Drug Release Kinetics of Electrospun PHB Meshes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SoMoPro 6SA18032
Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie
PubMed
31207921
PubMed Central
PMC6631252
DOI
10.3390/ma12121924
PII: ma12121924
Knihovny.cz E-zdroje
- Klíčová slova
- biomaterials, drug release kinetics, electrospinning, levofloxacin, morphology, poly(3-hydroxybutyrate), scaffolds,
- Publikační typ
- časopisecké články MeSH
Microbial poly(3-hydroxybutyrate) (PHB) has several advantages including its biocompatibility and ability to degrade in vivo and in vitro without toxic substances. This paper investigates the feasibility of electrospun PHB meshes serving as drug delivery systems. The morphology of the electrospun samples was modified by varying the concentration of PHB in solution and the solvent composition. Scanning electron microscopy of the electrospun PHB scaffolds revealed the formation of different morphologies including porous, filamentous/beaded and fiber structures. Levofloxacin was used as the model drug for incorporation into PHB electrospun meshes. The entrapment efficiency was found to be dependent on the viscosity of the PHB solution used for electrospinning and ranged from 14.4-81.8%. The incorporation of levofloxacin in electrospun meshes was confirmed by Fourier-transform infrared spectroscopy and UV-VIS spectroscopy. The effect of the morphology of the electrospun meshes on the levofloxacin release profile was screened in vitro in phosphate-buffered saline solution. Depending upon the morphology, the electrospun meshes released about 14-20% of levofloxacin during the first 24 h. The percentage of drug released after 13 days increased up to 32.4% and was similar for all tested morphologies. The antimicrobial efficiency of all tested samples independent of the morphology, was confirmed by agar diffusion testing.
Zobrazit více v PubMed
Sudhakar Y., Jayaveera K.N. Novel Drug Delivery Systems and Regulatory Affairs. SCHAND & Company Limited; New Delhi, India: 2014.
Langer R., Peppas N.A. Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J. 2003;49:2990–3006. doi: 10.1002/aic.690491202. DOI
Forbes D.C., Peppas N.A. Oral delivery of small RNA and DNA. J. Control. Release. 2012;162:438–445. doi: 10.1016/j.jconrel.2012.06.037. PubMed DOI
Acar H., Ting J.M., Srivastava S., La Belle J.L., Tirrell M.V. Molecular engineering solutions for therapeutic peptide delivery. Chem. Soc. Rev. 2017;46:6553–6569. doi: 10.1039/C7CS00536A. PubMed DOI
Shi J., Votruba A.R., Farokhzad O.C., Langer R. Nanotechnology in Drug Delivery and Tissue Engineering: From Discovery to Applications. Nano Lett. 2010;10:3223–3230. doi: 10.1021/nl102184c. PubMed DOI PMC
Li J., Fan C., Pei H., Shi J., Huang Q. Smart Drug Delivery Nanocarriers with Self-Assembled DNA Nanostructures. Adv. Mater. 2013;25:4386–4396. doi: 10.1002/adma.201300875. PubMed DOI
Liu D., Yang F., Xiong F., Gu N. The smart drug delivery system and its clinical potential. Theranostics. 2016;6:1306–1323. doi: 10.7150/thno.14858. PubMed DOI PMC
Ramasamy T., Ruttala H.B., Gupta B., Poudel B.K., Choi H.-G., Yong C.S., Kim J.O. Smart chemistry-based nanosized drug delivery systems for systemic applications: A comprehensive review. J. Control. Release. 2017;258:226–253. doi: 10.1016/j.jconrel.2017.04.043. PubMed DOI
Rezaie H.R., Bakhtiari L., Öchsner A. A Review of Biomaterials and their Applications in Drug Delivery. Springer; Singapore: 2018.
Park K. Controlled drug delivery systems: Past forward and future back. J. Control. Release. 2014;190:3–8. doi: 10.1016/j.jconrel.2014.03.054. PubMed DOI PMC
Rancan F., Papakostas D., Hadam S., Hackbarth S., Delair T., Primard C., Verrier B., Sterry W., Blume-Peytavi U., Vogt A. Investigation of Polylactic Acid (PLA) Nanoparticles as Drug Delivery Systems for Local Dermatotherapy. Pharm. Res. 2009;26:2027–2036. doi: 10.1007/s11095-009-9919-x. PubMed DOI
Pellis A., Silvestrini L., Scaini D., Coburn J.M., Gardossi L., Kaplan D.L., Herrero Acero E., Guebitz G.M. Enzyme-catalyzed functionalization of poly(L-lactic acid) for drug delivery applications. Pt AProcess. Biochem. 2017;59:77–83. doi: 10.1016/j.procbio.2016.10.014. DOI
Fukuzaki H., Yoshida M., Asano M., Kumakura M., Mashimo T., Yuasa H., Imai K., Yamanaka H. In vivo characteristics of high molecular weight copoly(L-lactide/glycolide) with S-type degradation pattern for application in drug delivery systems. Biomaterials. 1991;12:433–437. doi: 10.1016/0142-9612(91)90014-2. PubMed DOI
Xu P., Gullotti E., Tong L., Highley C.B., Errabelli D.R., Hasan T., Cheng J.-X., Kohane D.S., Yeo Y. Intracellular Drug Delivery by Poly(lactic-co-glycolic acid) Nanoparticles, Revisited. Mol. Pharm. 2009;6:190–201. doi: 10.1021/mp800137z. PubMed DOI PMC
Xiao Y., Yuan M., Zhang J., Yan J., Lang M. Functional Poly(ε-caprolactone) Based Materials: Preparation, Self-assembly and Application in Drug Delivery. Curr. Top. Med. Chem. 2014;14:781–818. doi: 10.2174/1568026614666140118222820. PubMed DOI
Michalak M., Kurcok P., Hakkarainen M. Polyhydroxyalkanoate-based drug delivery systems. Polym. Int. 2017;66:617–622. doi: 10.1002/pi.5282. DOI
Shrivastav A., Kim H.-Y., Kim Y.-R. Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. BioMed Res. Int. 2013;2013:581684. doi: 10.1155/2013/581684. PubMed DOI PMC
Merli D., Profumo A., Quadrelli P., Arciola C.R., Visai L. Drug Delivery Systems for Chemotherapeutics through Selected Polysaccharidic Vehicles. Curr. Org. Chem. 2018;22:1157–1192. doi: 10.2174/1385272822666180122161444. DOI
Salehi Dashtebayaz M.S., Nourbakhsh M.S. Interpenetrating networks hydrogels based on hyaluronic acid for drug delivery and tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 2019;68:442–451. doi: 10.1080/00914037.2018.1455680. DOI
Siepmann J., Siegel R.A., Rathbone M.J. Fundamentals and Applications of Controlled Release Drug Delivery. Springer; New York, NY, USA: 2011. p. 594.
Thakur V.K., Thakur M.K. Handbook of Polymers for Pharmaceutical Technologies, Biodegradable Polymers. Wiley; Hoboken, NJ, USA: 2015. p. 608.
Koller M., Marsalek L., de Sousa Dias M.M., Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. Pt ANew Biotechnol. 2017;37:24–38. doi: 10.1016/j.nbt.2016.05.001. PubMed DOI
Anjum A., Zuber M., Zia K.M., Noreen A., Anjum M.N., Tabasum S. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Int. J. Biol. Macromol. 2016;89:161–174. doi: 10.1016/j.ijbiomac.2016.04.069. PubMed DOI
Ray S., Kalia V.C. Biomedical Applications of Polyhydroxyalkanoates. Indian J. Microbiol. 2017;57:261–269. doi: 10.1007/s12088-017-0651-7. PubMed DOI PMC
Kovalcik A., Meixner K., Mihalic M., Zeilinger W., Fritz I., Fuchs W., Kucharczyk P., Stelzer F., Drosg B. Characterization of polyhydroxyalkanoates produced by Synechocystis salina from digestate supernatant. Int. J. Biol. Macromol. 2017;102:497–504. doi: 10.1016/j.ijbiomac.2017.04.054. PubMed DOI
Pouton C.W., Akhtar S. Biosynthetic polyhydroxyalkanoates and their potential in drug delivery. Adv. Drug Deliv. Rev. 1996;18:133–162. doi: 10.1016/0169-409X(95)00092-L. DOI
Atkins T.W., Peacock S.J. In vitro biodegradation of polyhydroxybutyrate-hydroxyvalerate microcapsules exposed to Hank’s buffer, newborn calf serum, pancreatin and synthetic gastric juice. J. Microencapsul. 1997;14:35–49. doi: 10.3109/02652049709056466. PubMed DOI
Yu J., Plackett D., Chen L.X.L. Kinetics and mechanism of the monomeric products from abiotic hydrolysis of poly[(R)-3-hydroxybutyrate] under acidic and alkaline conditions. Polym. Degrad. Stabil. 2005;89:289–299. doi: 10.1016/j.polymdegradstab.2004.12.026. DOI
Gogolewski S., Jovanovic M., Perren S.M., Dillon J.G., Hughes M.K. Tissue response and in vivo degradation of selected polyhydroxyacids: Polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA) J. Biomed. Mater. Res. 1993;27:1135–1148. doi: 10.1002/jbm.820270904. PubMed DOI
Asiri A.M., Mohammad A. Applications of Nanocomposite Materials in Drug Delivery. Elsevier Science; Cambridge, UK: 2018.
Cao K., Liu Y., Olkhov A., Siracusa V., Iordanskii A. PLLA-PHB fiber membranes obtained by solvent-free electrospinning for short-time drug delivery. Drug Deliv. Transl. Res. 2018;8:291–302. doi: 10.1007/s13346-017-0463-7. PubMed DOI
Acevedo F., Villegas P., Urtuvia V., Seeger M., Hermosilla J., Navia R. Bacterial polyhydroxybutyrate for electrospun fiber production. Int. J. Biol. Macromol. 2018;106:692–697. doi: 10.1016/j.ijbiomac.2017.08.066. PubMed DOI
Ding Y., Li W., Zhang F., Liu Z., Zanjanizadeh Ezazi N., Liu D., Santos H.A. Electrospun Fibrous Architectures for Drug Delivery, Tissue Engineering and Cancer Therapy. Adv. Funct. Mater. 2019:29. doi: 10.1002/adfm.201802852. DOI
Koller M., Koller M. Biodegradable and Biocompatible Polyhydroxy-alkanoates (PHA): Auspicious Microbial Macromolecules for Pharmaceutical and Therapeutic Applications. Molecules. 2018;23:362. doi: 10.3390/molecules23020362. PubMed DOI PMC
Fernandes J.G., Correia D.M., Botelho G., Padrao J., Dourado F., Ribeiro C., Lanceros-Mendez S., Sencadas V. PHB-PEO electrospun fiber membranes containing chlorhexidine for drug delivery applications. Polym. Test. 2014;34:64–71. doi: 10.1016/j.polymertesting.2013.12.007. DOI
Wang C., Yan K.-W., Lin Y.-D., Hsieh P.C.H. Biodegradable Core/Shell Fibers by Coaxial Electrospinning: Processing, Fiber Characterization, and Its Application in Sustained Drug Release. Macromolecules. 2010;43:6389–6397. doi: 10.1021/ma100423x. DOI
Doi Y., Kanesawa Y., Kunioka M., Saito T. Biodegradation of microbial copolyesters: Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) Macromolecules. 1990;23:26–31. doi: 10.1021/ma00203a006. DOI
Lee Y.-F., Sridewi N., Ramanathan S., Sudesh K. The influence of electrospinning parameters and drug loading on polyhydroxyalkanoate (PHA) nanofibers for drug delivery. Int. J. Biotechnol. Wellness Ind. 2015;4:103–113.
Mahaling B., Katti D.S. Fabrication of micro-structures of poly [(R)-3-hydroxybutyric acid] by electro-spraying/-spinning: Understanding the influence of polymer concentration and solvent type. J. Mater. Sci. 2014;49:4246–4260. doi: 10.1007/s10853-014-8120-8. DOI
Mhlanga N., Ray S.S. Kinetic models for the release of the anticancer drug doxorubicin from biodegradable polylactide/metal oxide-based hybrids. Int. J. Biol. Macromol. 2015;72:1301–1307. doi: 10.1016/j.ijbiomac.2014.10.038. PubMed DOI
Naveen N., Kumar R., Balaji S., Uma T.S., Natrajan T.S., Sehgal P.K. Synthesis of Nonwoven Nanofibers by Electrospinning—A Promising Biomaterial for Tissue Engineering and Drug Delivery. Adv. Eng. Mater. 2010;12:B380–B387. doi: 10.1002/adem.200980067. DOI
Levofloxacin. [(accessed on 29 April 2019)]; Available online: https://www.drugbank.ca/drugs/DB01137.
Correia D.M., Ribeiro C., Ferreira J.C., Botelho G., Ribelles J.L.G., Lanceros-Méndez S., Sencadas V. Influence of electrospinning parameters on poly (hydroxybutyrate) electrospun membranes fiber size and distribution. Polym. Eng. Sci. 2014;54:1608–1617. doi: 10.1002/pen.23704. DOI
Sofokleous P., Stride E., Edirisinghe M. Preparation, characterization, and release of amoxicillin from electrospun fibrous wound dressing patches. Pharm. Res. 2013;30:1926–1938. doi: 10.1007/s11095-013-1035-2. PubMed DOI
Fan X., Jiang Q., Sun Z., Li G., Ren X., Liang J., Huang T. Preparation and characterization of electrospun antimicrobial fibrous membranes based on polyhydroxybutyrate (PHB) Fibers Polym. 2015;16:1751–1758. doi: 10.1007/s12221-015-5108-1. DOI
Soares G.M.S., Figueiredo L.C., Faveri M., Cortelli S.C., Duarte P.M., Feres M. Mechanisms of action of systemic antibiotics used in periodontal treatment and mechanisms of bacterial resistance to these drugs. J. Appl. Oral. Sci. 2012;20:295–309. doi: 10.1590/S1678-77572012000300002. PubMed DOI PMC
Kapoor G., Saigal S., Elongavan A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J. Anaesthesiol. Clin. Pharmacol. 2017;33:300–305. doi: 10.4103/joacp.JOACP_349_15. PubMed DOI PMC
Percival S.L., Suleman L., Vuotto C., Donelli G. Healthcare-associated infections, medical devices and biofilms: Risk, tolerance and control. J. Med. Microbiol. 2015;64:323–334. doi: 10.1099/jmm.0.000032. PubMed DOI
Chen S., Liu B., Carlson M.A., Gombart A.F., Reilly D.A., Xie J. Recent advances in electrospun nanofibers for wound healing. Nanomedicine. 2017;12:1335–1352. doi: 10.2217/nnm-2017-0017. PubMed DOI PMC
Enzymatic Hydrolysis of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Scaffolds
Facile Preparation of Porous Microfiber from Poly-3-(R)-Hydroxybutyrate and Its Application