Enzymatic Hydrolysis of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Scaffolds

. 2020 Jul 05 ; 13 (13) : . [epub] 20200705

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32635613

Grantová podpora
665860 European Union's Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie, and it is co-financed by the South Moravian Regio
LO1504 Ministry of Education, Youth and Sports of the Czech Republic

Polyhydroxyalkanoates (PHAs) are hydrolyzable bio-polyesters. The possibility of utilizing lignocellulosic waste by-products and grape pomace as carbon sources for PHA biosynthesis was investigated. PHAs were biosynthesized by employing Cupriavidus necator grown on fructose (PHBV-1) or grape sugar extract (PHBV-2). Fifty grams of lyophilized grape sugar extract contained 19.2 g of glucose, 19.1 g of fructose, 2.7 g of pectin, 0.52 g of polyphenols, 0.51 g of flavonoids and 7.97 g of non-identified rest compounds. The grape sugar extract supported the higher production of biomass and modified the composition of PHBV-2. The biosynthesized PHAs served as matrices for the preparation of the scaffolds. The PHBV-2 scaffolds had about 44.2% lower crystallinity compared to the PHBV-1 scaffolds. The degree of crystallinity markedly influenced the mechanical behavior and enzymatic hydrolysis of the PHA scaffolds in the synthetic gastric juice and phosphate buffer saline solution with the lipase for 81 days. The higher proportion of amorphous moieties in PHBV-2 accelerated enzymatic hydrolysis. After 81-days of lasting enzymatic hydrolysis, the morphological changes of the PHBV-1 scaffolds were negligible compared to the visible destruction of the PHBV-2 scaffolds. These results indicated that the presence of pectin and phenolic moieties in PHBV may markedly change the semi-crystalline character of PHBV, as well as its mechanical properties and the course of abiotic or enzymatic hydrolysis.

Zobrazit více v PubMed

Obruca S., Sedlacek P., Slaninova E., Fritz I., Daffert C., Meixner K., Sedrlova Z., Koller M. Novel unexpected functions of PHA granules. Appl. Mcrobiol. Biotechnol. 2020:1–16. doi: 10.1007/s00253-020-10568-1. PubMed DOI

Hiraishi A., Khan S. Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment. Appl. Mcrobiol. Biotechnol. 2003;61:103–109. doi: 10.1007/s00253-002-1198-y. PubMed DOI

Bourbonnais R., Marchessault R.H. Application of polyhydroxyalkanoate granules for sizing of paper. Biomacromolecules. 2010;11:989–993. doi: 10.1021/bm9014667. PubMed DOI

Wei D.-X., Chen C.-B., Fang G., Li S.-Y., Chen G.-Q. Application of polyhydroxyalkanoate binding protein PhaP as a bio-surfactant. Appl. Mcrobiol. Biotechnol. 2011;91:1037–1047. doi: 10.1007/s00253-011-3258-7. PubMed DOI

Xiong Y.-C., Yao Y.-C., Zhan X.-Y., Chen G.-Q. Application of polyhydroxyalkanoates nanoparticles as intracellular sustained drug-release vectors. J. Biomater. Sci. Polym. Ed. 2010;21:127–140. doi: 10.1163/156856209X410283. PubMed DOI

Williams S.F., Martin D.P., Skraly F.A. Medical Devices and Applications of Polyhydroxyalkanoate Polymers. 6,548,569. U.S. Patent. 2003 Apr 15;

Martin D.P., Rizk S., Ahuja A., Williams S.F. Polyhydroxyalkanoate Medical Textiles and Fibers. 10,314,683. U.S. Patent. 2019 Jun 11;

Singh A.K., Srivastava J.K., Chandel A.K., Sharma L., Mallick N., Singh S.P. Biomedical applications of microbially engineered polyhydroxyalkanoates: An insight into recent advances, bottlenecks, and solutions. Appl. Microbiol. Biotechnol. 2019;103:2007–2032. doi: 10.1007/s00253-018-09604-y. PubMed DOI

Wu Q., Wang Y., Chen G.-Q. Medical application of microbial biopolyesters polyhydroxyalkanoates. Artif. Cells Blood Substit. Biotechnol. 2009;37:1–12. doi: 10.1080/10731190802664429. PubMed DOI

Bugnicourt E., Cinelli P., Lazzeri A., Alvarez V.A. Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polym. Lett. 2014;8:791–808. doi: 10.3144/expresspolymlett.2014.82. DOI

Koller M., Salerno A., Braunegg G. Polyhydroxyalkanoates: Basics, production and applications of microbial biopolyesters. In: Kabasci S., editor. Bio-Based Plastics: Materials and Applications. John Wiley & Sons; Hoboken, NJ, USA: 2013. pp. 137–169.

Reusch R.N. Physiological importance of poly-(R)-3-hydroxybutyrates. Chem. Biodivers. 2012;9:2343–2366. doi: 10.1002/cbdv.201200278. PubMed DOI

Li X., Li X., Chen D., Guo J.-L., Feng D.-F., Sun M.-Z., Lu Y., Chen D.-Y., Zhao X., Feng X.-Z. Evaluating the biological impact of polyhydroxyalkanoates (PHAs) on developmental and exploratory profile of zebrafish larvae. RSC Adv. 2016;6:37018–37030. doi: 10.1039/C6RA04329A. DOI

Peng S.-W., Guo X.-Y., Shang G.-G., Li J., Xu X.-Y., You M.-L., Li P., Chen G.-Q. An assessment of the risks of carcinogenicity associated with polyhydroxyalkanoates through an analysis of DNA aneuploid and telomerase activity. Biomaterials. 2011;32:2546–2555. doi: 10.1016/j.biomaterials.2010.12.051. PubMed DOI

Koller M. Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): Auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules. 2018;23:362. doi: 10.3390/molecules23020362. PubMed DOI PMC

O’Brien F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today. 2011;14:88–95.

Puppi D., Braccini S., Ranaudo A., Chiellini F. Poly (3-hydroxybutyrate-co-3-hydroxyexanoate) scaffolds with tunable macro-and microstructural features by additive manufacturing. J. Biotechnol. 2020;308:96–107. doi: 10.1016/j.jbiotec.2019.12.005. PubMed DOI

Wei D.X., Dao J.W., Chen G.Q. A Micro-Ark for Cells: Highly Open Porous Polyhydroxyalkanoate Microspheres as Injectable Scaffolds for Tissue Regeneration. Adv. Mater. 2018;30:1802273. doi: 10.1002/adma.201802273. PubMed DOI

Sanhueza C., Acevedo F., Rocha S., Villegas P., Seeger M., Navia R. Polyhydroxyalkanoates as biomaterial for electrospun scaffolds. Int. J. Biol. Macromol. 2019;124:102–110. doi: 10.1016/j.ijbiomac.2018.11.068. PubMed DOI

Kundrat V., Cernekova N., Kovalcik A., Enev V., Marova I. Drug Release Kinetics of Electrospun PHB Meshes. Materials. 2019;12:1924. doi: 10.3390/ma12121924. PubMed DOI PMC

Pramanik N., De J., Basu R.K., Rath T., Kundu P.P. Fabrication of magnetite nanoparticle doped reduced graphene oxide grafted polyhydroxyalkanoate nanocomposites for tissue engineering application. RSC Adv. 2016;6:46116–46133. doi: 10.1039/C6RA03233H. DOI

Kovalcik A., Sangroniz L., Kalina M., Skopalova K., Humpolíček P., Omastova M., Mundigler N., Müller A.J. Properties of scaffolds prepared by fused deposition modeling of poly (hydroxyalkanoates) Int. J. Biol. Macromol. 2020 doi: 10.1016/j.ijbiomac.2020.06.022. in press. PubMed DOI

Gebauer B., Jendrossek D. Assay of poly (3-hydroxybutyrate) depolymerase activity and product determination. Appl. Environ. Microbiol. 2006;72:6094–6100. doi: 10.1128/AEM.01184-06. PubMed DOI PMC

Kanmani P., Kumaresan K., Aravind J., Karthikeyan S., Balan R. Enzymatic degradation of polyhydroxyalkanoate using lipase from Bacillus subtilis. Int. J. Environ. Sci. Technol. 2016;13:1541–1552. doi: 10.1007/s13762-016-0992-5. DOI

Azevedo H.S., Reis R.L. Understanding the Enzymatic Degradation of Biodegradable Polymers and Strategies to Control Their Degradation Rate. In: Reis R.L., Román J.S., editors. Biodegraddable Systems in Tissue Engineering and Regenerative Medicine. CRC Press; New York, NY, USA: 2004. pp. 177–204.

Obruca S., Marova I., Snajdar O., Mravcova L., Svoboda Z. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate. Biotechnol. Lett. 2010;32:1925–1932. doi: 10.1007/s10529-010-0376-8. PubMed DOI

Atkins T.W., Peacock S.J. In vitro biodegradation of polyhydroxybutyrate-hydroxyvalerate microcapsules exposed to Hank’s buffer, newborn calf serum, pancreatin and synthetic gastric juice. J. Microencapsul. 1997;14:35–49. doi: 10.3109/02652049709056466. PubMed DOI

Wang Y.-W., Mo W., Yao H., Wu Q., Chen J., Chen G.-Q. Biodegradation studies of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) Polym. Degrad. Stab. 2004;85:815–821. doi: 10.1016/j.polymdegradstab.2004.02.010. DOI

Obruca S., Snajdar O., Svoboda Z., Marova I. Application of random mutagenesis to enhance the production of polyhydroxyalkanoates by Cupriavidus necator H16 on waste frying oil. World J. Microbiol Biotechnol. 2013;29:2417–2428. doi: 10.1007/s11274-013-1410-5. PubMed DOI

Jeong H., Park J., Kim H. Determination of N.H. 4+ in Environmental Water with Interfering Substances Using the Modified Nessler Method. J. Chem. 2013 doi: 10.1155/2013/359217. DOI

Reinecke F., Steinbüchel A. Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. J. Mol. Microbiol. Biotechnol. 2009;16:91–108. doi: 10.1159/000142897. PubMed DOI

Kansiz M., Dominguez-Vidal A., McNaughton D., Lendl B. Fourier-transform infrared (FTIR) spectroscopy for monitoring and determining the degree of crystallisation of polyhydroxyalkanoates (PHAs) Anal. Bioanal. Chem. 2007;388:1207–1213. doi: 10.1007/s00216-007-1337-5. PubMed DOI

Shamala T.R., Divyashree M.S., Davis R., Kumari K.S.L., Vijayendra S.V.N., Raj B. Production and characterization of bacterial polyhydroxyalkanoate copolymers and evaluation of their blends by fourier transform infrared spectroscopy and scanning electron microscopy. Indian J. Microbiol. 2009;49:251–258. doi: 10.1007/s12088-009-0031-z. PubMed DOI PMC

Xu J., Guo B.-H., Yang R., Wu Q., Chen G.-Q., Zhang Z.-M. In situ FTIR study on melting and crystallization of polyhydroxyalkanoates. Polymer. 2002;43:6893–6899. doi: 10.1016/S0032-3861(02)00615-8. DOI

Wei L., Stark N.M., McDonald G. Interfacial improvements in biocomposites based on poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3 hydroxyvalerate) bioplastics reinforced and grafted with α-cellulose fibers. Green Chem. 2015;17:4800–4814. doi: 10.1039/C5GC01568E. DOI

Perveen K., Masood F., Hameed A. Preparation, characterization and evaluation of antibacterial properties of epirubicin loaded PHB and PHBV nanoparticles. Int. J. Biol. Macromol. 2020;144:259–266. doi: 10.1016/j.ijbiomac.2019.12.049. PubMed DOI

Luo S., Cao J., McDonald A.G. Interfacial Improvements in a Green Biopolymer Alloy of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Lignin via in Situ Reactive Extrusion. ACS Sustain. Chem. Eng. 2016;4:3465–3476. doi: 10.1021/acssuschemeng.6b00495. DOI

Lucarini M., Durazzo A., Kiefer J., Santini A., Lombardi-Boccia G., Souto E.B., Romani A., Lampe A., Ferrari Nicoli S., Gabrielli P. Grape Seeds: Chromatographic Profile of Fatty Acids and Phenolic Compounds and Qualitative Analysis by FTIR-ATR Spectroscopy. Foods. 2020;9:10. doi: 10.3390/foods9010010. PubMed DOI PMC

Menczel J.D., Judovits L., Prime R.B., Bair H.E., Reading M., Swier S. Differential scanning calorimetry (DSC) In: Menczel J.D., Prime R.B., editors. Thermal Analysis of Polymers: Fundamentals and Applications. John Wiley & Sons; Hoboken, NJ, USA: 2009. pp. 7–229.

Wellen R.M.R., Rabello M.S., Fechine G.J.M., Canedo E.L. The melting behaviour of poly(3-hydroxybutyrate by DSC. Reproducibility study. Polym. Test. 2013;32:215–220. doi: 10.1016/j.polymertesting.2012.11.001. DOI

Zhao H., Turng L.-S. Mechanical performance of microcellular injection molded biocomposites from green plastics: PLA and PHBV. In: Misra M., Pandey J.K., Mohanty A., editors. Biocomposites: Design and Mechanical Performance. Elsevier Science; Cambridge, UK: 2015.

Chan S.Y., Chan B.Q.Y., Liu Z., Parikh B.H., Zhang K., Lin Q., Su X., Kai D., Choo W.S., Young D.J. Electrospun pectin-polyhydroxybutyrate nanofibers for retinal tissue engineering. ACS Omega. 2017;2:8959–8968. doi: 10.1021/acsomega.7b01604. PubMed DOI PMC

Abe H., Kikkawa Y., Iwata T., Aoki H., Akehata T., Doi Y. Microscopic visualization on crystalline morphologies of thin films for poly [(R)-3-hydroxybutyric acid] and its copolymer. Polymer. 2000;41:867–874. doi: 10.1016/S0032-3861(99)00231-1. DOI

Anbukarasu P., Sauvageau D., Elias A.L. Enzymatic degradation of dimensionally constrained polyhydroxybutyrate films. Phys. Chem. Chem. Phys. 2017;19:30021–30030. doi: 10.1039/C7CP05133F. PubMed DOI

Canetti M., Urso M., Sadocco P. Influence of the morphology and of the supermolecular structure on the enzymatic degradation of bacterial poly (3-hydroxybutyrate) Polymer. 1999;40:2587–2594. doi: 10.1016/S0032-3861(98)00503-5. DOI

Bonartsev A., Boskhomodgiev A., Iordanskii A., Bonartseva G., Rebrov A., Makhina T., Myshkina V., Yakovlev S., Filatova E., Ivanov E. Hydrolytic degradation of poly (3-hydroxybutyrate), polylactide and their derivatives: Kinetics, crystallinity, and surface morphology. Mol. Cryst. Liq. Cryst. 2012;556:288–300. doi: 10.1080/15421406.2012.635982. DOI

Eldsäter C., Erlandsson B., Renstad R., Albertsson A.-C., Karlsson S. The biodegradation of amorphous and crystalline regions in film-blown poly (ϵ-caprolactone) Polymer. 2000;41:1297–1304. doi: 10.1016/S0032-3861(99)00278-5. DOI

Kumagai Y., Kanesawa Y., Doi Y. Enzymatic degradation of microbial poly (3-hydroxybutyrate) films. Die Makromol. Chem. 1992;193:53–57. doi: 10.1002/macp.1992.021930105. DOI

Renard E., Walls M., Guérin P., Langlois V. Hydrolytic degradation of blends of polyhydroxyalkanoates and functionalized polyhydroxyalkanoates. Polym. Degrad. Stab. 2004;85:779–787. doi: 10.1016/j.polymdegradstab.2003.11.019. DOI

Albertsson A.C., Varma I.K. Aliphatic polyesters: Synthesis, properties and applications. In: Albertsson A.C., Edlund U., Hakkarainen M., Karlsson S., Liu Y., Ranucci E., Ryner M., Lindblad M.S., Stridsberg K.M., Varma I.K., editors. Degradable Aliphatic Polyesters. Springer; Berlin/Heidelberg, Germany: 2003. pp. 1–40.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Degradation of P(3HB-co-4HB) Films in Simulated Body Fluids

. 2022 May 13 ; 14 (10) : . [epub] 20220513

Active biodegradable packaging films modified with grape seeds lignin

. 2020 Aug 05 ; 10 (49) : 29202-29213. [epub] 20200807

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...