Enzymatic Hydrolysis of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Scaffolds
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
665860
European Union's Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie, and it is co-financed by the South Moravian Regio
LO1504
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
32635613
PubMed Central
PMC7372466
DOI
10.3390/ma13132992
PII: ma13132992
Knihovny.cz E-zdroje
- Klíčová slova
- degradation kinetics, grape pomace, hydrolysis, mechanical properties, morphology, polyhydroxyalkanoates, scaffolds, thermal properties,
- Publikační typ
- časopisecké články MeSH
Polyhydroxyalkanoates (PHAs) are hydrolyzable bio-polyesters. The possibility of utilizing lignocellulosic waste by-products and grape pomace as carbon sources for PHA biosynthesis was investigated. PHAs were biosynthesized by employing Cupriavidus necator grown on fructose (PHBV-1) or grape sugar extract (PHBV-2). Fifty grams of lyophilized grape sugar extract contained 19.2 g of glucose, 19.1 g of fructose, 2.7 g of pectin, 0.52 g of polyphenols, 0.51 g of flavonoids and 7.97 g of non-identified rest compounds. The grape sugar extract supported the higher production of biomass and modified the composition of PHBV-2. The biosynthesized PHAs served as matrices for the preparation of the scaffolds. The PHBV-2 scaffolds had about 44.2% lower crystallinity compared to the PHBV-1 scaffolds. The degree of crystallinity markedly influenced the mechanical behavior and enzymatic hydrolysis of the PHA scaffolds in the synthetic gastric juice and phosphate buffer saline solution with the lipase for 81 days. The higher proportion of amorphous moieties in PHBV-2 accelerated enzymatic hydrolysis. After 81-days of lasting enzymatic hydrolysis, the morphological changes of the PHBV-1 scaffolds were negligible compared to the visible destruction of the PHBV-2 scaffolds. These results indicated that the presence of pectin and phenolic moieties in PHBV may markedly change the semi-crystalline character of PHBV, as well as its mechanical properties and the course of abiotic or enzymatic hydrolysis.
Zobrazit více v PubMed
Obruca S., Sedlacek P., Slaninova E., Fritz I., Daffert C., Meixner K., Sedrlova Z., Koller M. Novel unexpected functions of PHA granules. Appl. Mcrobiol. Biotechnol. 2020:1–16. doi: 10.1007/s00253-020-10568-1. PubMed DOI
Hiraishi A., Khan S. Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment. Appl. Mcrobiol. Biotechnol. 2003;61:103–109. doi: 10.1007/s00253-002-1198-y. PubMed DOI
Bourbonnais R., Marchessault R.H. Application of polyhydroxyalkanoate granules for sizing of paper. Biomacromolecules. 2010;11:989–993. doi: 10.1021/bm9014667. PubMed DOI
Wei D.-X., Chen C.-B., Fang G., Li S.-Y., Chen G.-Q. Application of polyhydroxyalkanoate binding protein PhaP as a bio-surfactant. Appl. Mcrobiol. Biotechnol. 2011;91:1037–1047. doi: 10.1007/s00253-011-3258-7. PubMed DOI
Xiong Y.-C., Yao Y.-C., Zhan X.-Y., Chen G.-Q. Application of polyhydroxyalkanoates nanoparticles as intracellular sustained drug-release vectors. J. Biomater. Sci. Polym. Ed. 2010;21:127–140. doi: 10.1163/156856209X410283. PubMed DOI
Williams S.F., Martin D.P., Skraly F.A. Medical Devices and Applications of Polyhydroxyalkanoate Polymers. 6,548,569. U.S. Patent. 2003 Apr 15;
Martin D.P., Rizk S., Ahuja A., Williams S.F. Polyhydroxyalkanoate Medical Textiles and Fibers. 10,314,683. U.S. Patent. 2019 Jun 11;
Singh A.K., Srivastava J.K., Chandel A.K., Sharma L., Mallick N., Singh S.P. Biomedical applications of microbially engineered polyhydroxyalkanoates: An insight into recent advances, bottlenecks, and solutions. Appl. Microbiol. Biotechnol. 2019;103:2007–2032. doi: 10.1007/s00253-018-09604-y. PubMed DOI
Wu Q., Wang Y., Chen G.-Q. Medical application of microbial biopolyesters polyhydroxyalkanoates. Artif. Cells Blood Substit. Biotechnol. 2009;37:1–12. doi: 10.1080/10731190802664429. PubMed DOI
Bugnicourt E., Cinelli P., Lazzeri A., Alvarez V.A. Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polym. Lett. 2014;8:791–808. doi: 10.3144/expresspolymlett.2014.82. DOI
Koller M., Salerno A., Braunegg G. Polyhydroxyalkanoates: Basics, production and applications of microbial biopolyesters. In: Kabasci S., editor. Bio-Based Plastics: Materials and Applications. John Wiley & Sons; Hoboken, NJ, USA: 2013. pp. 137–169.
Reusch R.N. Physiological importance of poly-(R)-3-hydroxybutyrates. Chem. Biodivers. 2012;9:2343–2366. doi: 10.1002/cbdv.201200278. PubMed DOI
Li X., Li X., Chen D., Guo J.-L., Feng D.-F., Sun M.-Z., Lu Y., Chen D.-Y., Zhao X., Feng X.-Z. Evaluating the biological impact of polyhydroxyalkanoates (PHAs) on developmental and exploratory profile of zebrafish larvae. RSC Adv. 2016;6:37018–37030. doi: 10.1039/C6RA04329A. DOI
Peng S.-W., Guo X.-Y., Shang G.-G., Li J., Xu X.-Y., You M.-L., Li P., Chen G.-Q. An assessment of the risks of carcinogenicity associated with polyhydroxyalkanoates through an analysis of DNA aneuploid and telomerase activity. Biomaterials. 2011;32:2546–2555. doi: 10.1016/j.biomaterials.2010.12.051. PubMed DOI
Koller M. Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): Auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules. 2018;23:362. doi: 10.3390/molecules23020362. PubMed DOI PMC
O’Brien F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today. 2011;14:88–95.
Puppi D., Braccini S., Ranaudo A., Chiellini F. Poly (3-hydroxybutyrate-co-3-hydroxyexanoate) scaffolds with tunable macro-and microstructural features by additive manufacturing. J. Biotechnol. 2020;308:96–107. doi: 10.1016/j.jbiotec.2019.12.005. PubMed DOI
Wei D.X., Dao J.W., Chen G.Q. A Micro-Ark for Cells: Highly Open Porous Polyhydroxyalkanoate Microspheres as Injectable Scaffolds for Tissue Regeneration. Adv. Mater. 2018;30:1802273. doi: 10.1002/adma.201802273. PubMed DOI
Sanhueza C., Acevedo F., Rocha S., Villegas P., Seeger M., Navia R. Polyhydroxyalkanoates as biomaterial for electrospun scaffolds. Int. J. Biol. Macromol. 2019;124:102–110. doi: 10.1016/j.ijbiomac.2018.11.068. PubMed DOI
Kundrat V., Cernekova N., Kovalcik A., Enev V., Marova I. Drug Release Kinetics of Electrospun PHB Meshes. Materials. 2019;12:1924. doi: 10.3390/ma12121924. PubMed DOI PMC
Pramanik N., De J., Basu R.K., Rath T., Kundu P.P. Fabrication of magnetite nanoparticle doped reduced graphene oxide grafted polyhydroxyalkanoate nanocomposites for tissue engineering application. RSC Adv. 2016;6:46116–46133. doi: 10.1039/C6RA03233H. DOI
Kovalcik A., Sangroniz L., Kalina M., Skopalova K., Humpolíček P., Omastova M., Mundigler N., Müller A.J. Properties of scaffolds prepared by fused deposition modeling of poly (hydroxyalkanoates) Int. J. Biol. Macromol. 2020 doi: 10.1016/j.ijbiomac.2020.06.022. in press. PubMed DOI
Gebauer B., Jendrossek D. Assay of poly (3-hydroxybutyrate) depolymerase activity and product determination. Appl. Environ. Microbiol. 2006;72:6094–6100. doi: 10.1128/AEM.01184-06. PubMed DOI PMC
Kanmani P., Kumaresan K., Aravind J., Karthikeyan S., Balan R. Enzymatic degradation of polyhydroxyalkanoate using lipase from Bacillus subtilis. Int. J. Environ. Sci. Technol. 2016;13:1541–1552. doi: 10.1007/s13762-016-0992-5. DOI
Azevedo H.S., Reis R.L. Understanding the Enzymatic Degradation of Biodegradable Polymers and Strategies to Control Their Degradation Rate. In: Reis R.L., Román J.S., editors. Biodegraddable Systems in Tissue Engineering and Regenerative Medicine. CRC Press; New York, NY, USA: 2004. pp. 177–204.
Obruca S., Marova I., Snajdar O., Mravcova L., Svoboda Z. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate. Biotechnol. Lett. 2010;32:1925–1932. doi: 10.1007/s10529-010-0376-8. PubMed DOI
Atkins T.W., Peacock S.J. In vitro biodegradation of polyhydroxybutyrate-hydroxyvalerate microcapsules exposed to Hank’s buffer, newborn calf serum, pancreatin and synthetic gastric juice. J. Microencapsul. 1997;14:35–49. doi: 10.3109/02652049709056466. PubMed DOI
Wang Y.-W., Mo W., Yao H., Wu Q., Chen J., Chen G.-Q. Biodegradation studies of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) Polym. Degrad. Stab. 2004;85:815–821. doi: 10.1016/j.polymdegradstab.2004.02.010. DOI
Obruca S., Snajdar O., Svoboda Z., Marova I. Application of random mutagenesis to enhance the production of polyhydroxyalkanoates by Cupriavidus necator H16 on waste frying oil. World J. Microbiol Biotechnol. 2013;29:2417–2428. doi: 10.1007/s11274-013-1410-5. PubMed DOI
Jeong H., Park J., Kim H. Determination of N.H. 4+ in Environmental Water with Interfering Substances Using the Modified Nessler Method. J. Chem. 2013 doi: 10.1155/2013/359217. DOI
Reinecke F., Steinbüchel A. Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. J. Mol. Microbiol. Biotechnol. 2009;16:91–108. doi: 10.1159/000142897. PubMed DOI
Kansiz M., Dominguez-Vidal A., McNaughton D., Lendl B. Fourier-transform infrared (FTIR) spectroscopy for monitoring and determining the degree of crystallisation of polyhydroxyalkanoates (PHAs) Anal. Bioanal. Chem. 2007;388:1207–1213. doi: 10.1007/s00216-007-1337-5. PubMed DOI
Shamala T.R., Divyashree M.S., Davis R., Kumari K.S.L., Vijayendra S.V.N., Raj B. Production and characterization of bacterial polyhydroxyalkanoate copolymers and evaluation of their blends by fourier transform infrared spectroscopy and scanning electron microscopy. Indian J. Microbiol. 2009;49:251–258. doi: 10.1007/s12088-009-0031-z. PubMed DOI PMC
Xu J., Guo B.-H., Yang R., Wu Q., Chen G.-Q., Zhang Z.-M. In situ FTIR study on melting and crystallization of polyhydroxyalkanoates. Polymer. 2002;43:6893–6899. doi: 10.1016/S0032-3861(02)00615-8. DOI
Wei L., Stark N.M., McDonald G. Interfacial improvements in biocomposites based on poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3 hydroxyvalerate) bioplastics reinforced and grafted with α-cellulose fibers. Green Chem. 2015;17:4800–4814. doi: 10.1039/C5GC01568E. DOI
Perveen K., Masood F., Hameed A. Preparation, characterization and evaluation of antibacterial properties of epirubicin loaded PHB and PHBV nanoparticles. Int. J. Biol. Macromol. 2020;144:259–266. doi: 10.1016/j.ijbiomac.2019.12.049. PubMed DOI
Luo S., Cao J., McDonald A.G. Interfacial Improvements in a Green Biopolymer Alloy of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Lignin via in Situ Reactive Extrusion. ACS Sustain. Chem. Eng. 2016;4:3465–3476. doi: 10.1021/acssuschemeng.6b00495. DOI
Lucarini M., Durazzo A., Kiefer J., Santini A., Lombardi-Boccia G., Souto E.B., Romani A., Lampe A., Ferrari Nicoli S., Gabrielli P. Grape Seeds: Chromatographic Profile of Fatty Acids and Phenolic Compounds and Qualitative Analysis by FTIR-ATR Spectroscopy. Foods. 2020;9:10. doi: 10.3390/foods9010010. PubMed DOI PMC
Menczel J.D., Judovits L., Prime R.B., Bair H.E., Reading M., Swier S. Differential scanning calorimetry (DSC) In: Menczel J.D., Prime R.B., editors. Thermal Analysis of Polymers: Fundamentals and Applications. John Wiley & Sons; Hoboken, NJ, USA: 2009. pp. 7–229.
Wellen R.M.R., Rabello M.S., Fechine G.J.M., Canedo E.L. The melting behaviour of poly(3-hydroxybutyrate by DSC. Reproducibility study. Polym. Test. 2013;32:215–220. doi: 10.1016/j.polymertesting.2012.11.001. DOI
Zhao H., Turng L.-S. Mechanical performance of microcellular injection molded biocomposites from green plastics: PLA and PHBV. In: Misra M., Pandey J.K., Mohanty A., editors. Biocomposites: Design and Mechanical Performance. Elsevier Science; Cambridge, UK: 2015.
Chan S.Y., Chan B.Q.Y., Liu Z., Parikh B.H., Zhang K., Lin Q., Su X., Kai D., Choo W.S., Young D.J. Electrospun pectin-polyhydroxybutyrate nanofibers for retinal tissue engineering. ACS Omega. 2017;2:8959–8968. doi: 10.1021/acsomega.7b01604. PubMed DOI PMC
Abe H., Kikkawa Y., Iwata T., Aoki H., Akehata T., Doi Y. Microscopic visualization on crystalline morphologies of thin films for poly [(R)-3-hydroxybutyric acid] and its copolymer. Polymer. 2000;41:867–874. doi: 10.1016/S0032-3861(99)00231-1. DOI
Anbukarasu P., Sauvageau D., Elias A.L. Enzymatic degradation of dimensionally constrained polyhydroxybutyrate films. Phys. Chem. Chem. Phys. 2017;19:30021–30030. doi: 10.1039/C7CP05133F. PubMed DOI
Canetti M., Urso M., Sadocco P. Influence of the morphology and of the supermolecular structure on the enzymatic degradation of bacterial poly (3-hydroxybutyrate) Polymer. 1999;40:2587–2594. doi: 10.1016/S0032-3861(98)00503-5. DOI
Bonartsev A., Boskhomodgiev A., Iordanskii A., Bonartseva G., Rebrov A., Makhina T., Myshkina V., Yakovlev S., Filatova E., Ivanov E. Hydrolytic degradation of poly (3-hydroxybutyrate), polylactide and their derivatives: Kinetics, crystallinity, and surface morphology. Mol. Cryst. Liq. Cryst. 2012;556:288–300. doi: 10.1080/15421406.2012.635982. DOI
Eldsäter C., Erlandsson B., Renstad R., Albertsson A.-C., Karlsson S. The biodegradation of amorphous and crystalline regions in film-blown poly (ϵ-caprolactone) Polymer. 2000;41:1297–1304. doi: 10.1016/S0032-3861(99)00278-5. DOI
Kumagai Y., Kanesawa Y., Doi Y. Enzymatic degradation of microbial poly (3-hydroxybutyrate) films. Die Makromol. Chem. 1992;193:53–57. doi: 10.1002/macp.1992.021930105. DOI
Renard E., Walls M., Guérin P., Langlois V. Hydrolytic degradation of blends of polyhydroxyalkanoates and functionalized polyhydroxyalkanoates. Polym. Degrad. Stab. 2004;85:779–787. doi: 10.1016/j.polymdegradstab.2003.11.019. DOI
Albertsson A.C., Varma I.K. Aliphatic polyesters: Synthesis, properties and applications. In: Albertsson A.C., Edlund U., Hakkarainen M., Karlsson S., Liu Y., Ranucci E., Ryner M., Lindblad M.S., Stridsberg K.M., Varma I.K., editors. Degradable Aliphatic Polyesters. Springer; Berlin/Heidelberg, Germany: 2003. pp. 1–40.