Exploring Differentially Expressed Sperm miRNAs in Idiopathic Recurrent Pregnancy Loss and Their Association with Early Embryonic Development. Noncoding RNA. 2024;10:41. doi: 10.3390/ncrna10040041. PubMed DOI PMC
Odendaal J., Black N., Bennett P.R., Brosens J., Quenby S., MacIntyre D.A. The endometrial microbiota and early pregnancy loss. Hum. Reprod. 2024;39:638–646. doi: 10.1093/humrep/dead274. PubMed DOI PMC
Gao X., Louwers Y.V., Laven E., Schoenmakers S. Clinical Relevance of Vaginal and Endometrial Microbiome Investigation in Women with Repeated Implantation Failure and Recurrent Pregnancy Loss. Int. J. Mol. Sci. 2024;25:622. doi: 10.3390/ijms25010622. PubMed DOI PMC
Soyer Caliskan C., Yurtcu N., Celik S., Sezer O., Kilic S.S., Cetin A. Derangements of vaginal and cervical canal microbiota determined with real-time PCR in women with recurrent miscarriages. J. Obstet. Gynaecol. 2022;42:2105–2114. doi: 10.1080/01443615.2022.2033183. PubMed DOI
Al-Memar M., Bobdiwala S., Fourie H., Mannino R., Lee Y.S., Smith A., Marchesi J.R., Timmerman D., Bourne T., Bennett P.R., et al. The association between vaginal bacterial composition and miscarriage: A nested case-control study. BJOG. 2020;127:264–274. doi: 10.1111/1471-0528.15972. PubMed DOI PMC
Grewal K., Lee Y.S., Smith A., Brosens J.J., Bourne T., Al-Memar M., Kundu S., MacIntyre D.A., Bennett P.R. Chromosomally normal miscarriage is associated with vaginal dysbiosis and local inflammation. BMC Med. 2022;20:38. doi: 10.1186/s12916-021-02227-7. PubMed DOI PMC
Peuranpää P., Holster T., Saqib S., Kalliala I., Tiitinen A., Salonen A., Hautamäki H. Female reproductive tract microbiota and recurrent pregnancy loss: A nested case-control study. Reprod. BioMed. Online. 2022;45:1021–1031. doi: 10.1016/j.rbmo.2022.06.008. PubMed DOI
Vomstein K., Reider S., Böttcher B., Watschinger C., Kyvelidou C., Tilg H., Moschen A.R., Toth B. Uterine microbiota plasticity during the menstrual cycle: Differences between healthy controls and patients with recurrent miscarriage or implantation failure. J. Reprod. Immunol. 2022;151:103634. doi: 10.1016/j.jri.2022.103634. PubMed DOI
Moreno I., Garcia-Grau I., Perez-Villaroya D., Gonzalez-Monfort M., Bahçeci M., Barrionuevo M.J., Taguchi S., Puente E., Dimattina M., Lim M.W., et al. Endometrial microbiota composition is associated with reproductive outcome in infertile patients. Microbiome. 2022;10:1. doi: 10.1186/s40168-021-01184-w. PubMed DOI PMC
Shi Y., Yamada H., Sasagawa Y., Tanimura K., Deguchi M. Uterine endometrium microbiota and pregnancy outcome in women with recurrent pregnancy loss. J. Reprod. Immunol. 2022;152:103653. doi: 10.1016/j.jri.2022.103653. PubMed DOI
Wang L., Chen J., He L., Liu H., Liu Y., Luan Z., Li H., Liu W., Luo M. Association between the vaginal and uterine microbiota and the risk of early embryonic arrest. Front. Microbiol. 2023;14:1137869. doi: 10.3389/fmicb.2023.1137869. PubMed DOI PMC
[(accessed on 19 January 2025)]. Available online: https://www.asrm.org/practice-guidance/practice-committee-documents/evaluation-and-treatment-of-recurrent-pregnancy-loss-a-committee-opinion-2012.
Quenby S., Kalumbi C., Bates M., Farquharson R., Vince G. Prednisolone reduces preconceptual endometrial natural killer cells in women with recurrent miscarriage. Fertil. Steril. 2005;84:980–984. doi: 10.1016/j.fertnstert.2005.05.012. PubMed DOI
Gomaa M.F., Elkholy A.G., El-Said M.M., Abdel-Salam N.E. Combined oral prednisolone and heparin versus heparin: The effect on peripheral NK cells and clinical outcome in patients with unexplained recurrent miscarriage. A double-blind placebo randomized controlled trial. Arch. Gynecol. Obstet. 2014;290:757–762. doi: 10.1007/s00404-014-3262-0. PubMed DOI PMC
Rezayat F., Esmaeil N., Rezaei A., Sherkat R. Contradictory Effect of Lymphocyte Therapy and Prednisolone Therapy on CD3+CD8+CD56+ Natural Killer T Population in Women with Recurrent Spontaneous Abortion. J. Hum. Reprod. Sci. 2023;16:246. doi: 10.4103/jhrs.jhrs_8_23. PubMed DOI PMC
Tang A.W., Alfirevic Z., Turner M.A., Drury J.A., Small R., Quenby S. A feasibility trial of screening women with idiopathic recurrent miscarriage for high uterine natural killer cell density and randomizing to prednisolone or placebo when pregnant. Hum. Reprod. 2013;28:1743–1752. doi: 10.1093/humrep/det117. PubMed DOI
Boomsma C.M., Kamath M.S., Keay S.D., Macklon N.S. Peri-implantation glucocorticoid administration for assisted reproductive technology cycles. Cochrane Database Syst. Rev. 2022;6:CD005996. doi: 10.1002/14651858.CD005996. PubMed DOI PMC
Cooper S., Laird S.M., Mariee N., Li T.C., Metwally M. The effect of prednisolone on endometrial uterine NK cell concentrations and pregnancy outcome in women with reproductive failure. A retrospective cohort study. J. Reprod. Immunol. 2019;131:1–6. doi: 10.1016/j.jri.2018.10.001. PubMed DOI
Dan S., Wei W., Yichao S., Hongbo C., Shenmin Y., Jiaxiong W., Hong L. Effect of Prednisolone Administration on Patients with Unexplained Recurrent Miscarriage and in Routine Intracytoplasmic Sperm Injection: A Meta-Analysis. Am. J. Reprod. Immunol. 2015;74:89–97. doi: 10.1111/aji.12373. PubMed DOI
He Y., Tang R., Yu H., Mu H., Jin H., Dong J., Wang W., Wang L., Chen S., Wang X. Comparative effectiveness and safety of 36 therapies or interventions for pregnancy outcomes with recurrent implantation failure: A systematic review and network meta-analysis. J. Assist. Reprod. Genet. 2023;40:2343–2356. doi: 10.1007/s10815-023-02923-8. PubMed DOI PMC
Huang Q., Wu H., Li M., Yang Y., Fu X. Prednisone improves pregnancy outcome in repeated implantation failure by enhance regulatory T cells bias. J. Reprod. Immunol. 2021;143:103245. doi: 10.1016/j.jri.2020.103245. PubMed DOI
Hasegawa I., Yamanoto Y., Suzuki M., Murakawa H., Kurabayashi T., Takakuwa K., Tanaka K. Prednisolone plus low-dose aspirin improves the implantation rate in women with autoimmune conditions who are undergoing in vitro fertilization. Fertil. Steril. 1998;70:1044–1048. doi: 10.1016/S0015-0282(98)00343-4. PubMed DOI
Fan J., Zhong Y., Chen C. Combined treatment of prednisone and aspirin, starting before ovulation induction, may improve reproductive outcomes in ANA-positive patients. Am. J. Reprod. Immunol. 2016;76:391–395. doi: 10.1111/aji.12559. PubMed DOI
Ando T., Suganuma N., Furuhashi M., Asada Y., Kondo I., Tsutsumi Y. Successful glucocorticoid treatment for patients with abnormal autoimmunity on in vitro fertilization and embryo transfer. J. Assist. Reprod. Genet. 1996;13:776–781. doi: 10.1007/BF02066497. PubMed DOI
Sun Y., Cui L., Lu Y., Tan J., Dong X., Ni T., Yan J., Guan Y., Hao G., Liu J.Y., et al. Prednisone vs Placebo and Live Birth in Patients With Recurrent Implantation Failure Undergoing In Vitro Fertilization. JAMA. 2023;329:1460. doi: 10.1001/jama.2023.5302. PubMed DOI PMC
Bramham K., Thomas M., Nelson-Piercy C., Khamashta M., Hunt B.J. First-trimester low-dose prednisolone in refractory antiphospholipid antibody-related pregnancy loss. Blood. 2011;117:6948–6951. doi: 10.1182/blood-2011-02-339234. PubMed DOI
Riancho-Zarrabeitia L., Lopez-Marin L., Cacho P.M., López-Hoyos M., Barrio R.D., Haya A., Martínez-Taboada V.M. Treatment with low-dose prednisone in refractory obstetric antiphospholipid syndrome: A retrospective cohort study and meta-analysis. Lupus. 2022;31:808–819. doi: 10.1177/09612033221091401. PubMed DOI
Forges T., Monnier-Barbarino P., Guillet-May F., Faure G.C., Béné M.C. Corticosteroids in patients with antiovarian antibodies undergoing in vitro fertilization: A prospective pilot study. Eur. J. Clin. Pharmacol. 2006;62:699–705. doi: 10.1007/s00228-006-0169-0. PubMed DOI
Bandoli G., Palmsten K., Forbess Smith C.J., Chambers C.D. A review of systemic corticosteroid use in pregnancy and the risk of select pregnancy and birth outcomes. Rheum. Dis. Clin. N. Am. 2017;43:489–502. doi: 10.1016/j.rdc.2017.04.013. PubMed DOI PMC
Hooper A., Bacal V., Bedaiwy M.A. Does adding hydroxychloroquine to empiric treatment improve the live birth rate in refractory obstetrical antiphospholipid syndrome? A systematic review. Am. J. Reprod. Immunol. 2023;90:e13761. doi: 10.1111/aji.13761. PubMed DOI
Mekinian A., Lazzaroni M.G., Kuzenko A., Alijotas-Reig J., Ruffatti A., Levy P., Canti V., Bremme K., Bezanahary H., Bertero T., et al. The efficacy of hydroxychloroquine for obstetrical outcome in anti-phospholipid syndrome: Data from a European multicenter retrospective study. Autoimmun. Rev. 2015;14:498–502. doi: 10.1016/j.autrev.2015.01.012. PubMed DOI
Mekinian A., Alijotas-Reig J., Carrat F., Costedoat-Chalumeau N., Ruffatti A., Lazzaroni M.G., Tabacco S., Maina A., Masseau A., Morel N., et al. Refractory obstetrical antiphospholipid syndrome: Features, treatment and outcome in a European multicenter retrospective study. Autoimmun. Rev. 2017;16:730–734. doi: 10.1016/j.autrev.2017.05.006. PubMed DOI
Ye S.L., Gu X.K., Tao L.Y., Cong J.M., Wang Y.Q. Efficacy of Different Treatment Regimens for Antiphospholipid Syndrome-related Recurrent Spontaneous Abortion. Chin. Med. J. 2017;130:1395–1399. doi: 10.4103/0366-6999.207471. PubMed DOI PMC
Gerde M., Ibarra E., Mac Kenzie R., Fernandez Suarez C., Heer C., Alvarez R., Iglesias M., Balparda J., Beruti E., Rubinstein F. The impact of hydroxychloroquine on obstetric outcomes in refractory obstetric antiphospholipid syndrome. Thromb. Res. 2021;206:104–110. doi: 10.1016/j.thromres.2021.08.004. PubMed DOI
Ruffatti A., Tonello M., Hoxha A., Sciascia S., Cuadrado M.J., Latino J.O., Udry S., Reshetnyak T., Costedoat-Chalumeau N., Morel N., et al. Effect of Additional Treatments Combined with Conventional Therapies in Pregnant Patients with High-Risk Antiphospholipid Syndrome: A Multicentre Study. Thromb. Haemost. 2018;47:639–646. doi: 10.1055/s-0038-1632388. PubMed DOI
Sciascia S., Hunt B.J., Talavera-Garcia E., Lliso G., Khamashta M.A., Cuadrado M.J. The impact of hydroxychloroquine treatment on pregnancy outcome in women with antiphospholipid antibodies. Am. J. Obstet. Gynecol. 2016;214:273.e1–273.e8. doi: 10.1016/j.ajog.2015.09.078. PubMed DOI
Sadeghpour S., Ghasemnejad Berenji M., Nazarian H., Ghasemnejad T., Nematollahi M.H., Abroon S., Paktinat S., Heidari Khoei H., Ghasemnejad Berenji H., Ghaffari Novin M. Effects of treatment with hydroxychloroquine on the modulation of Th17/Treg ratio and pregnancy outcomes in women with recurrent implantation failure: Clinical trial. Immunopharmacol. Immunotoxicol. 2020;42:632–642. doi: 10.1080/08923973.2020.1835951. PubMed DOI
Dernoncourt A., Hedhli K., Abisror N., Cheloufi M., Cohen J., Kolanska K., McAvoy C., Selleret L., Ballot E., Mathieu d’Argent E., et al. Hydroxychloroquine in recurrent pregnancy loss: Data from a French prospective multicenter registry. Hum. Reprod. 2024;39:1934–1941. doi: 10.1093/humrep/deae146. PubMed DOI PMC
Halloran P.F. Molecular mechanisms of new immunosuppressants. Clin. Transplant. 1996;10:118–123. doi: 10.1111/j.1399-0012.1996.tb00657.x. PubMed DOI
Saad A.F., Pacheco L.D., Saade G.R. Immunosuppressant Medications in Pregnancy. Obstet. Gynecol. 2024;143:e94–e106. doi: 10.1097/AOG.0000000000005512. PubMed DOI
Cavalcante M.B., Tavares A.C.M., Rocha C.A., de Souza G.F., Lima E.M., Simões J.M.L., de Souza L.C., Martins M.Y.M., de Araújo N.O., Barini R. Calcineurin inhibitors in the management of recurrent miscarriage and recurrent implantation failure: Systematic review and meta-analysis. J. Reprod. Immunol. 2023;160:104157. doi: 10.1016/j.jri.2023.104157. PubMed DOI
Nakagawa K., Sugiyama R. Tacrolimus treatment in women with repeated implantation failures. Reprod. Med. Biol. 2024;23:e12558. doi: 10.1002/rmb2.12558. PubMed DOI PMC
Ling Y., Huang Y., Chen C., Mao J., Zhang H. Low dose Cyclosporin A treatment increases live birth rate of unexplained recurrent abortion—Initial cohort study. Clin. Exp. Obstet. Gynecol. 2017;44:230–235. doi: 10.12891/ceog3375.2017. PubMed DOI
Azizi R., Ahmadi M., Danaii S., Abdollahi-Fard S., Mosapour P., Eghbal-Fard S., Dolati S., Kamrani A., Rahnama B., Mehdizadeh A., et al. Cyclosporine A improves pregnancy outcomes in women with recurrent pregnancy loss and elevated Th1/Th2 ratio. J. Cell. Physiol. 2019;234:19039–19047. doi: 10.1002/jcp.28543. PubMed DOI
Fu J.H. Analysis of the use of cyclosporin A to treat refractory immune recurrent spontaneous abortion. Clin. Exp. Obstet. Gynecol. 2015;42:739–742. doi: 10.12891/ceog2006.2015. PubMed DOI
Qu D., Tian X., Ding L., Li Y., Zhou W. Impacts of Cyclosporin A on clinical pregnancy outcomes of patients with a history of unexplained transfer failure: A retrospective cohort study. Reprod. Biol Endocrinol. 2021;19:44. doi: 10.1186/s12958-021-00728-x. PubMed DOI PMC
Liu J., Li M., Fu J., Yuan G., Li N., Fu Y., Zhao L. Tacrolimus improved the pregnancy outcomes of patients with refractory recurrent spontaneous abortion and immune bias disorders: A randomized controlled trial. Eur. J. Clin. Pharmacol. 2023;79:627–634. doi: 10.1007/s00228-023-03473-9. PubMed DOI
Kuroda K., Ikemoto Y., Horikawa T., Moriyama A., Ojiro Y., Takamizawa S., Uchida T., Nojiri S., Nakagawa K., Sugiyama R. Novel approaches to the management of recurrent pregnancy loss: The OPTIMUM (OPtimization of Thyroid function, Thrombophilia, Immunity, and Uterine Milieu) treatment strategy. Reprod. Med. Biol. 2021;20:524–536. doi: 10.1002/rmb2.12412. PubMed DOI PMC
Nakagawa K., Kuroda K., Sugiyama R., Yamaguchi K. After 12 consecutive miscarriages, a patient received immunosuppressive treatment and delivered an intact baby. Reprod. Med. Biol. 2017;16:297–301. doi: 10.1002/rmb2.12040. PubMed DOI PMC
Shen P., Zhang T., Han R., Xie H., Lv Q. Co-administration of tacrolimus and low molecular weight heparin in patients with a history of implantation failure and elevated peripheral blood natural killer cell proportion. J. Obstet. Gynaecol. Res. 2022;49:649–657. doi: 10.1111/jog.15500. PubMed DOI
Nakagawa K., Kwak-Kim J., Hisano M., Kasahara Y., Kuroda K., Sugiyama R., Yamaguchi K. Obstetric and perinatal outcome of the women with repeated implantation failures or recurrent pregnancy losses who received pre- and post-conception tacrolimus treatment. Am. J. Reprod. Immunol. 2019;82:e13142. doi: 10.1111/aji.13142. PubMed DOI
Nakamura A., Tanaka Y., Amano T., Takebayashi A., Takahashi A., Hanada T., Tsuji S., Murakami T. mTOR inhibitors as potential therapeutics for endometriosis: A narrative review. Mol. Hum. Reprod. 2024;30:gaae041. doi: 10.1093/molehr/gaae041. PubMed DOI PMC
Li M.Y., Shen H.H., Cao X.Y., Gao X.X., Xu F.Y., Ha S.Y., Sun J.S., Liu S.P., Xie F., Li M.Q. Targeting a mTOR/autophagy axis: A double-edged sword of rapamycin in spontaneous miscarriage. Biomed. Pharmacother. 2024;177:116976. doi: 10.1016/j.biopha.2024.116976. PubMed DOI
Ahmadi M., Abdolmohamadi-Vahid S., Ghaebi M., Dolati S., Abbaspour-Aghdam S., Danaii S., Berjis K., Madadi-Javid R., Nouri Z., Siahmansouri H., et al. Sirolimus as a new drug to treat RIF patients with elevated Th17/Treg ratio: A double-blind, phase II randomized clinical trial. Int. Immunopharmacol. 2019;74:105730. doi: 10.1016/j.intimp.2019.105730. PubMed DOI
Kwak J.Y.H., Kwak F.M.Y., Ainbinder S.W., Ruiz A.M., Beer A.E. Elevated Peripheral Blood Natural Killer Cells Are Effectively Downregulated by Immunoglobulin G Infusion in Women With Recurrent Spontaneous Abortions. Am. J. Reprod. Immunol. 1996;35:363–369. doi: 10.1111/j.1600-0897.1996.tb00495.x. PubMed DOI
Ahmadi M., Abdolmohammadi-Vahid S., Ghaebi M., Aghebati-Maleki L., Afkham A., Danaii S., Abdollahi-Fard S., Heidari L., Jadidi-Niaragh F., Younesi V., et al. Effect of Intravenous immunoglobulin on Th1 and Th2 lymphocytes and improvement of pregnancy outcome in recurrent pregnancy loss (RPL) Biomed. Pharmacother. 2017;92:1095–1102. doi: 10.1016/j.biopha.2017.06.001. PubMed DOI
Ahmadi M., Abdolmohammadi-Vahid S., Ghaebi M., Aghebati-Maleki L., Dolati S., Farzadi L., Ghasemzadeh A., Hamdi K., Younesi V., Nouri M., et al. Regulatory T cells improve pregnancy rate in RIF patients after additional IVIG treatment. Syst. Biol. Reprod. Med. 2017;63:350–359. doi: 10.1080/19396368.2017.1390007. PubMed DOI
Yamada H., Deguchi M., Saito S., Takeshita T., Mitsui M., Saito T., Nagamatsu T., Takakuwa K., Nakatsuka M., Yoneda S., et al. High doses of intravenous immunoglobulin stimulate regulatory T cell and suppress natural killer cell in women with recurrent pregnancy loss. J. Reprod. Immunol. 2023;158:103977. doi: 10.1016/j.jri.2023.103977. PubMed DOI
Shi Y., Tan D., Hao B., Zhang X., Geng W., Wang Y., Sun J., Zhao Y. Efficacy of intravenous immunoglobulin in the treatment of recurrent spontaneous abortion: A systematic review and meta-analysis. Am. J. Reprod. Immunol. 2022;88:e13615. doi: 10.1111/aji.13615. PubMed DOI PMC
Christiansen O.B., Kolte A.M., Krog M.C., Nielsen H.S., Egerup P. Treatment with intravenous immunoglobulin in patients with recurrent pregnancy loss: An update. J. Reprod. Immunol. 2019;133:37–42. doi: 10.1016/j.jri.2019.06.001. PubMed DOI
Yamada H., Deguchi M., Saito S., Takeshita T., Mitsui M., Saito T. Intravenous immunoglobulin treatment in women with four or more recurrent pregnancy losses: A double-blind, randomised, placebo-controlled trial. eClinicalMedicine. 2022;50:101527. doi: 10.1016/j.eclinm.2022.101527. PubMed DOI PMC
Ramos-Medina R., García-Segovia A., Gil J., Carbone J., Aguarón de la Cruz A., Seyfferth A., Alonso B., Alonso J., León J.A., Alecsandru D., et al. Experience in IVIg Therapy for Selected Women with Recurrent Reproductive Failure and NK Cell Expansion. Am. J. Reprod. Immunol. 2014;71:458–466. doi: 10.1111/aji.12217. PubMed DOI
Lee S.K., Kim J.Y., Han A.R., Hur S.E., Kim C.J., Kim T.H., Cho B.R., Han J.W., Han S.G., Na B.J., et al. Intravenous Immunoglobulin G Improves Pregnancy Outcome in Women with Recurrent Pregnancy Losses with Cellular Immune Abnormalities. Am J Reprod Immunol. 2016;75:59–68. doi: 10.1111/aji.12442. PubMed DOI
Banjar S., Kadour E., Khoudja R., Ton-Leclerc S., Beauchamp C., Beltempo M., Dahan M.H., Gold P., Jacques Kadoch I., Jamal W., et al. Intravenous immunoglobulin use in patients with unexplained recurrent pregnancy loss. Am. J. Reprod. Immunol. 2023;90:e13737. doi: 10.1111/aji.13737. PubMed DOI
Kim J.H., Kim S.H., Yang N., Ko Y., Lee S.R., Chae H.D. Outcomes of Empirical Treatment With Intravenous Immunoglobulin G Combined With Low-Dose Aspirin in Women With Unexplained Recurrent Pregnancy Loss. J. Korean Med. Sci. 2022;37:e200. doi: 10.3346/jkms.2022.37.e200. PubMed DOI PMC
Habets D.H.J., Pelzner K., Wieten L., Spaanderman M.E.A., Villamor E., Al-Nasiry S. Intravenous immunoglobulins improve live birth rate among women with underlying immune conditions and recurrent pregnancy loss: A systematic review and meta-analysis. Allergy Asthma Clin. Immunol. 2022;18:23. doi: 10.1186/s13223-022-00660-8. PubMed DOI PMC
Clark D.A., Coulam C.B., Stricker R.B. Is intravenous immunoglobulins (IVIG) efficacious in early pregnancy failure? A critical review and meta-analysis for patients who fail in vitro fertilization and embryo transfer (IVF) J. Assist. Reprod. Genet. 2006;23:1–13. doi: 10.1007/s10815-005-9013-1. PubMed DOI PMC
Kumar P., Philip C.E., Eskandar K., Marron K., Harrity C. Effect of intravenous immunoglobulin therapy in recurrent implantation failure: A Systematic review and meta-analysis. J. Reprod. Immunol. 2024;166:104323. doi: 10.1016/j.jri.2024.104323. PubMed DOI
Park J.S., Song A.Y., Bae J.Y., Han J.W., Kim T.H., Kim C.J., Lee S.K. IL-17 Producing T to Foxp3+CD4+ Regulatory T Cell Ratio as a Diagnostic and Prognostic Marker in Women With Recurrent Pregnancy Loss and Its Implications for Intravenous Immunoglobulin Therapy. Am. J. Reprod. Immunol. 2024;92:e70020. doi: 10.1111/aji.70020. PubMed DOI
Velikova T., Sekulovski M., Bogdanova S., Vasilev G., Peshevska-Sekulovska M., Miteva D., Georgiev T. Intravenous Immunoglobulins as Immunomodulators in Autoimmune Diseases and Reproductive Medicine. Antibodies. 2023;12:20. doi: 10.3390/antib12010020. PubMed DOI PMC
Perricone R., De Carolis K.B., Greco E., Giacomelli R., Cipriani P., Fontana L., Perricone C. Intravenous immunoglobulin therapy in pregnant patients affected with systemic lupus erythematosus and recurrent spontaneous abortion. Rheumatology. 2008;47:646–651. doi: 10.1093/rheumatology/ken046. PubMed DOI
Wang S.W., Zhong S.Y., Lou L.J., Hu Z.F., Sun H.Y., Zhu H.Y. The effect of intravenous immunoglobulin passive immunotherapy on unexplained recurrent spontaneous abortion: A meta-analysis. Reprod. BioMed. Online. 2016;33:720–736. doi: 10.1016/j.rbmo.2016.08.025. PubMed DOI
Winger E.E., Reed J.L., Ashoush S., El-Toukhy T., Ahuja S., Taranissi M. Elevated Preconception CD56+16+ and/or Th1:Th2 Levels Predict Benefit from IVIG Therapy in Subfertile Women Undergoing IVF. Am. J. Reprod. Immunol. 2011;66:394–403. doi: 10.1111/j.1600-0897.2011.01018.x. PubMed DOI
Sung N., Han A.R., Park C.W., Park D.W., Park J.C., Kim N.Y., Lim K.S., Shin J.E., Joo C.W., Lee S.E., et al. Intravenous immunoglobulin G in women with reproductive failure: The Korean Society for Reproductive Immunology practice guidelines. Clin. Exp. Reprod. Med. 2017;44:1–7. doi: 10.5653/cerm.2017.44.1.1. PubMed DOI PMC
Woon E.V., Day A., Bracewell-Milnes T., Male V., Johnson M. Immunotherapy to improve pregnancy outcome in women with abnormal natural killer cell levels/activity and recurrent miscarriage or implantation failure: A systematic review and meta-analysis. J. Reprod. Immunol. 2020;142:103189. doi: 10.1016/j.jri.2020.103189. PubMed DOI
Porter T.A., Lacoursiere Y., Scott J. Immunotherapy for recurrent miscarriage. Cochrane Database Syst. Rev. 2006:CD000112. doi: 10.1002/14651858.cd000112.pub2. PubMed DOI
Urban M.L., Bettiol A., Serena C., Comito C., Turrini I., Fruttuoso S., Silvestri E., Vannacci A., Ravaldi C., Petraglia F., et al. Intravenous immunoglobulin for the secondary prevention of stillbirth in obstetric antiphospholipid syndrome: A case series and systematic review of literature. Autoimmun. Rev. 2020;19:102620. doi: 10.1016/j.autrev.2020.102620. PubMed DOI
Perricone R., Di Muzio G., Perricone C., Giacomelli R., De Nardo D., Fontana L., De Carolis C. High Levels of Peripheral Blood NK Cells in Women Suffering from Recurrent Spontaneous Abortion are Reverted from High-Dose Intravenous Immunoglobulins. Am. J. Reprod. Immunol. 2006;55:232–239. doi: 10.1111/j.1600-0897.2005.00356.x. PubMed DOI
Elram T., Simon A., Israel S., Revel A., Shveiky D., Laufer N. Treatment of recurrent IVF failure and human leukocyte antigen similarity by intravenous immunoglobulin. Reprod. BioMed. Online. 2005;11:745–749. doi: 10.1016/S1472-6483(10)61694-X. PubMed DOI
Rutella S. Granulocyte Colony-Stimulating Factor for the Induction of T-Cell Tolerance. Transplantation. 2007;84((Supplement)):S26–S30. doi: 10.1097/01.tp.0000269611.66517.bf. PubMed DOI
Perobelli S.M., Mercadante A.C., Galvani R.G., Gonçalves-Silva T., Alves A.P., Pereira-Neves A., Benchimol M., Nóbrega A., Bonomo A. G-CSF-Induced Suppressor IL-10+ Neutrophils Promote Regulatory T Cells That Inhibit Graft-Versus-Host Disease in a Long-Lasting and Specific Way. J. Immunol. 2016;197:3725–3734. doi: 10.4049/jimmunol.1502023. PubMed DOI
Scarpellini F., Sbracia M. Use of granulocyte colony-stimulating factor for the treatment of unexplained recurrent miscarriage: A randomised controlled trial. Hum. Reprod. 2009;24:2703–2708. doi: 10.1093/humrep/dep240. PubMed DOI
Eapen A., Joing M., Kwon P., Tong J., Maneta E., Santo C.D., Mussai F., Lissauer D., Carter D., RESPONSE study group et al. Recombinant human granulocyte- colony stimulating factor in women with unexplained recurrent pregnancy losses: A randomized clinical trial. Hum. Reprod. 2019;34:424–432. doi: 10.1093/humrep/dey393. PubMed DOI PMC
Busnelli A., Somigliana E., Cirillo F., Baggiani A., Levi-Setti P.E. Efficacy of therapies and interventions for repeated embryo implantation failure: A systematic review and meta-analysis. Sci. Rep. 2021;11:1747. doi: 10.1038/s41598-021-81439-6. PubMed DOI PMC
Kamath M.S., Chittawar P.B., Kirubakaran R., Mascarenhas M. Use of granulocyte-colony stimulating factor in assisted reproductive technology: A systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017;214:16–24. doi: 10.1016/j.ejogrb.2017.04.022. PubMed DOI
Arefi S., Fazeli E., Esfahani M., Borhani N., Yamini N., Hosseini A., Farifteh F. Granulocyte-colony stimulating factor may improve pregnancy outcome in patients with history of unexplained recurrent implantation failure: An RCT. Int. J. Reprod. Biomed. 2018;16:299–304. doi: 10.29252/ijrm.16.5.299. PubMed DOI PMC
Liu M., Yuan Y., Qiao Y., Tang Y., Sui X., Yin P., Yang D. The effectiveness of immunomodulatory therapies for patients with repeated implantation failure: A systematic review and network meta-analysis. Sci. Rep. 2022;12:18434. doi: 10.1038/s41598-022-21014-9. PubMed DOI PMC
Li J., Mo S., Chen Y. The effect of G-CSF on infertile women undergoing IVF treatment: A meta-analysis. Syst. Biol. Reprod. Med. 2017;63:239–247. doi: 10.1080/19396368.2017.1287225. PubMed DOI
Fu J., Li L., Qi L., Zhao L. A randomized controlled trial of etanercept in the treatment of refractory recurrent spontaneous abortion with innate immune disorders. Taiwan J. Obstet. Gynecol. 2019;58:621–625. doi: 10.1016/j.tjog.2019.07.007. PubMed DOI
Santiago K.Y., Porchia L.M., López-Bayghen E. Endometrial preparation with etanercept increased embryo implantation and live birth rates in women suffering from recurrent implantation failure during IVF. Reprod. Biol. 2021;21:100480. doi: 10.1016/j.repbio.2021.100480. PubMed DOI
Winger E.E., Reed J.L. Treatment with Tumor Necrosis Factor Inhibitors and Intravenous Immunoglobulin Improves Live Birth Rates in Women with Recurrent Spontaneous Abortion. Am. J. Reprod. Immunol. 2008;60:8–16. doi: 10.1111/j.1600-0897.2008.00585.x. PubMed DOI
Winger E.E., Reed J.L., Ashoush S., Ahuja S., El-Toukhy T., Taranissi M. Treatment with Adalimumab (Humira®) and Intravenous Immunoglobulin Improves Pregnancy Rates in Women Undergoing IVF. Am. J. Reprod. Immunol. 2008;61:113–120. doi: 10.1111/j.1600-0897.2008.00669.x. PubMed DOI
Alijotas-Reig J., Esteve-Valverde E., Anunciación-Llunell A., Marques-Soares J., Pardos-Gea J., Miró-Mur F. Pathogenesis, Diagnosis and Management of Obstetric Antiphospholipid Syndrome: A Comprehensive Review. J. Clin. Med. 2022;11:675. doi: 10.3390/jcm11030675. PubMed DOI PMC
Hajipour H., Nejabati H.R., Latifi Z., Hamdi K., Bahrami-Asl Z., Fattahi A., Nouri M. Lymphocytes immunotherapy for preserving pregnancy: Mechanisms and Challenges. Am. J. Reprod. Immunol. 2018;80:e12853. doi: 10.1111/aji.12853. PubMed DOI
Yang H., Qiu L., Di W., Zhao A., Chen G., Hu K., Lin Q. Proportional change of CD4+CD25+ regulatory T cells after lymphocyte therapy in unexplained recurrent spontaneous abortion patients. Fertil. Steril. 2009;92:301–305. doi: 10.1016/j.fertnstert.2008.04.068. PubMed DOI
Sarkesh A., Sorkhabi A.D., Parhizkar F., Soltani-Zangbar M.S., Yousefi M., Aghebati-Maleki L. The immunomodulatory effect of intradermal allogeneic PBMC therapy in patients with recurrent spontaneous abortion. J. Reprod. Immunol. 2023;156:103818. doi: 10.1016/j.jri.2023.103818. PubMed DOI
Liu S., Gu X., Weng R. Clinical effect of lymphocyte immunotherapy on patients with unexplained recurrent spontaneous abortion. Immun. Inflamm. Dis. 2021;9:1272–1278. doi: 10.1002/iid3.474. PubMed DOI PMC
Fainboim L., Belén S., González V., Fernández P. Evaluation of paternal lymphocyte immunotherapy and potential biomarker mixed lymphocyte reaction-blocking factor in an Argentinian cohort of women with unexplained recurrent spontaneous abortion and unexplained infertility. Am. J. Reprod. Immunol. 2021;86:e13422. doi: 10.1111/aji.13422. PubMed DOI
Sarno M., Cavalcante M.B., Niag M., Pimentel K., Luz I., Figueiredo B., Michelon T., Neumann J., Lima S., Machado I.N., et al. Gestational and perinatal outcomes in recurrent miscarriages couples treated with lymphocyte immunotherapy. Eur. J. Obstet. Gynecol. Reprod. Biol. X. 2019;3:100036. doi: 10.1016/j.eurox.2019.100036. PubMed DOI PMC
Chen J.L., Yang J.M., Huang Y.Z., Li Y. Clinical observation of lymphocyte active immunotherapy in 380 patients with unexplained recurrent spontaneous abortion. Int. Immunopharmacol. 2016;40:347–350. doi: 10.1016/j.intimp.2016.09.018. PubMed DOI
Gharesi-Fard B., Zolghadri J., Foroughinia L., Tavazoo F., Samsami Dehaghani A. Effectiveness of leukocyte immunotherapy in primary recurrent spontaneous abortion (RPL) Iran. J. Immunol. 2007;4:173–178. PubMed
Pandey M.K., Agrawal S. Induction of MLR-Bf and protection of fetal loss: A current double blind randomized trial of paternal lymphocyte immunization for women with recurrent spontaneous abortion. Int. Immunopharmacol. 2004;4:289–298. doi: 10.1016/j.intimp.2004.01.001. PubMed DOI
Ober C., Karrison T., Odem R.R., Barnes R.B., Branch D.W., Stephenson M.D., Baron B., Walker M.A., Scott J.R., Schreiber J.R. Mononuclear-cell immunisation in prevention of recurrent miscarriages: A randomised trial. Lancet. 1999;354:365–369. doi: 10.1016/S0140-6736(98)12055-X. PubMed DOI
Wong L.F., Porter T.F., Scott J.R. Immunotherapy for recurrent miscarriage. Cochrane Database Syst. Rev. 2014;2014:CD000112. doi: 10.1002/14651858.CD000112.pub3. PubMed DOI PMC
Günther V., Alkatout I., Meyerholz L., Maass N., Görg S., von Otte S., Ziemann M. Live Birth Rates after Active Immunization with Partner Lymphocytes. Biomedicines. 2021;9:1350. doi: 10.3390/biomedicines9101350. PubMed DOI PMC
Liu Z., Xu H., Kang X., Wang T., He L., Zhao A. Allogenic Lymphocyte Immunotherapy for Unexplained Recurrent Spontaneous Abortion: A Meta-Analysis. Am. J. Reprod. Immunol. 2016;76:443–453. doi: 10.1111/aji.12511. PubMed DOI
Rasmark Roepke E., Hellgren M., Hjertberg R., Blomqvist L., Matthiesen L., Henic E., Lalitkumar S., Strandell A. Treatment efficacy for idiopathic recurrent pregnancy loss—A systematic review and meta-analyses. Acta Obstet. Gynecol. Scand. 2018;97:921–941. doi: 10.1111/aogs.13352. PubMed DOI
Melo P., Thornton T., Coomarasamy A., Granne I. Evidence for the effectiveness of immunologic therapies in women with subfertility and/or undergoing assisted reproduction. Fertil. Steril. 2022;117:1144–1159. doi: 10.1016/j.fertnstert.2022.04.015. PubMed DOI
Yu N., Zhang B., Xu M., Wang S., Liu R., Wu J., Yang J., Feng L. Intrauterine administration of autologous peripheral blood mononuclear cells (PBMCs) activated by HCG improves the implantation and pregnancy rates in patients with repeated implantation failure: A prospective randomized study. Am. J. Reprod. Immunol. 2016;76:212–216. doi: 10.1111/aji.12542. PubMed DOI
Li S., Wang J., Cheng Y., Zhou D., Yin T., Xu W., Yu N., Yang J. Intrauterine administration of hCG-activated autologous human peripheral blood mononuclear cells (PBMC) promotes live birth rates in frozen/thawed embryo transfer cycles of patients with repeated implantation failure. J. Reprod. Immunol. 2017;119:15–22. doi: 10.1016/j.jri.2016.11.006. PubMed DOI
Maleki-Hajiagha A., Razavi M., Rezaeinejad M., Rouholamin S., Almasi-Hashiani A., Pirjani R., Sepidarkish M. Intrauterine administration of autologous peripheral blood mononuclear cells in patients with recurrent implantation failure: A systematic review and meta-analysis. J. Reprod. Immunol. 2019;131:50–56. doi: 10.1016/j.jri.2019.01.001. PubMed DOI
Pourmoghadam Z., Abdolmohammadi-Vahid S., Pashazadeh F., Aghebati-Maleki L., Ansari F., Yousefi M. Efficacy of intrauterine administration of autologous peripheral blood mononuclear cells on the pregnancy outcomes in patients with recurrent implantation failure: A systematic review and meta-analysis. J. Reprod. Immunol. 2020;137:103077. doi: 10.1016/j.jri.2019.103077. PubMed DOI
Yakin K., Oktem O. Urman B. Intrauterine administration of peripheral mononuclear cells in recurrent implantation failure: A systematic review and meta-analysis. Sci. Rep. 2019;9:3897. doi: 10.1038/s41598-019-40521-w. PubMed DOI PMC
Cai S., Dai S., Lin R., Huang C., Zeng Y., Diao L., Lian R., Tu W. The effectiveness and safety of intrauterine infusion of autologous regulatory T cells (Tregs) in patients with recurrent pregnancy loss and low levels of endometrial FoxP3+ cells: A retrospective cohort study. Am. J. Reprod. Immunol. 2023;90:e13735. doi: 10.1111/aji.13735. PubMed DOI
Ban Y., Yang X., Xing Y., Que W., Yu Z., Gui W., Chen Y., Liu X. Intrauterine Infusion of Leukocyte-Poor Platelet-Rich Plasma Is an Effective Therapeutic Protocol for Patients with Recurrent Implantation Failure: A Retrospective Cohort Study. J. Clin. Med. 2023;12:2823. doi: 10.3390/jcm12082823. PubMed DOI PMC
Kong X., Tang G., Liu Y., Zheng Z., Li Y., Yan F. Efficacy of intrauterine infusion therapy before embryo transfer in recurrent implantation failure: A systematic review and network meta-analysis. J. Reprod. Immunol. 2023;156:103819. doi: 10.1016/j.jri.2023.103819. PubMed DOI
Deng H., Wang S., Li Z., Xiao L., Mao Y. Effect of intrauterine infusion of platelet-rich plasma for women with recurrent implantation failure: A systematic review and meta-analysis. J. Obstet. Gynaecol. 2023;43:2144177. doi: 10.1080/01443615.2022.2144177. PubMed DOI
Mehrafza M., Pourseify G., Zare Yousefi T., Azadeh R., Saghati Jalali S., Hosseinzadeh E., Samadnia S., Habibdoost M., Tamimi A., Hosseini A. The Efficiency of Introducing Intrauterine Infusion of Autologous Platelet-Rich Plasma versus Granulocyte Colony-Stimulating Factor in Repeated Implantation Failure Patients: An Unblinded Randomised Clinical Trial. Int. J. Fertil. Steril. 2024;18((Suppl. 1)):30–34. doi: 10.22074/ijfs.2024.2013900.1557. PubMed DOI PMC
Kumar P., Marron K., Harrity C. Intralipid therapy and adverse reproductive outcome: Is there any evidence? Reprod. Fertil. 2021;2:173–186. doi: 10.1530/RAF-20-0052. PubMed DOI PMC
Roussev R.G., Acacio B., Ng S.C., Coulam C.B. Duration of Intralipid’s Suppressive Effect on NK Cell’s Functional Activity. Am. J. Reprod. Immunol. 2008;60:258–263. doi: 10.1111/j.1600-0897.2008.00621.x. PubMed DOI
Singh N., Davis A.A., Kumar S., Kriplani A. The effect of administration of intravenous intralipid on pregnancy outcomes in women with implantation failure after IVF/ICSI with non-donor oocytes: A randomised controlled trial. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019;240:45–51. doi: 10.1016/j.ejogrb.2019.06.007. PubMed DOI
Dakhly D.M.R., Bayoumi Y.A., Sharkawy M., Gad Allah S.H., Hassan M.A., Gouda H.M., Hashem A.T., Hatem D.L., Ahmed M.F., El-Khayat W. Intralipid supplementation in women with recurrent spontaneous abortion and elevated levels of natural killer cells. Int. J. Gynecol. Obstet. 2016;135:324–327. doi: 10.1016/j.ijgo.2016.06.026. PubMed DOI
Han E.J., Lee H.N., Kim M.K., Lyu S.W., Lee W.S. Efficacy of intralipid administration to improve in vitro fertilization outcomes: A systematic review and meta-analysis. Clin. Exp. Reprod. Med. 2021;48:203–210. doi: 10.5653/cerm.2020.04266. PubMed DOI PMC
Rimmer M.P., Black N., Keay S., Quenby S., Al Wattar B.H. Intralipid infusion at time of embryo transfer in women with history of recurrent implantation failure: A systematic review and meta-analysis. J. Obstet. Gynaecol. Res. 2021;47:2149–2156. doi: 10.1111/jog.14763. PubMed DOI
Marchand G.J., Masoud A.T., Ulibarri H., Arroyo A., Coriell C., Goetz S., Moir C., Moberly A., Gonzalez D., Blanco M., et al. Effect of a 20% intravenous fat emulsion therapy on pregnancy outcomes in women with RPL or RIF undergoing IVF/ICSI: A systematic review and meta-analysis. J. Clin. Transl. Res. 2023;9:236–245. PubMed PMC
Ndukwe G. Recurrent embryo implantation failure after in vitro fertilisation: Improved outcome following intralipid infusion in women with elevated T Helper 1 response. Hum. Fertil. 2011;14:1–8.
Coulam C.B. Intralipid treatment for women with reproductive failures. Am. J. Reprod. Immunol. 2021;85:e13290. doi: 10.1111/aji.13290. PubMed DOI
Martini A., Jasulaitis S., Fogg L., Uhler M., Hirshfeld-Cytron J. Evaluating the utility of intralipid infusion to improve live birth rates in patients with recurrent pregnancy loss or recurrent implantation failure. J. Hum. Reprod. Sci. 2018;11:261. doi: 10.4103/jhrs.JHRS_28_18. PubMed DOI PMC
Carta G., Iovenitti P., Falciglia K. Recurrent miscarriage associated with antiphospholipid antibodies: Prophylactic treatment with low-dose aspirin and fish oil derivates. Clin. Exp. Obstet. Gynecol. 2005;32:49–51. PubMed
Mu F., Huo H., Wang M., Wang F. Omega-3 fatty acid supplements and recurrent miscarriage: A perspective on potential mechanisms and clinical evidence. Food Sci. Nutr. 2023;11:4460–4471. doi: 10.1002/fsn3.3464. PubMed DOI PMC
Canella P.R.B.C., Vinces S.S., Silva Á.A.R., Sanches P.H.G., Barini R., Porcari A.M., Razolli D.S., Carvalho P.O. Altered profile of plasma phospholipids in woman with recurrent pregnancy loss and recurrent implantation failure treated with lipid emulsion therapy. Am. J. Reprod. Immunol. 2023;89:e13673. doi: 10.1111/aji.13673. PubMed DOI
ESHRE Guideline Group on RPL. Bender Atik R., Christiansen O.B., Elson J., Kolte A.M., Lewis S., Middeldorp S., Mcheik S., Peramo B., Quenby S., et al. ESHRE guideline: Recurrent pregnancy loss: An update in 2022. Hum. Reprod. Open. 2023;2023:hoad002. doi: 10.1093/hropen/hoad002. PubMed DOI PMC
Royal College of Obstetricians and Gynaecologists The Investigation and Treatment of Couples with Recurrent First- trimester and Second-trimester Miscarriage Green-top Guideline No. 17. 2022. [(accessed on 8 December 2024)]. Available online: https://www.rcog.org.uk/media/3cbgonl0/gtg_17.pdf.
Hamulyák E.N., Scheres L.J., Marijnen M.C., Goddijn M., Middeldorp S. Aspirin or heparin or both for improving pregnancy outcomes in women with persistent antiphospholipid antibodies and recurrent pregnancy loss. Cochrane Database Syst. Rev. 2020;5:CD012852. doi: 10.1002/14651858.cd012852.pub2. PubMed DOI PMC
Liu X., Qiu Y., Yu E.D., Xiang S., Meng R., Niu K.F., Zhu H. Comparison of therapeutic interventions for recurrent pregnancy loss in association with antiphospholipid syndrome: A systematic review and network meta-analysis. Am. J. Reprod. Immunol. 2020;83:e13219. doi: 10.1111/aji.13219. PubMed DOI
Grandone E., Tiscia G.L., Mastroianno M., Larciprete G., Kovač M., Tamborini Permunian E., Lojacono A., Barcellona D., Bitsadze V., Khizroeva J., et al. Findings from a multicentre, observational study on reproductive outcomes in women with unexplained recurrent pregnancy loss: The OTTILIA registry. Hum. Reprod. 2021;36:2083–2090. doi: 10.1093/humrep/deab153. PubMed DOI
Aynıoglu O., Isik H., Sahbaz A., Alptekın H., Bayar U. Does anticoagulant therapy improve adverse pregnancy outcomes in patients with history of recurrent pregnancy loss? Ginekol. Pol. 2016;87:585–591. doi: 10.5603/GP.2016.0049. PubMed DOI
Shaaban O.M., Abbas A.M., Zahran K.M., Fathalla M.M., Anan M.A., Salman S.A. Low-Molecular-Weight Heparin for the Treatment of Unexplained Recurrent Miscarriage With Negative Antiphospholipid Antibodies: A Randomized Controlled Trial. Clin. Appl. Thromb. Hemost. 2016;23:567–572. doi: 10.1177/1076029616665167. PubMed DOI
Jiang F., Hu X., Jiang K., Pi H., He Q., Chen X. The role of low molecular weight heparin on recurrent pregnancy loss: A systematic review and meta-analysis. Taiwan J. Obstet. Gynecol. 2021;60:1–8. doi: 10.1016/j.tjog.2020.11.001. PubMed DOI
Li J., Gao Y.H., Xu L., Li Z.Y. Meta-analysis of heparin combined with aspirin versus aspirin alone for unexplained recurrent spontaneous abortion. Int. J. Gynaecol. Obstet. 2020;151:23–32. doi: 10.1002/ijgo.13266. PubMed DOI
Skeith L., Carrier M., Kaaja R., Martinelli I., Petroff D., Schleußner E., Laskin C.A., Rodger M.A. A meta-analysis of low-molecular-weight heparin to prevent pregnancy loss in women with inherited thrombophilia. Blood. 2016;127:1650–1655. doi: 10.1182/blood-2015-12-626739. PubMed DOI
de Jong P., Kaandorp S., Di Nisio M., Goddijn M., Middeldorp S. Aspirin and/or heparin for women with unexplained recurrent miscarriage with or without inherited thrombophilia. Cochrane Database Syst. Rev. 2014;2014:CD004734. doi: 10.1002/14651858.CD004734.pub4. PubMed DOI PMC
Schleussner E., Kamin G., Seliger G., Rogenhofer N., Ebner S., Toth B., Schenk M., Henes M., Bohlmann M.K., Fischer T., et al. Low-Molecular-Weight Heparin for Women With Unexplained Recurrent Pregnancy Loss. Ann. Intern. Med. 2015;162:601–609. doi: 10.7326/M14-2062. PubMed DOI
Karadağ C., Akar B., Gönenç G., Aslancan R., Yılmaz N., Çalışkan E. Aspirin, low molecular weight heparin, or both in preventing pregnancy complications in women with recurrent pregnancy loss and factor V Leiden mutation. J. Matern.-Fetal Neonatal Med. 2020;33:1934–1939. doi: 10.1080/14767058.2019.1671348. PubMed DOI
Lin T., Chen Y., Cheng X., Li N., Sheng X. Enoxaparin (or plus aspirin) for the prevention of recurrent miscarriage: A meta-analysis of randomized controlled studies. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019;234:53–57. doi: 10.1016/j.ejogrb.2018.12.023. PubMed DOI
Wang G., Zhang R., Li C., Chen A. Evaluation of the effect of low molecular weight heparin in unexplained recurrent pregnancy loss: A meta-analysis of randomized controlled trials. J. Matern.-Fetal Neonatal Med. 2021;35:7601–7608. doi: 10.1080/14767058.2021.1957819. PubMed DOI
Scarrone M., Salmeri N., Buzzaccarini G., Canti V., Pasi F., Papaleo E., Rovere-Querini P., Candiani M., Alteri A., Busnelli A., et al. Low-molecular-weight heparin in the prevention of unexplained recurrent miscarriage: A systematic review and meta-analysis. Sci. Rep. 2024;14:14168. doi: 10.1038/s41598-024-62949-5. PubMed DOI PMC
Scarrone M., Canti V., Vanni V.S., Bordoli S., Pasi F., Quaranta L., Erra R., De Lorenzo R., Rosa S., Castiglioni M.T., et al. Treating unexplained recurrent pregnancy loss based on lessons learned from obstetric antiphospholipid syndrome and inherited thrombophilia: A propensity-score adjusted retrospective study. J. Reprod. Immunol. 2022;154:103760. doi: 10.1016/j.jri.2022.103760. PubMed DOI
Quenby S., Booth K., Hiller L., Coomarasamy A., de Jong P.G., Hamulyák E.N., Scheres L.J., van Haaps T.F., Ewington L., Tewary S., et al. Heparin for women with recurrent miscarriage and inherited thrombophilia (ALIFE2): An international open-label, randomised controlled trial. Lancet. 2023;402:54–61. doi: 10.1016/S0140-6736(23)00693-1. PubMed DOI
Giouleka S., Tsakiridis I., Arsenaki E., Kalogiannidis I., Mamopoulos A., Papanikolaou E., Athanasiadis A., Dagklis T. Investigation and Management of Recurrent Pregnancy Loss: A Comprehensive Review of Guidelines. Obstet. Gynecol. Surv. 2023;78:287–301. doi: 10.1097/OGX.0000000000001133. PubMed DOI
Kuroda K., Matsumura Y., Ikemoto Y., Segawa T., Hashimoto T., Fukuda J., Nakagawa K., Uchida T., Ochiai A., Horimoto Y., et al. Analysis of the risk factors and treatment for repeated implantation failure: OPtimization of Thyroid function, IMmunity, and Uterine Milieu (OPTIMUM) treatment strategy. Am. J. Reprod. Immunol. 2021;85:e13376. doi: 10.1111/aji.13376. PubMed DOI
Kuroda K., Horikawa T., Moriyama A., Ojiro Y., Takamizawa S., Watanabe H., Maruyama T., Nojiri S., Nakagawa K., Sugiyama R. Therapeutic efficacy of the optimization of thyroid function, thrombophilia, immunity and uterine milieu (OPTIMUM) treatment strategy on pregnancy outcomes after single euploid blastocyst transfer in advanced age women with recurrent reproductive failure. Reprod. Med. Biol. 2023;22:e12554. doi: 10.1002/rmb2.12554. PubMed DOI PMC
Mohammad-Akbari A., Mohazzab A., Tavakoli M., Karimi A., Zafardoust S., Zolghadri Z., Shahali S., Tokhmechi R., Ansaripour S. The effect of low-molecular-weight heparin on live birth rate of patients with unexplained early recurrent pregnancy loss: A two-arm randomized clinical trial. J. Res. Med. Sci. 2022;27:78. doi: 10.4103/jrms.jrms_81_21. PubMed DOI PMC
Dolitzky M., Inbal A., Segal Y., Weiss A., Brenner B., Carp H. A randomized study of thromboprophylaxis in women with unexplained consecutive recurrent miscarriages. Fertil. Steril. 2006;86:362–366. doi: 10.1016/j.fertnstert.2005.12.068. PubMed DOI
Naimi A.I., Perkins N.J., Sjaarda L.A., Mumford S.L., Platt R.W., Silver R.M., Schisterman E.F. The Effect of Preconception-Initiated Low-Dose Aspirin on Human Chorionic Gonadotropin-Detected Pregnancy, Pregnancy Loss, and Live Birth: Per Protocol Analysis of a Randomized Trial. Ann. Intern. Med. 2021;174:595–601. doi: 10.7326/M20-0469. PubMed DOI PMC
Mumford S.L., Silver R.M., Sjaarda L.A., Wactawski-Wende J., Townsend J.M., Lynch A.M., Galai N., Lesher L.L., Faraggi D., Perkins N.J., et al. Expanded findings from a randomized controlled trial of preconception low-dose aspirin and pregnancy loss. Hum. Reprod. 2016;31:657–665. doi: 10.1093/humrep/dev329. PubMed DOI PMC
Blomqvist L., Hellgren M., Strandell A. Acetylsalicylic acid does not prevent first-trimester unexplained recurrent pregnancy loss: A randomized controlled trial. Acta Obstet. Gynecol. Scand. 2018;97:1365–1372. doi: 10.1111/aogs.13420. PubMed DOI
Ikemoto Y., Kuroda K., Nakagawa K., Ochiai A., Ozaki R., Murakami K., Jinushi M., Matsumoto A., Sugiyama R., Takeda S. Vitamin D Regulates Maternal T-Helper Cytokine Production in Infertile Women. Nutrients. 2018;10:902. doi: 10.3390/nu10070902. PubMed DOI PMC
Ota K., Dambaeva S., Kim M.W., Han A.R., Fukui A., Gilman-Sachs A., Beaman K., Kwak-Kim J. 1,25-Dihydroxy-vitamin D3 regulates NK-cell cytotoxicity, cytokine secretion, and degranulation in women with recurrent pregnancy losses. Eur. J. Immunol. 2015;45:3188–3199. doi: 10.1002/eji.201545541. PubMed DOI
Ichikawa T., Toyoshima M., Watanabe T., Negishi Y., Kuwabara Y., Takeshita T., Suzuki S. Associations of Nutrients and Dietary Preferences with Recurrent Pregnancy Loss and Infertility. J. Nippon Med. Sch. 2024;91:254–260. doi: 10.1272/jnms.JNMS.2024_91-313. PubMed DOI
Chen X., Yin B., Lian R.C., Zhang T., Zhang H.Z., Diao L.H., Li Y.Y., Huang C.Y., Liang D.S., Zeng Y. Modulatory effects of vitamin D on peripheral cellular immunity in patients with recurrent miscarriage. Am. J. Reprod. Immunol. 2016;76:432–438. doi: 10.1111/aji.12585. PubMed DOI
Tamblyn J.A., Pilarski N.S.P., Markland A.D., Marson E.J., Devall A., Hewison M., Morris R.K., Coomarasamy A. Vitamin D and miscarriage: A systematic review and meta-analysis. Fertil. Steril. 2022;118:111–122. doi: 10.1016/j.fertnstert.2022.04.017. PubMed DOI
Raghupathy R., Szekeres-Bartho J. Progesterone: A Unique Hormone with Immunomodulatory Roles in Pregnancy. Int. J. Mol. Sci. 2022;23:1333. doi: 10.3390/ijms23031333. PubMed DOI PMC
Lee J.H., Lydon J.P., Kim C.H. Progesterone suppresses the mTOR pathway and promotes generation of induced regulatory T cells with increased stability. Eur. J. Immunol. 2012;42:2683–2696. doi: 10.1002/eji.201142317. PubMed DOI PMC
Green E.S., Moldenhauer L.M., Groome H.M., Sharkey D.J., Chin P.Y., Care A.S., Robker R.L., McColl S.R., Robertson S.A. Regulatory T cells are paramount effectors in progesterone regulation of embryo implantation and fetal growth. JCI Insight. 2023;8:e162995. doi: 10.1172/jci.insight.162995. PubMed DOI PMC
Haas D.M., Hathaway T.J., Ramsey P.S. Progestogen for preventing miscarriage in women with recurrent miscarriage of unclear etiology. Cochrane Database Syst. Rev. 2019;2019:CD003511. doi: 10.1002/14651858.CD003511.pub5. PubMed DOI PMC
Devall A.J., Papadopoulou A., Haas D.M., Price M.J., Coomarasamy A., Gallos I.D. Progestogens for preventing miscarriage: A network meta-analysis. Cochrane Database Syst. Rev. 2021;4:CD013792. doi: 10.1002/14651858.cd013792. PubMed DOI PMC
Zhao Y., D’Souza R., Gao Y., Hao Q., Kallas-Silva L., Steen J.P., Guyatt G. Progestogens in women with threatened miscarriage or recurrent miscarriage: A meta-analysis. Acta Obstet. Gynecol. Scand. 2024;103:1689–1701. doi: 10.1111/aogs.14829. PubMed DOI PMC
Xie H., Zeng H., He D., Liu N. Effect of intrauterine perfusion of human chorionic gonadotropin before embryo transfer after two or more implantation failures: A systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019;243:133–138. doi: 10.1016/j.ejogrb.2019.10.039. PubMed DOI
Bakry M.S., Eldesouky E., Alghazaly M.M., Farag E., Sultan E.E.K., Elazzazy H., Mohamed A., Ali S.M.S., Anwar A., Elrashedy A.A., et al. Granulocyte colony stimulating factor versus human chorionic gonadotropin for recurrent implantation failure in intra cytoplasmic sperm injection: A randomized clinical trial. BMC Pregnancy Childbirth. 2022;22:881. doi: 10.1186/s12884-022-05098-9. PubMed DOI PMC
Amooee S., Shomali Z., Namazi N., Jannati F. Is There any Role for Granulocyte Colony Stimulating Factor in Improvement of Implantation in Intrauterine Insemination? A Prospective Double-Blind Randomized Control Trial. Int. J. Fertil. Steril. 2022;16:281–285. doi: 10.22074/ijfs.2021.537125.1171. PubMed DOI PMC
Bellver J., Marín C., Lathi R.B., Murugappan G., Labarta E., Vidal C., Giles J., Cabanillas S., Marzal A., Galliano D., et al. Obesity Affects Endometrial Receptivity by Displacing the Window of Implantation. Reprod. Sci. 2021;28:3171–3180. doi: 10.1007/s43032-021-00631-1. PubMed DOI
Gonnella F., Konstantinidou F., Donato M., Gatta D.M.P., Peserico A., Barboni B., Stuppia L., Nothnick W.B., Gatta V. The Molecular Link between Obesity and the Endometrial Environment: A Starting Point for Female Infertility. Int. J. Mol. Sci. 2024;25:6855. doi: 10.3390/ijms25136855. PubMed DOI PMC
Gonçalves C.C.R.A., Feitosa B.M., Cavalcante B.V., Lima A.L.G.S.B., de Souza C.M., Joventino L.B., Cavalcante M.B. Obesity and recurrent miscarriage: The interconnections between adipose tissue and the immune system. Am. J. Reprod. Immunol. 2023;90:e13757. doi: 10.1111/aji.13757. PubMed DOI
Ramidi G., Khan N., Glueck C.J., Wang P., Goldenberg N. Enoxaparin-metformin and enoxaparin alone may safely reduce pregnancy loss. Trans. Res. J. Lab. Clin. Med. 2009;153:33–43. doi: 10.1016/j.trsl.2008.11.003. PubMed DOI
Silverii G.A. Optimizing metformin therapy in practice: Tailoring therapy in specific patient groups to improve tolerability, efficacy and outcomes. Diabetes Obes. Metab. 2024;26((Suppl. 3)):42–54. doi: 10.1111/dom.15749. PubMed DOI
Rajeev D., MacIver N.J. Metformin as a Therapeutic Agent for Obesity-Associated Immune Dysfunction. J. Nutr. 2024;154:2534–2542. doi: 10.1016/j.tjnut.2024.07.001. PubMed DOI
Sola-Leyva A., Pathare A.D.S., Apostolov A., Aleksejeva E., Kask K., Tammiste T., Ruiz-Durán S., Risal S., Acharya G., Salumets A. The hidden impact of GLP-1 receptor agonists on endometrial receptivity and implantation. Acta Obstet. Gynecol. Scand. 2024 doi: 10.1111/aogs.15010. PubMed DOI PMC
Maslin K., Alkutbe R., Gilbert J., Pinkney J., Shawe J. What is known about the use of weight loss medication in women with overweight/obesity on fertility and reproductive health outcomes? A scoping review. Clin. Obes. 2024;14:e12690. doi: 10.1111/cob.12690. PubMed DOI
Dang D., Dearholt S., Bissett K., Ascenzi J., Whalen M. Johns Hopkins Evidence-Based Practice for Nurses and Healthcare Professionals: Model and Guidelines. 4th ed. Sigma Theta Tau International; Indianapolis, IN, USA: 2022.
Endometriosis: An Immunologist's Perspective