Facile Preparation of Porous Microfiber from Poly-3-(R)-Hydroxybutyrate and Its Application

. 2019 Dec 23 ; 13 (1) : . [epub] 20191223

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31877992

In this study, we described the development of a simplified wet spinning method of the production of a novel type of porous continuous fiber based on poly-3-(R)-hydroxybutyrate (PHB). The principle of this method is precipitation of PHB dissolved in chloroform solution into the ethanol precipitation bath. The influence of various PHB concentrations and feed rates on specific surface area (measured by nitrogen absorption method) was studied. Materials were also characterized by SEM. Surface areas of fibers achieved by wet spinning were in the range of tens of m2.g-1, and the biggest surface area value was 55 m2.g-1. The average diameter of fibers was in the range of 20-120 μm and was dependent on both PHB concentration and feed rate. Optimum conditions for reaching stable fibers of high surface area were 3-5 % w.t. of PHB and feed rate 0.5-3 ml.h-1. Fibers were functionalized by adsorption of some natural plant extracts. The incorporation of active substances into fibers was confirmed by infrared spectroscopy. High antioxidant and antimicrobial effect of PHB-fibers with cloves extract was found, as well as excellent long-term stability and optimal dynamics of the release of active compounds. The newly produced material would be applicable in pharmacy, cosmetics, and wound healing.

Zobrazit více v PubMed

Abdul Khalil H.P.S., Banerjee A., Saurabh C.K., Tye Y.Y., Suriani A.B., Mohamed A., Karim A.A., Rizal S., Paridah M.T. Biodegradable Films for Fruits and Vegetable Packaging Application: Preparation and Properties. Food Eng. Rev. 2018;10:139–153. doi: 10.1007/s12393-018-9180-3. DOI

Sudesh K., Abe H., Doi Y. Synthesis, structure, and properties of polyhydroxyalkanoates: Biological polyesters. Prog. Polym. Sci. 2000;25:1503–1555. doi: 10.1016/S0079-6700(00)00035-6. DOI

Chen G.-Q., Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials. 2005;26:6565–6578. doi: 10.1016/j.biomaterials.2005.04.036. PubMed DOI

Chen G.-Q. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem. Soc. Rev. 2009;38:2434. doi: 10.1039/b812677c. PubMed DOI

Philip S., Keshavarz T., Roy I. Polyhydroxyalkanoates: Biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 2007;82:233–247. doi: 10.1002/jctb.1667. DOI

Verlinden R.A., Hill D.J., Kenward M.A., Williams C.D., Piotrowska-Seget Z., Radecka I.K. Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. AMB Express. 2011;1:11. doi: 10.1186/2191-0855-1-11. PubMed DOI PMC

Mandolesi de Araújo C.D., de Andrade C.C., de Souza e Silva E., Dupas F.A. Biodiesel production from used cooking oil: A review. Renew. Sustain. Energy Rev. 2013;27:445–452. doi: 10.1016/j.rser.2013.06.014. DOI

Yu L., Dean K., Li L. Polymer blends and composites from renewable resources. Prog. Polym. Sci. 2006;31:576–602. doi: 10.1016/j.progpolymsci.2006.03.002. DOI

Godbole S. Preparation and characterization of biodegradable poly-3-hydroxybutyrate–starch blend films. Bioresour. Technol. 2003;86:33–37. doi: 10.1016/S0960-8524(02)00110-4. PubMed DOI

Singh S., Mohanty A. Wood fiber reinforced bacterial bioplastic composites: Fabrication and performance evaluation. Compos. Sci. Technol. 2007;67:1753–1763. doi: 10.1016/j.compscitech.2006.11.009. DOI

Misra S.K., Valappil S.P., Roy I., Boccaccini A.R. Polyhydroxyalkanoate (PHA)/Inorganic Phase Composites for Tissue Engineering Applications. Biomacromolecules. 2006;7:2249–2258. doi: 10.1021/bm060317c. PubMed DOI

Horowitz D.M., Sanders J.K.M. Amorphous, biomimetic granules of polyhydroxybutyrate: Preparation, characterization, and biological implications. J. Am. Chem. Soc. 1994;116:2695–2702. doi: 10.1021/ja00086a001. DOI

Ito Y., Hasuda H., Kamitakahara M., Ohtsuki C., Tanihara M., Kang I.-K., Kwon O.H. A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material. J. Biosci. Bioeng. 2005;100:43–49. doi: 10.1263/jbb.100.43. PubMed DOI

Yamane H., Terao K., Hiki S., Kimura Y. Mechanical properties and higher order structure of bacterial homo poly(3-hydroxybutyrate) melt spun fibers. Polymer. 2001;42:3241–3248. doi: 10.1016/S0032-3861(00)00598-X. DOI

Nicosia A., Gieparda W., Foksowicz-Flaczyk J., Walentowska J., Wesołek D., Vazquez B., Prodi F., Belosi F. Air filtration and antimicrobial capabilities of electrospun PLA/PHB containing ionic liquid. Sep. Purif. Technol. 2015;154:154–160. doi: 10.1016/j.seppur.2015.09.037. DOI

Kuusipalo J. PHB/V in Extrusion Coating of Paper and Paperboard: Part I: Study of Functional Properties. J. Polym. Environ. 2000;8:39–47. doi: 10.1023/A:1010124205584. DOI

Da Silva-Valenzuela M.G., Wang S.H., Wiebeck H., Valenzuela-Díaz F.R. Nanocomposite Microcapsules from Powders of Polyhydroxybutyrate (PHB) and Smectite Clays. Mater. Sci. Forum. 2010;660–661:794–798. doi: 10.4028/www.scientific.net/MSF.660-661.794. DOI

Rhim J.-W., Park H.-M., Ha C.-S. Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 2013;38:1629–1652. doi: 10.1016/j.progpolymsci.2013.05.008. DOI

Wu Q., Wang Y., Chen G.-Q. Medical Application of Microbial Biopolyesters Polyhydroxyalkanoates. Artif. Cells Blood Substit. Biotechnol. 2009;37:1–12. doi: 10.1080/10731190802664429. PubMed DOI

Rivera-Briso A., Serrano-Aroca Á. Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate): Enhancement Strategies for Advanced Applications. Polymers. 2018;10:732. doi: 10.3390/polym10070732. PubMed DOI PMC

Gogolewski S., Jovanovic M., Perren S.M., Dillon J.G., Hughes M.K. The effect of melt-processing on the degradation of selected polyhydroxyacids: Polylactides, polyhydroxybutyrate, and polyhydroxybutyrate-co-valerates. Polym. Degrad. Stab. 1993;40:313–322. doi: 10.1016/0141-3910(93)90137-8. DOI

Chiono V., Ciardelli G., Vozzi G., Sotgiu M.G., Vinci B., Domenici C., Giusti P. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(ε-caprolactone) blends for tissue engineering applications in the form of hollow fibers. J. Biomed. Mater. Res. Part A. 2008;85:938–953. doi: 10.1002/jbm.a.31513. PubMed DOI

Zhang D. Advances in Filament Yarn Spinning of Textiles and Polymers. Woodhead Publishing Ltd.; Amsterdam, The Netherlands: 2014. 210p Association with the Textile Institute.

Qin Y. An Overview of Medical Textile Products. Medical Textile Materials. Elsevier; Amsterdam, The Netherlands: 2016. [(accessed on 21 July 2019)]. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780081006184000029.

Mota C., Wang S., Puppi D., Gazzari M., Migone C., Chiellini F., Chen G.Q., Chiellini E. Additive manufacturing of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] scaffolds for engineered bone development. J. Tissue Eng. Regen. Med. 2017;11:175–186. doi: 10.1002/term.1897. PubMed DOI

Kundrat V., Cernekova N., Kovalcik A., Enev V., Marova I. Drug Release Kinetics of Electrospun PHB Meshes. Materials. 2019;12:1924. doi: 10.3390/ma12121924. PubMed DOI PMC

Cheirsilp B., Louhasakul Y. Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel. Bioresour. Technol. 2013;142:329–337. doi: 10.1016/j.biortech.2013.05.012. PubMed DOI

Ramon-Goncalves M., Gomez-Mejia E., Rosales-Conrado N., Leon-Gonzalez M.E., Madrid Y. Extraction, identification and quantification of polyphenols from spent coffee grounds by chromatographic methods and chemometric analyses. Waste Manag. 2019;96:15–24. doi: 10.1016/j.wasman.2019.07.009. PubMed DOI

Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999;26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3. PubMed DOI

Matouskova P., Marova I., Bokrova J., Benesova P. Effect of Encapsulation of Antimicrobial Activity of Herbal Extracts with Lysozyme. Food Technol. Biotechnol. 2016;54:304–316. doi: 10.17113/ftb.54.03.16.4413. PubMed DOI PMC

Coates J. Interpretation of Infrared Spectra, A Practical Approach. In: Meyers R.A., editor. Encyclopedia of Analytical Chemistry. John Wiley & Sons; New York, NY, USA: 2000. pp. 10815–10837.

Sepahpour S., Selamat J., Abdul Manap M., Khatib A., Abdull Razis A. Comparative Analysis of Chemical Composition, Antioxidant Activity and Quantitative Characterization of Some Phenolic Compounds in Selected Herbs and Spices in Different Solvent Extraction Systems. Molecules. 2018;23:402. doi: 10.3390/molecules23020402. PubMed DOI PMC

Fan X., Jiang Q., Sun Z., Li G., Ren X., Liang J., Huang T. Preparation and characterization of electrospun antimicrobial fibrous membranes based on polyhydroxybutyrate (PHB) Fibers Polym. 2015;16:1751–1758. doi: 10.1007/s12221-015-5108-1. DOI

Yilmaz F., Celep G., Tetik G. Nanofiber Research. IntechOpen; Rijeka, Croatia: 2016. Nanofibers in Cosmetics.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...