Facile Preparation of Porous Microfiber from Poly-3-(R)-Hydroxybutyrate and Its Application
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31877992
PubMed Central
PMC6981871
DOI
10.3390/ma13010086
PII: ma13010086
Knihovny.cz E-zdroje
- Klíčová slova
- P-3-HB, PHB, microfiber, pores, wet spinning,
- Publikační typ
- časopisecké články MeSH
In this study, we described the development of a simplified wet spinning method of the production of a novel type of porous continuous fiber based on poly-3-(R)-hydroxybutyrate (PHB). The principle of this method is precipitation of PHB dissolved in chloroform solution into the ethanol precipitation bath. The influence of various PHB concentrations and feed rates on specific surface area (measured by nitrogen absorption method) was studied. Materials were also characterized by SEM. Surface areas of fibers achieved by wet spinning were in the range of tens of m2.g-1, and the biggest surface area value was 55 m2.g-1. The average diameter of fibers was in the range of 20-120 μm and was dependent on both PHB concentration and feed rate. Optimum conditions for reaching stable fibers of high surface area were 3-5 % w.t. of PHB and feed rate 0.5-3 ml.h-1. Fibers were functionalized by adsorption of some natural plant extracts. The incorporation of active substances into fibers was confirmed by infrared spectroscopy. High antioxidant and antimicrobial effect of PHB-fibers with cloves extract was found, as well as excellent long-term stability and optimal dynamics of the release of active compounds. The newly produced material would be applicable in pharmacy, cosmetics, and wound healing.
Zobrazit více v PubMed
Abdul Khalil H.P.S., Banerjee A., Saurabh C.K., Tye Y.Y., Suriani A.B., Mohamed A., Karim A.A., Rizal S., Paridah M.T. Biodegradable Films for Fruits and Vegetable Packaging Application: Preparation and Properties. Food Eng. Rev. 2018;10:139–153. doi: 10.1007/s12393-018-9180-3. DOI
Sudesh K., Abe H., Doi Y. Synthesis, structure, and properties of polyhydroxyalkanoates: Biological polyesters. Prog. Polym. Sci. 2000;25:1503–1555. doi: 10.1016/S0079-6700(00)00035-6. DOI
Chen G.-Q., Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials. 2005;26:6565–6578. doi: 10.1016/j.biomaterials.2005.04.036. PubMed DOI
Chen G.-Q. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem. Soc. Rev. 2009;38:2434. doi: 10.1039/b812677c. PubMed DOI
Philip S., Keshavarz T., Roy I. Polyhydroxyalkanoates: Biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 2007;82:233–247. doi: 10.1002/jctb.1667. DOI
Verlinden R.A., Hill D.J., Kenward M.A., Williams C.D., Piotrowska-Seget Z., Radecka I.K. Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. AMB Express. 2011;1:11. doi: 10.1186/2191-0855-1-11. PubMed DOI PMC
Mandolesi de Araújo C.D., de Andrade C.C., de Souza e Silva E., Dupas F.A. Biodiesel production from used cooking oil: A review. Renew. Sustain. Energy Rev. 2013;27:445–452. doi: 10.1016/j.rser.2013.06.014. DOI
Yu L., Dean K., Li L. Polymer blends and composites from renewable resources. Prog. Polym. Sci. 2006;31:576–602. doi: 10.1016/j.progpolymsci.2006.03.002. DOI
Godbole S. Preparation and characterization of biodegradable poly-3-hydroxybutyrate–starch blend films. Bioresour. Technol. 2003;86:33–37. doi: 10.1016/S0960-8524(02)00110-4. PubMed DOI
Singh S., Mohanty A. Wood fiber reinforced bacterial bioplastic composites: Fabrication and performance evaluation. Compos. Sci. Technol. 2007;67:1753–1763. doi: 10.1016/j.compscitech.2006.11.009. DOI
Misra S.K., Valappil S.P., Roy I., Boccaccini A.R. Polyhydroxyalkanoate (PHA)/Inorganic Phase Composites for Tissue Engineering Applications. Biomacromolecules. 2006;7:2249–2258. doi: 10.1021/bm060317c. PubMed DOI
Horowitz D.M., Sanders J.K.M. Amorphous, biomimetic granules of polyhydroxybutyrate: Preparation, characterization, and biological implications. J. Am. Chem. Soc. 1994;116:2695–2702. doi: 10.1021/ja00086a001. DOI
Ito Y., Hasuda H., Kamitakahara M., Ohtsuki C., Tanihara M., Kang I.-K., Kwon O.H. A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material. J. Biosci. Bioeng. 2005;100:43–49. doi: 10.1263/jbb.100.43. PubMed DOI
Yamane H., Terao K., Hiki S., Kimura Y. Mechanical properties and higher order structure of bacterial homo poly(3-hydroxybutyrate) melt spun fibers. Polymer. 2001;42:3241–3248. doi: 10.1016/S0032-3861(00)00598-X. DOI
Nicosia A., Gieparda W., Foksowicz-Flaczyk J., Walentowska J., Wesołek D., Vazquez B., Prodi F., Belosi F. Air filtration and antimicrobial capabilities of electrospun PLA/PHB containing ionic liquid. Sep. Purif. Technol. 2015;154:154–160. doi: 10.1016/j.seppur.2015.09.037. DOI
Kuusipalo J. PHB/V in Extrusion Coating of Paper and Paperboard: Part I: Study of Functional Properties. J. Polym. Environ. 2000;8:39–47. doi: 10.1023/A:1010124205584. DOI
Da Silva-Valenzuela M.G., Wang S.H., Wiebeck H., Valenzuela-Díaz F.R. Nanocomposite Microcapsules from Powders of Polyhydroxybutyrate (PHB) and Smectite Clays. Mater. Sci. Forum. 2010;660–661:794–798. doi: 10.4028/www.scientific.net/MSF.660-661.794. DOI
Rhim J.-W., Park H.-M., Ha C.-S. Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 2013;38:1629–1652. doi: 10.1016/j.progpolymsci.2013.05.008. DOI
Wu Q., Wang Y., Chen G.-Q. Medical Application of Microbial Biopolyesters Polyhydroxyalkanoates. Artif. Cells Blood Substit. Biotechnol. 2009;37:1–12. doi: 10.1080/10731190802664429. PubMed DOI
Rivera-Briso A., Serrano-Aroca Á. Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate): Enhancement Strategies for Advanced Applications. Polymers. 2018;10:732. doi: 10.3390/polym10070732. PubMed DOI PMC
Gogolewski S., Jovanovic M., Perren S.M., Dillon J.G., Hughes M.K. The effect of melt-processing on the degradation of selected polyhydroxyacids: Polylactides, polyhydroxybutyrate, and polyhydroxybutyrate-co-valerates. Polym. Degrad. Stab. 1993;40:313–322. doi: 10.1016/0141-3910(93)90137-8. DOI
Chiono V., Ciardelli G., Vozzi G., Sotgiu M.G., Vinci B., Domenici C., Giusti P. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(ε-caprolactone) blends for tissue engineering applications in the form of hollow fibers. J. Biomed. Mater. Res. Part A. 2008;85:938–953. doi: 10.1002/jbm.a.31513. PubMed DOI
Zhang D. Advances in Filament Yarn Spinning of Textiles and Polymers. Woodhead Publishing Ltd.; Amsterdam, The Netherlands: 2014. 210p Association with the Textile Institute.
Qin Y. An Overview of Medical Textile Products. Medical Textile Materials. Elsevier; Amsterdam, The Netherlands: 2016. [(accessed on 21 July 2019)]. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780081006184000029.
Mota C., Wang S., Puppi D., Gazzari M., Migone C., Chiellini F., Chen G.Q., Chiellini E. Additive manufacturing of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] scaffolds for engineered bone development. J. Tissue Eng. Regen. Med. 2017;11:175–186. doi: 10.1002/term.1897. PubMed DOI
Kundrat V., Cernekova N., Kovalcik A., Enev V., Marova I. Drug Release Kinetics of Electrospun PHB Meshes. Materials. 2019;12:1924. doi: 10.3390/ma12121924. PubMed DOI PMC
Cheirsilp B., Louhasakul Y. Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel. Bioresour. Technol. 2013;142:329–337. doi: 10.1016/j.biortech.2013.05.012. PubMed DOI
Ramon-Goncalves M., Gomez-Mejia E., Rosales-Conrado N., Leon-Gonzalez M.E., Madrid Y. Extraction, identification and quantification of polyphenols from spent coffee grounds by chromatographic methods and chemometric analyses. Waste Manag. 2019;96:15–24. doi: 10.1016/j.wasman.2019.07.009. PubMed DOI
Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999;26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3. PubMed DOI
Matouskova P., Marova I., Bokrova J., Benesova P. Effect of Encapsulation of Antimicrobial Activity of Herbal Extracts with Lysozyme. Food Technol. Biotechnol. 2016;54:304–316. doi: 10.17113/ftb.54.03.16.4413. PubMed DOI PMC
Coates J. Interpretation of Infrared Spectra, A Practical Approach. In: Meyers R.A., editor. Encyclopedia of Analytical Chemistry. John Wiley & Sons; New York, NY, USA: 2000. pp. 10815–10837.
Sepahpour S., Selamat J., Abdul Manap M., Khatib A., Abdull Razis A. Comparative Analysis of Chemical Composition, Antioxidant Activity and Quantitative Characterization of Some Phenolic Compounds in Selected Herbs and Spices in Different Solvent Extraction Systems. Molecules. 2018;23:402. doi: 10.3390/molecules23020402. PubMed DOI PMC
Fan X., Jiang Q., Sun Z., Li G., Ren X., Liang J., Huang T. Preparation and characterization of electrospun antimicrobial fibrous membranes based on polyhydroxybutyrate (PHB) Fibers Polym. 2015;16:1751–1758. doi: 10.1007/s12221-015-5108-1. DOI
Yilmaz F., Celep G., Tetik G. Nanofiber Research. IntechOpen; Rijeka, Croatia: 2016. Nanofibers in Cosmetics.