Active biodegradable packaging films modified with grape seeds lignin

. 2020 Aug 05 ; 10 (49) : 29202-29213. [epub] 20200807

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35521111

Biodegradable packaging materials represent one possible solution for how to reduce the negative environmental impact of plastics. The main idea of this work was to investigate the possibility of utilizing grape seed lignin for the modification of polyhydroxyalkanoates with the use of its antioxidant capacity in packaging films. For this purpose, polymeric films based on the blend of high crystalline poly(3-hydroxybutyrate) (PHB) and amorphous polyhydroxyalkanoate (PHA) were prepared. PHB/PHA films displayed Young modulus of 240 MPa, tensile strength at a maximum of 6.6 MPa and elongation at break of 95.2%. The physical properties of PHB/PHA films were modified by the addition of 1-10 wt% of grape seeds lignin (GS-L). GS-L lignin showed a high antioxidant capacity: 238 milligrams of Trolox equivalents were equal to one gram of grape seeds lignin. The incorporation of grape seeds lignin into PHB/PHA films positively influenced their gas barrier properties, antioxidant activity and biodegradability. The values of oxygen and carbon dioxide transition rate of PHB/PHA with 1 wt% of GS-L were 7.3 and 36.3 cm3 m-2 24 h 0.1 MPa, respectively. The inhibition percentage of the ABTS radical determined in PHB/PHA/GS-L was in the range of 29.2% to 100% depending on the lignin concentration. The biodegradability test carried out under controlled composting environment for 90 days showed that the PHB/PHA film with 50 w/w% of amorphous PHA reached the degradability degree of 68.8% being about 26.6% higher decomposition than in the case of neat high crystalline PHB film. The degradability degree of PHA films in compost within the tested period reflected the modification of the semi-crystalline character and varied with the incorporated lignin. From the toxicological point of view, the composts obtained after biodegradation of PHA films proved the non-toxicity of PHB/PHA/GS-L materials and its degradation products showed a positive effect on white mustard (Sinapis alba L.) seeds germination.

Zobrazit více v PubMed

Poole J., Packaging trends, http://www.packaginginsights.com

Ker W. Sen Y. K. Rajendran S. D. E3S Web Conf. 2019;136(4):04092.

Koller M. Molecules. 2018;23:362. doi: 10.3390/molecules23020362. PubMed DOI PMC

Koller M., Salerno A. and Braunegg G., in Bio-based plastics: materials and applications, ed. S. Kabasci, John Wiley & Sons, 2013, pp. 137–169

Gadgil B. S. T. Killi N. Rathna G. V. MedChemComm. 2017;8:1774–1787. doi: 10.1039/C7MD00252A. PubMed DOI PMC

Barrett A., Bioplastics News, October 15, 2018, https://bioplasticsnews.com

Kovalcik A. Obruca S. Fritz I. Marova I. BioResources. 2019;14:2468–2471.

Marova I. Pavelkova R. Kundrat V. Matouskova P. Kovalcik A. Bokrova J. J. Biotechnol. 2019;305:S5. doi: 10.1016/j.jbiotec.2019.05.034. DOI

Kim S. W. Kim P. Lee H. S. Kim J. H. Biotechnol. Lett. 1996;18:25–30. doi: 10.1007/BF00137805. DOI

Obruca S. Marova I. Snajdar O. Mravcova L. Svoboda Z. Biotechnol. Lett. 2010;32:1925–1932. doi: 10.1007/s10529-010-0376-8. PubMed DOI

Yeo J. C. C. Muiruri J. K. Thitsartarn W. Li Z. He C. Mater. Sci. Eng., C. 2018;92:1092–1116. doi: 10.1016/j.msec.2017.11.006. PubMed DOI

De Almeida W. B., Bizzarri P. S., Durao A. S. and Nascimenti J. F. D., DE602004027554D1, 2010

Crétois R. Chenal J.-M. Sheibat-Othman N. Monnier A. Martin C. Astruz O. Kurusu R. Demarquette N. R. Polymer. 2016;102:176–182. doi: 10.1016/j.polymer.2016.09.017. DOI

Garcia-Garcia D. Ferri J. Boronat T. López-Martínez J. Balart R. Polym. Bull. 2016;73:3333–3350. doi: 10.1007/s00289-016-1659-6. DOI

Wada M. Kido H. Ohyama K. Ichibangase T. Kishikawa N. Ohba Y. Nakashima M. N. Kuroda N. Nakashima K. Food Chem. 2007;101:980–986. doi: 10.1016/j.foodchem.2006.02.050. DOI

Pospíšil J. Polym. Degrad. Stab. 1988;20:181–202. doi: 10.1016/0141-3910(88)90069-9. DOI

Wada M. Kido H. Ohyama K. Ichibangase T. Kishikawa N. Ohba Y. Nakashima M. N. Kuroda N. Nakashima K. Food Chem. 2007;101:980–986. doi: 10.1016/0141-3910(88)90069-9. DOI

Kosikova B. Labaj J. Gregorova A. Slamenova D. Holzforschung. 2006;60:166–202.

Siracusa V. Rocculi P. Romani S. Rosa M. D. Trends Food Sci. Technol. 2008;19:634–643. doi: 10.1016/j.tifs.2008.07.003. DOI

Laycock B. Nikolić M. Colwell J. M. Gauthier E. Halley P. Bottle S. George G. Prog. Polym. Sci. 2017;71:144–189. doi: 10.1016/j.progpolymsci.2017.02.004. DOI

Tappi Standards, Acid-insoluble lignin in wood and pulp, Tappi Method T 222 om-06, Tappi Press, Atlanta, GA, 2006

Tappi Standards, Acid-soluble lignin in wood and pulp, Tappi Method UM 250, Tappi Press, Atlanta GA, 1985

Wang Y.-W. Wu Q. Chen G.-Q. Biomaterials. 2003;24:4621–4629. doi: 10.1016/S0142-9612(03)00356-9. PubMed DOI

Glasser W. G. Davé V. Frazier C. E. J. Wood Chem. Technol. 1993;13:545–559. doi: 10.1080/02773819308020533. DOI

Contreras S. A. Gaspar A. R. Guerra A. Lucia L. A. Argyropoulos D. S. Biomacromolecules. 2008;9:3362–3369. doi: 10.1021/bm800673a. PubMed DOI

Zinovyev G. Sulaeva I. Podzimek S. Rössner D. Kilpeläinen I. Sumerskii I. Rosenau T. Potthast A. ChemSusChem. 2018;11:3259–3268. doi: 10.1002/cssc.201801177. PubMed DOI PMC

Gordobil O. Herrera R. Yahyaoui M. Ilk S. Kaya M. Labidi J. RSC Adv. 2018;8:24525–24533. doi: 10.1039/C8RA02255K. PubMed DOI PMC

Qazi S. S. Li D. Briens C. Berruti F. Abou-Zaid M. M. Molecules. 2017;22(372):1–14. PubMed PMC

Re R. Pellegrini N. Proteggente A. Pannala A. Yang M. Rice-Evans C. Free Radicals Biol. Med. 1999;26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3. PubMed DOI

Olejar K. J. Ray S. Ricci A. Kilmartin P. A. Cellulose. 2014;21:4545–4556. doi: 10.1007/s10570-014-0447-4. DOI

Arshanitsa A. Ponomarenko J. Dizhibite T. Andersone A. Gosselink R. J. A. van der Putten J. Lauberts M. Telysheva G. J. Anal. Appl. Pyrolysis. 2013;103:78–85. doi: 10.1016/j.jaap.2012.12.023. DOI

Bhunia K. Sablani S. S. Tang J. Rasco B. Compr. Rev. Food Sci. Food Saf. 2013;12:523–545. doi: 10.1111/1541-4337.12028. PubMed DOI

Vaverková M. Toman F. Adamcová D. Kotovicová J. Ecol. Chem. Eng. S. 2012;19:347–358.

Adamcová D. Vaverková M. D. Břoušková E. J. Ecol. Eng. 2016;17:33–37. doi: 10.12911/22998993/62283. DOI

Valiente C. Arrigoni E. Esteban R. M. Amado R. J. Food Sci. 1995;60:818–820. doi: 10.1111/j.1365-2621.1995.tb06237.x. DOI

Yedro F. M. Garcia-Serna J. Cantero D. A. Sobrón F. Cocero M. J. RSC Adv. 2014;4:30332–30339. doi: 10.1039/C4RA00429A. DOI

Košíková B. Demianova V. Kačuráková M. J. Appl. Polym. Sci. 1993;47:1065–1073. doi: 10.1002/app.1993.070470613. DOI

Gregorova A. Cibulkova Z. Kosikova B. Simon P. Polym. Degrad. Stab. 2005;89:553–558. doi: 10.1016/j.polymdegradstab.2005.02.007. DOI

Gregorova A. Kosikova B. Moravcik R. Polym. Degrad. Stab. 2005;91:229–233. doi: 10.1016/j.polymdegradstab.2005.05.009. DOI

Šurina I. Jablonský M. Ház A. Sladková A. Briškárová A. Kačík F. Šima J. BioResources. 2015;10:1408–1423. doi: 10.15376/biores.10.1.1408-1423. DOI

Lora J., in Monomers, Polymers and Composites from Renewable Resources, ed. M. N. Belgacem and A. Gandini, Elsevier Science, Amsterdam, 2008, pp. 225–242

Brandt A. Chen L. van Dongen B. E. Welton T. Hallett J. P. Green Chem. 2015;17:5019–5034. doi: 10.1039/C5GC01314C. DOI

Roberts V. M. Stein V. Reiner T. Lemonidou A. Li X. Lercher J. A. Chem.–Eur. J. 2011;17:5939–5948. doi: 10.1002/chem.201002438. PubMed DOI

Sameni J. Krigstin S. Sain M. BioResources. 2017;12:1548–1565. doi: 10.15376/biores.12.1.1548-1565. DOI

Stuart B. H., Infrared Spectroscopy: Fundamentals and Applications, John Wiley & Sons, Hoboken, 1st edn, 2004

Xu J. Guo B.-H. Yang R. Wu Q. Chen G.-Q. Zhang Z.-M. Polymer. 2002;43:6893–6899. doi: 10.1016/S0032-3861(02)00615-8. DOI

Herrera-Kao J. W. A. Loría-Bastarrachea M. I. Pérez-Padilla Y. Cauich-Rodríguez J. V. Vázquez-Torres H. Cervantes-Uc J. M. Polym. Bull. 2018;75:4191–4205. doi: 10.1007/s00289-017-2260-3. DOI

Kovalcik A. Obruca S. Kalina M. Machovsky M. Enev V. Jakesova M. Sobkova M. Marova I. Materials. 2020;13:1–21. doi: 10.3390/ma13132992. PubMed DOI PMC

Pappalardo F. Fragalà M. Mineo P. G. Damigella A. Catara A. F. Palmeri R. Rescifina A. Int. J. Biol. Macromol. 2014;65:89–96. doi: 10.1016/j.ijbiomac.2014.01.014. PubMed DOI

Kovalcik A. Meixner K. Mihalic M. Zeilinger W. Fritz I. Kucharczyk P. Stelzer F. Drosg B. Int. J. Biol. Macromol. 2017;102:497–504. doi: 10.1016/j.ijbiomac.2017.04.054. PubMed DOI

Gregorova A. Wimmer R. Hrabalova M. Koller M. Ters T. Mundigler N. Holzforschung. 2009;63:565–570.

Barham P. Keller A. Otun E. Holmes P. J. Mater. Sci. 1984;19:2781–2794. doi: 10.1007/BF01026954. DOI

Kovalcik A. Pérez-Camargo R. A. Fürst C. Kucharczyk P. Müller A. J. Polym. Degrad. Stab. 2017;142:244–254. doi: 10.1016/j.polymdegradstab.2017.07.009. DOI

Kovalcik A. Machovsky M. Kozakova Z. Koller M. React. Funct. Polym. 2015;94:25–34. doi: 10.1016/j.reactfunctpolym.2015.07.001. DOI

Mousavioun P. George G. A. Doherty W. O. S. Polym. Degrad. Stab. 2012;97:1114–1122. doi: 10.1016/j.polymdegradstab.2012.04.004. DOI

Bertini F. Canetti M. Cacciamani A. Elegir G. Orlandi M. Zoia L. Polym. Degrad. Stab. 2012;97:1979–1987. doi: 10.1016/j.polymdegradstab.2012.03.009. DOI

Gordobil O. Egüés I. Llano-Ponte R. Labidi J. Polym. Degrad. Stab. 2014;108:330–338. doi: 10.1016/j.polymdegradstab.2014.01.002. DOI

Gordobil O. Delucis R. Egüés I. Labidi J. Ind. Crops Prod. 2015;72:46–53. doi: 10.1016/j.indcrop.2015.01.055. DOI

Gregorova A. Kosikova B. Stasko A. J. Appl. Polym. Sci. 2007;106:1626–1631. doi: 10.1002/app.26687. DOI

Commission Regulation (EU), No. 10/2011, 14 January 2011, http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2011:012, TOC

Hernandez R. J. and Giacin J. R., in Food Storage Stability, ed. I. A. Taub and R. P. Singh, CRC Press, New York, USA, 1998, Ch. 10, p. 297

Amaro L. P., Abdelwahab M. A., Morelli A., Chielini F. and Chielini E., in Recent Advances in Biotechnology. Microbial Biopolyester Production, Performance and Processing. Bioengineering, Characterization, and Suistainability, ed. M. Koller, Bentham eBooks imprint, 2016, Ch. 1, p. 12

Brown D. and Viney C., in Biotechnology. The Science and the Business, ed. V. Moses, R. E. Cape and D. G. Springham, CRC Press, New York, 1999, Ch, 19, p. 358

Siracusa V. Ingrao C. Karpova S. G. Olkhov A. A. Iordanskii A. L. Eur. Polym. J. 2017;91:149–161. doi: 10.1016/j.eurpolymj.2017.03.047. DOI

Keskin G. Kızıl G. Bechelany M. Pochat-Bohatier C. Öner M. Pure Appl. Chem. 2017;89:1841–1848.

Siracusa V. Blanco I. Romani S. Tylewicz U. Dalla Rosa M. J. Food Sci. 2012;77:E264–E272. doi: 10.1111/j.1750-3841.2012.02905.x. PubMed DOI

Ayuso C. F. Agüero A. A. Hernández J. A. P. Santoyo A. B. Gómez E. G. Polym. Polym. Compos. 2017;25:571–582.

Reid I. D. Can. J. Bot. 1995;73(S1):1011–1018. doi: 10.1139/b95-351. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace