Active biodegradable packaging films modified with grape seeds lignin
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35521111
PubMed Central
PMC9055960
DOI
10.1039/d0ra04074f
PII: d0ra04074f
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Biodegradable packaging materials represent one possible solution for how to reduce the negative environmental impact of plastics. The main idea of this work was to investigate the possibility of utilizing grape seed lignin for the modification of polyhydroxyalkanoates with the use of its antioxidant capacity in packaging films. For this purpose, polymeric films based on the blend of high crystalline poly(3-hydroxybutyrate) (PHB) and amorphous polyhydroxyalkanoate (PHA) were prepared. PHB/PHA films displayed Young modulus of 240 MPa, tensile strength at a maximum of 6.6 MPa and elongation at break of 95.2%. The physical properties of PHB/PHA films were modified by the addition of 1-10 wt% of grape seeds lignin (GS-L). GS-L lignin showed a high antioxidant capacity: 238 milligrams of Trolox equivalents were equal to one gram of grape seeds lignin. The incorporation of grape seeds lignin into PHB/PHA films positively influenced their gas barrier properties, antioxidant activity and biodegradability. The values of oxygen and carbon dioxide transition rate of PHB/PHA with 1 wt% of GS-L were 7.3 and 36.3 cm3 m-2 24 h 0.1 MPa, respectively. The inhibition percentage of the ABTS radical determined in PHB/PHA/GS-L was in the range of 29.2% to 100% depending on the lignin concentration. The biodegradability test carried out under controlled composting environment for 90 days showed that the PHB/PHA film with 50 w/w% of amorphous PHA reached the degradability degree of 68.8% being about 26.6% higher decomposition than in the case of neat high crystalline PHB film. The degradability degree of PHA films in compost within the tested period reflected the modification of the semi-crystalline character and varied with the incorporated lignin. From the toxicological point of view, the composts obtained after biodegradation of PHA films proved the non-toxicity of PHB/PHA/GS-L materials and its degradation products showed a positive effect on white mustard (Sinapis alba L.) seeds germination.
Zobrazit více v PubMed
Poole J., Packaging trends, http://www.packaginginsights.com
Ker W. Sen Y. K. Rajendran S. D. E3S Web Conf. 2019;136(4):04092.
Koller M. Molecules. 2018;23:362. doi: 10.3390/molecules23020362. PubMed DOI PMC
Koller M., Salerno A. and Braunegg G., in Bio-based plastics: materials and applications, ed. S. Kabasci, John Wiley & Sons, 2013, pp. 137–169
Gadgil B. S. T. Killi N. Rathna G. V. MedChemComm. 2017;8:1774–1787. doi: 10.1039/C7MD00252A. PubMed DOI PMC
Barrett A., Bioplastics News, October 15, 2018, https://bioplasticsnews.com
Kovalcik A. Obruca S. Fritz I. Marova I. BioResources. 2019;14:2468–2471.
Marova I. Pavelkova R. Kundrat V. Matouskova P. Kovalcik A. Bokrova J. J. Biotechnol. 2019;305:S5. doi: 10.1016/j.jbiotec.2019.05.034. DOI
Kim S. W. Kim P. Lee H. S. Kim J. H. Biotechnol. Lett. 1996;18:25–30. doi: 10.1007/BF00137805. DOI
Obruca S. Marova I. Snajdar O. Mravcova L. Svoboda Z. Biotechnol. Lett. 2010;32:1925–1932. doi: 10.1007/s10529-010-0376-8. PubMed DOI
Yeo J. C. C. Muiruri J. K. Thitsartarn W. Li Z. He C. Mater. Sci. Eng., C. 2018;92:1092–1116. doi: 10.1016/j.msec.2017.11.006. PubMed DOI
De Almeida W. B., Bizzarri P. S., Durao A. S. and Nascimenti J. F. D., DE602004027554D1, 2010
Crétois R. Chenal J.-M. Sheibat-Othman N. Monnier A. Martin C. Astruz O. Kurusu R. Demarquette N. R. Polymer. 2016;102:176–182. doi: 10.1016/j.polymer.2016.09.017. DOI
Garcia-Garcia D. Ferri J. Boronat T. López-Martínez J. Balart R. Polym. Bull. 2016;73:3333–3350. doi: 10.1007/s00289-016-1659-6. DOI
Wada M. Kido H. Ohyama K. Ichibangase T. Kishikawa N. Ohba Y. Nakashima M. N. Kuroda N. Nakashima K. Food Chem. 2007;101:980–986. doi: 10.1016/j.foodchem.2006.02.050. DOI
Pospíšil J. Polym. Degrad. Stab. 1988;20:181–202. doi: 10.1016/0141-3910(88)90069-9. DOI
Wada M. Kido H. Ohyama K. Ichibangase T. Kishikawa N. Ohba Y. Nakashima M. N. Kuroda N. Nakashima K. Food Chem. 2007;101:980–986. doi: 10.1016/0141-3910(88)90069-9. DOI
Kosikova B. Labaj J. Gregorova A. Slamenova D. Holzforschung. 2006;60:166–202.
Siracusa V. Rocculi P. Romani S. Rosa M. D. Trends Food Sci. Technol. 2008;19:634–643. doi: 10.1016/j.tifs.2008.07.003. DOI
Laycock B. Nikolić M. Colwell J. M. Gauthier E. Halley P. Bottle S. George G. Prog. Polym. Sci. 2017;71:144–189. doi: 10.1016/j.progpolymsci.2017.02.004. DOI
Tappi Standards, Acid-insoluble lignin in wood and pulp, Tappi Method T 222 om-06, Tappi Press, Atlanta, GA, 2006
Tappi Standards, Acid-soluble lignin in wood and pulp, Tappi Method UM 250, Tappi Press, Atlanta GA, 1985
Wang Y.-W. Wu Q. Chen G.-Q. Biomaterials. 2003;24:4621–4629. doi: 10.1016/S0142-9612(03)00356-9. PubMed DOI
Glasser W. G. Davé V. Frazier C. E. J. Wood Chem. Technol. 1993;13:545–559. doi: 10.1080/02773819308020533. DOI
Contreras S. A. Gaspar A. R. Guerra A. Lucia L. A. Argyropoulos D. S. Biomacromolecules. 2008;9:3362–3369. doi: 10.1021/bm800673a. PubMed DOI
Zinovyev G. Sulaeva I. Podzimek S. Rössner D. Kilpeläinen I. Sumerskii I. Rosenau T. Potthast A. ChemSusChem. 2018;11:3259–3268. doi: 10.1002/cssc.201801177. PubMed DOI PMC
Gordobil O. Herrera R. Yahyaoui M. Ilk S. Kaya M. Labidi J. RSC Adv. 2018;8:24525–24533. doi: 10.1039/C8RA02255K. PubMed DOI PMC
Qazi S. S. Li D. Briens C. Berruti F. Abou-Zaid M. M. Molecules. 2017;22(372):1–14. PubMed PMC
Re R. Pellegrini N. Proteggente A. Pannala A. Yang M. Rice-Evans C. Free Radicals Biol. Med. 1999;26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3. PubMed DOI
Olejar K. J. Ray S. Ricci A. Kilmartin P. A. Cellulose. 2014;21:4545–4556. doi: 10.1007/s10570-014-0447-4. DOI
Arshanitsa A. Ponomarenko J. Dizhibite T. Andersone A. Gosselink R. J. A. van der Putten J. Lauberts M. Telysheva G. J. Anal. Appl. Pyrolysis. 2013;103:78–85. doi: 10.1016/j.jaap.2012.12.023. DOI
Bhunia K. Sablani S. S. Tang J. Rasco B. Compr. Rev. Food Sci. Food Saf. 2013;12:523–545. doi: 10.1111/1541-4337.12028. PubMed DOI
Vaverková M. Toman F. Adamcová D. Kotovicová J. Ecol. Chem. Eng. S. 2012;19:347–358.
Adamcová D. Vaverková M. D. Břoušková E. J. Ecol. Eng. 2016;17:33–37. doi: 10.12911/22998993/62283. DOI
Valiente C. Arrigoni E. Esteban R. M. Amado R. J. Food Sci. 1995;60:818–820. doi: 10.1111/j.1365-2621.1995.tb06237.x. DOI
Yedro F. M. Garcia-Serna J. Cantero D. A. Sobrón F. Cocero M. J. RSC Adv. 2014;4:30332–30339. doi: 10.1039/C4RA00429A. DOI
Košíková B. Demianova V. Kačuráková M. J. Appl. Polym. Sci. 1993;47:1065–1073. doi: 10.1002/app.1993.070470613. DOI
Gregorova A. Cibulkova Z. Kosikova B. Simon P. Polym. Degrad. Stab. 2005;89:553–558. doi: 10.1016/j.polymdegradstab.2005.02.007. DOI
Gregorova A. Kosikova B. Moravcik R. Polym. Degrad. Stab. 2005;91:229–233. doi: 10.1016/j.polymdegradstab.2005.05.009. DOI
Šurina I. Jablonský M. Ház A. Sladková A. Briškárová A. Kačík F. Šima J. BioResources. 2015;10:1408–1423. doi: 10.15376/biores.10.1.1408-1423. DOI
Lora J., in Monomers, Polymers and Composites from Renewable Resources, ed. M. N. Belgacem and A. Gandini, Elsevier Science, Amsterdam, 2008, pp. 225–242
Brandt A. Chen L. van Dongen B. E. Welton T. Hallett J. P. Green Chem. 2015;17:5019–5034. doi: 10.1039/C5GC01314C. DOI
Roberts V. M. Stein V. Reiner T. Lemonidou A. Li X. Lercher J. A. Chem.–Eur. J. 2011;17:5939–5948. doi: 10.1002/chem.201002438. PubMed DOI
Sameni J. Krigstin S. Sain M. BioResources. 2017;12:1548–1565. doi: 10.15376/biores.12.1.1548-1565. DOI
Stuart B. H., Infrared Spectroscopy: Fundamentals and Applications, John Wiley & Sons, Hoboken, 1st edn, 2004
Xu J. Guo B.-H. Yang R. Wu Q. Chen G.-Q. Zhang Z.-M. Polymer. 2002;43:6893–6899. doi: 10.1016/S0032-3861(02)00615-8. DOI
Herrera-Kao J. W. A. Loría-Bastarrachea M. I. Pérez-Padilla Y. Cauich-Rodríguez J. V. Vázquez-Torres H. Cervantes-Uc J. M. Polym. Bull. 2018;75:4191–4205. doi: 10.1007/s00289-017-2260-3. DOI
Kovalcik A. Obruca S. Kalina M. Machovsky M. Enev V. Jakesova M. Sobkova M. Marova I. Materials. 2020;13:1–21. doi: 10.3390/ma13132992. PubMed DOI PMC
Pappalardo F. Fragalà M. Mineo P. G. Damigella A. Catara A. F. Palmeri R. Rescifina A. Int. J. Biol. Macromol. 2014;65:89–96. doi: 10.1016/j.ijbiomac.2014.01.014. PubMed DOI
Kovalcik A. Meixner K. Mihalic M. Zeilinger W. Fritz I. Kucharczyk P. Stelzer F. Drosg B. Int. J. Biol. Macromol. 2017;102:497–504. doi: 10.1016/j.ijbiomac.2017.04.054. PubMed DOI
Gregorova A. Wimmer R. Hrabalova M. Koller M. Ters T. Mundigler N. Holzforschung. 2009;63:565–570.
Barham P. Keller A. Otun E. Holmes P. J. Mater. Sci. 1984;19:2781–2794. doi: 10.1007/BF01026954. DOI
Kovalcik A. Pérez-Camargo R. A. Fürst C. Kucharczyk P. Müller A. J. Polym. Degrad. Stab. 2017;142:244–254. doi: 10.1016/j.polymdegradstab.2017.07.009. DOI
Kovalcik A. Machovsky M. Kozakova Z. Koller M. React. Funct. Polym. 2015;94:25–34. doi: 10.1016/j.reactfunctpolym.2015.07.001. DOI
Mousavioun P. George G. A. Doherty W. O. S. Polym. Degrad. Stab. 2012;97:1114–1122. doi: 10.1016/j.polymdegradstab.2012.04.004. DOI
Bertini F. Canetti M. Cacciamani A. Elegir G. Orlandi M. Zoia L. Polym. Degrad. Stab. 2012;97:1979–1987. doi: 10.1016/j.polymdegradstab.2012.03.009. DOI
Gordobil O. Egüés I. Llano-Ponte R. Labidi J. Polym. Degrad. Stab. 2014;108:330–338. doi: 10.1016/j.polymdegradstab.2014.01.002. DOI
Gordobil O. Delucis R. Egüés I. Labidi J. Ind. Crops Prod. 2015;72:46–53. doi: 10.1016/j.indcrop.2015.01.055. DOI
Gregorova A. Kosikova B. Stasko A. J. Appl. Polym. Sci. 2007;106:1626–1631. doi: 10.1002/app.26687. DOI
Commission Regulation (EU), No. 10/2011, 14 January 2011, http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2011:012, TOC
Hernandez R. J. and Giacin J. R., in Food Storage Stability, ed. I. A. Taub and R. P. Singh, CRC Press, New York, USA, 1998, Ch. 10, p. 297
Amaro L. P., Abdelwahab M. A., Morelli A., Chielini F. and Chielini E., in Recent Advances in Biotechnology. Microbial Biopolyester Production, Performance and Processing. Bioengineering, Characterization, and Suistainability, ed. M. Koller, Bentham eBooks imprint, 2016, Ch. 1, p. 12
Brown D. and Viney C., in Biotechnology. The Science and the Business, ed. V. Moses, R. E. Cape and D. G. Springham, CRC Press, New York, 1999, Ch, 19, p. 358
Siracusa V. Ingrao C. Karpova S. G. Olkhov A. A. Iordanskii A. L. Eur. Polym. J. 2017;91:149–161. doi: 10.1016/j.eurpolymj.2017.03.047. DOI
Keskin G. Kızıl G. Bechelany M. Pochat-Bohatier C. Öner M. Pure Appl. Chem. 2017;89:1841–1848.
Siracusa V. Blanco I. Romani S. Tylewicz U. Dalla Rosa M. J. Food Sci. 2012;77:E264–E272. doi: 10.1111/j.1750-3841.2012.02905.x. PubMed DOI
Ayuso C. F. Agüero A. A. Hernández J. A. P. Santoyo A. B. Gómez E. G. Polym. Polym. Compos. 2017;25:571–582.
Reid I. D. Can. J. Bot. 1995;73(S1):1011–1018. doi: 10.1139/b95-351. DOI