• This record comes from PubMed

Effect of an Antioxidant Based on Red Beetroot Extract on the Abiotic Stability of Polylactide and Polycaprolactone

. 2021 Aug 27 ; 26 (17) : . [epub] 20210827

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
RP/CPS/2020/002 Ministerstvo Školství, Mládeže a Tělovýchovy
IGA/CPS/2020/002 Univerzita Tomáše Bati ve Zlíně

Links

PubMed 34500624
PubMed Central PMC8434083
DOI 10.3390/molecules26175190
PII: molecules26175190
Knihovny.cz E-resources

This study investigated the effect of natural antioxidants inherent to beetroot (Beta vulgaris var. Vulgaris) on the ageing of environmentally friendly plastics. Certain properties were examined in this context, comprising thermal, mechanical, and morphological properties. A visual evaluation of relevant changes in the given polymers (polylactide and polycaprolactone) was conducted during an ageing test in a UV chamber (45 °C, 70% humidity) for 720 h. The films were prepared by a casting process, in which samples with the extract of beetroot were additionally incorporated in a common filler (bentonite), this serving as a carrier for the extract. The results showed the effect of the incorporated antioxidant, which was added to stabilize the biodegradable films. Its efficiency during the ageing test in the polymers tended to exceed or be comparable to that of the reference sample.

See more in PubMed

Râpă M., Popa M., Cinelli P., Lazzeri A., Burnichi R., Mitelut A., Grosu E. Biodegradable alternative to plastics for agriculture application. Rom. Biotechnol. Lett. 2011;16:59–64.

Luckachan G., Pillai C. Biodegradable Polymers—A Review on Recent Trends and Emerging Perspectives. J. Polym. Environ. 2011;19:637–676. doi: 10.1007/s10924-011-0317-1. DOI

Marsh K., Bugusu B. Food Packaging—Roles, Materials, and Environmental Issues. J. Food Sci. 2007;72:R39–R55. doi: 10.1111/j.1750-3841.2007.00301.x. PubMed DOI

Gross R.A., Kalra B. Biodegradable Polymers for the Environment. Science. 2002;297:803–807. doi: 10.1126/science.297.5582.803. PubMed DOI

Siracusa V., Rocculi P., Romani S., Rosa M.D. Biodegradable polymers for food packaging: A review. Trends Food Sci. Technol. 2008;19:634–643. doi: 10.1016/j.tifs.2008.07.003. DOI

Kucharczyk P., Hnátková E., Dvorak Z., Sedlarik V. Novel aspects of the degradation process of PLA based bulky samples under conditions of high partial pressure of water vapour. Polym. Degrad. Stab. 2013;98:150–157. doi: 10.1016/j.polymdegradstab.2012.10.016. DOI

Nampoothiri K.M., Nair N., John R.P. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010;101:8493–8501. doi: 10.1016/j.biortech.2010.05.092. PubMed DOI

Biresaw G., Carriere C.J. Compatibility and mechanical properties of blends of polystyrene with biodegradable polyesters. Compos. Part A Appl. Sci. Manuf. 2004;35:313–320. doi: 10.1016/j.compositesa.2003.09.020. DOI

Msuya N. Poly(lactic-acid) Production from Monomer to Polymer: A review. Sci.-Fed. J. Polym. 2017;1:1–15.

Hu Y., Daoud W., Cheuk K., Lin C. Newly Developed Techniques on Polycondensation, Ring-Opening Polymerization and Polymer Modification: Focus on Poly(Lactic Acid) Materials. 2016;9:133. doi: 10.3390/ma9030133. PubMed DOI PMC

Chen G.-X., Kim H., Kim E.-S., Yoon J.-S. Synthesis of high-molecular-weight poly(L-lactic acid) through the direct condensation polymerization of L-lactic acid in bulk state. Eur. Polym. J. 2006;42:468–472. doi: 10.1016/j.eurpolymj.2005.07.022. DOI

Kricheldorf H. Syntheses and application of polylactides. Chemosphere. 2001;43:49–54. doi: 10.1016/S0045-6535(00)00323-4. PubMed DOI

Wu C.-S. Renewable resource-based composites of recycled natural fibers and maleated polylactide bioplastic: Characterization and biodegradability. Polym. Degrad. Stab. 2009;94:1076–1084. doi: 10.1016/j.polymdegradstab.2009.04.002. DOI

Sin L.T., Rahmat A., Rahman W.A.W.A. Polylactic Acid: PLA Biopolymer Technology and Applications. William Andrew; Norwich, NY, USA: 2012. Polylactic Acid: PLA Biopolymer Technology and Applications; pp. 1–341.

Mclauchlin A., Thomas N. Biodegradable polymer nanocomposites. Adv. Polym. Nanocompos. Types Appl. 2012:398–430. doi: 10.1533/9780857096241.2.398. DOI

Cameron R.E., Moghaddam A. Degradation Rate of Bioresorbable Materials: Prediction and Evaluation. Woodhead Publishing; Cambridge, UK: 2008. Synthetic bioresorbable polymers; pp. 43–66.

Guarino V., Gentile G., Sorrentino L., Ambrosio L. Polycaprolactone: Synthesis, Properties, and Applications. Encycl. Polym. Sci. Technol. 2017:1–36. doi: 10.1002/0471440264.pst658. DOI

Karamanlioglu M., Preziosi R., Robson G.D. Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): A review. Polym. Degrad. Stab. 2017;137:122–130. doi: 10.1016/j.polymdegradstab.2017.01.009. DOI

Arrieta M., Sessini V., Peponi L. Biodegradable poly(ester-urethane) incorporated with catechin with shape memory and antioxidant activity for food packaging. Eur. Polym. J. 2017;94:111–124. doi: 10.1016/j.eurpolymj.2017.06.047. DOI

Nagarajan S., Nagarajan R., Kumar J., Salemme A., Togna A., Saso L., Bruno F. Antioxidant Activity of Synthetic Polymers of Phenolic Compounds. Polymers. 2020;12:1646. doi: 10.3390/polym12081646. PubMed DOI PMC

Jamshidian M., Tehrany E.A., Imran M., Akhtar M.J., Cleymand F., Desobry S. Structural, mechanical and barrier properties of active PLA–antioxidant films. J. Food Eng. 2012;110:380–389. doi: 10.1016/j.jfoodeng.2011.12.034. DOI

Zeid A., Karabagias I.K., Nassif M., Kontominas M.G. Preparation and evaluation of antioxidant packaging films made of polylactic acid containing thyme, rosemary, and oregano essential oils. J. Food Process. Preserv. 2019;43:e14102. doi: 10.1111/jfpp.14102. DOI

Quiles-Carrillo L., Montava-Jordà S., Boronat T., Sammon C., Balart R., Torres-Giner S. On the Use of Gallic Acid as a Potential Natural Antioxidant and Ultraviolet Light Stabilizer in Cast-Extruded Bio-Based High-Density Polyethylene Films. Polymers. 2020;12:31. doi: 10.3390/polym12010031. PubMed DOI PMC

Byun Y., Kim Y., Whiteside S. Characterization of an antioxidant polylactic acid (PLA) film prepared with α-tocopherol, BHT and polyethylene glycol using film cast extruder. J. Food Eng. 2010;100:239–244. doi: 10.1016/j.jfoodeng.2010.04.005. DOI

Fasihnia S.H., Peighambardoust S.H., Peighambardoust S.J., Oromiehie A., Soltanzadeh M., Peressini D. Migration analysis, antioxidant, and mechanical characterization of polypropylene-based active food packaging films loaded with BHA, BHT, and TBHQ. J. Food Sci. 2020;85:2317–2328. doi: 10.1111/1750-3841.15337. PubMed DOI

Hanafi H., Nurdiani N., Sirait S., Widyahapsari D., Irawan C. Migration Test of Polylactic Acid Packaging that Modified with (Butyl hydroxy toluene) and (Tert butyl hydroxy quinon) Synthetic Antioxidant in Food Simulant. Orient. J. Chem. 2019;35:552–556. doi: 10.13005/ojc/350207. DOI

Veiga-Santos P., Silva L., Oliveira de souza C., Silva J., Albuquerque E., Druzian J. Coffee-cocoa additives for bio-based antioxidant packaging. Food Packag. Shelf Life. 2018;18:37–41. doi: 10.1016/j.fpsl.2018.08.005. DOI

Kwak H.S., Ji S., Jeong Y. The effect of air flow in coffee roasting for antioxidant activity and total polyphenol content. Food Control. 2017;71:210–216. doi: 10.1016/j.foodcont.2016.06.047. DOI

Bae I., Ham H., Jeong M., Kim D., Kim H. Simultaneous determination of 15 phenolic compounds and caffeine in teas and mate using RP-HPLC/UV detection: Method development and optimization of extraction process. Food Chem. 2015;172:469–475. doi: 10.1016/j.foodchem.2014.09.050. PubMed DOI

Vostrejs P., Adamcová D., Vaverková M., Enev V., Kalina M., Machovsky M., Šourková M., Marova I., Kovalcik A. Active biodegradable packaging films modified with grape seeds lignin. RSC Adv. 2020;10:29202–29213. doi: 10.1039/D0RA04074F. PubMed DOI PMC

Rehman S., Abbasi K., Qayyum A., Jahangir M., Sohail A., Nisa S., Tareen M., Tareen M., Sopade P. Comparative analysis of citrus fruits for nutraceutical properties. Food Sci. Technol. 2019;40:153–157. doi: 10.1590/fst.07519. DOI

Chan C.L., Gan R.-Y., Corke H. The phenolic composition and antioxidant capacity of soluble and bound extracts in selected dietary spices and medicinal herbs. Int. J. Food Sci. Technol. 2016;51:565–573. doi: 10.1111/ijfs.13024. DOI

Kirschweng B., Tátraaljai D., Földes E., Pukanszky B. Natural antioxidants as stabilizers for polymers. Polym. Degrad. Stab. 2017;145:25–40. doi: 10.1016/j.polymdegradstab.2017.07.012. DOI

Fu Y., Shi J., Xie S.-Y., Zhang T.-Y., Soladoye O., Aluko R. Red Beetroot Betalains: Perspectives on Extraction, Processing, and Potential Health Benefits. J. Agric. Food Chem. 2020;68:11595–11611. doi: 10.1021/acs.jafc.0c04241. PubMed DOI

Ravichandran K., Saw N.M.M.T., Mohdaly A., Gabr A., Kastell A., Riedel H., Cai Z., Knorr D., Smetanska I. Impact of processing of red beet on betalain content and antioxidant activity. Food Res. Int. 2013;50:670–675. doi: 10.1016/j.foodres.2011.07.002. DOI

Bastos E., Schliemann W. Plant Antioxidants and Health. Springer; Cham, Switzerland: 2021. Betalains as Antioxidants; pp. 1–44.

Belhadj Slimen I., Najar T., Abderrabba M. Chemical and Antioxidant Properties of Betalains. J. Agric. Food Chem. 2017;65:675–689. doi: 10.1021/acs.jafc.6b04208. PubMed DOI

Gokhale S., Lele S. Betalain Content and Antioxidant Activity of Beta vulgaris: Effect of Hot Air Convective Drying and Storage. J. Food Process. Preserv. 2014;38:585–590. doi: 10.1111/jfpp.12006. DOI

Scaffaro R., Maio A., Sutera F., Gulino E.F., Morreale M. Degradation and Recycling of Films Based on Biodegradable Polymers: A Short Review. Polymers. 2019;11:651. doi: 10.3390/polym11040651. PubMed DOI PMC

Ganiari S., Choulitoudi E., Oreopoulou V. Edible and active films and coatings as carriers of natural antioxidants for lipid food. Trends Food Sci. Technol. 2017;68:70–82. doi: 10.1016/j.tifs.2017.08.009. DOI

Cheng S.-Y., Wang B., Weng Y.-M. Antioxidant and antimicrobial edible zein/chitosan composite films fabricated by incorporation of phenolic compounds and dicarboxylic acids. LWT Food Sci. Technol. 2015;63:115–121. doi: 10.1016/j.lwt.2015.03.030. DOI

Ribeiro A., Estevinho B., Rocha F. Preparation and Incorporation of Functional Ingredients in Edible Films and Coatings. Food Bioprocess Technol. 2021;14:209–231. doi: 10.1007/s11947-020-02528-4. DOI

Vargas-Rubóczki T., Raczkó V., Takácsné Hájos M. Evaluation of morphological parameters and bioactive compounds in different varieties of beetroot (Beta vulgaris L. ssp. esculenta GURKE var. rubra L.) Int. J. Hortic. Sci. 2015;21:31–35. doi: 10.31421/IJHS/21/3-4./1172. DOI

Shyamala B., Prakash J. Nutritional Content and Antioxidant Properties of Pulp Waste from Daucus carota and Beta vulgaris. Malays. J. Nutr. 2010;16:397–408. PubMed

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010;2:1231–1246. doi: 10.3390/nu2121231. PubMed DOI PMC

Chiorcea-Paquim A.-M., Enache T.A., De Souza Gil E., Oliveira-Brett A.M. Natural phenolic antioxidants electrochemistry: Towards a new food science methodology. Compr. Rev. Food Sci. Food Saf. 2020;19:1680–1726. doi: 10.1111/1541-4337.12566. PubMed DOI

Rosecler M., Rossetto M.R., Vianello F., Rocha S., Pace G., Lima G. Antioxidant substances and pesticide in parts of beet organic and conventional manure. Afr. J. Plant Sci. 2009;3:245–253.

Lembong E., Utama G.L., Saputra R. IOP Conference Series: Materials Science and Engineering. Volume 306. IOP Publishing; Bristol, UK: 2019. Phytochemical Test, Vitamin C Content and Antioxidant Activities Beet Root (Beta vulgaris Linn.) Extracts as Food Coloring Agent from Some Areas in Java Island; p. 012010. DOI

Jiratanan T., Liu R. Antioxidant Activity of Processed Table Beets (Beta vulgaris var, conditiva) and Green Beans (Phaseolus vulgaris L.) J. Agric. Food Chem. 2004;52:2659–2670. doi: 10.1021/jf034861d. PubMed DOI

Kujala T., Vienola M., Klika K., Loponen J., Pihlaja K. Betalain and phenolic compositions of four beetroot (Beta vulgaris) cultivars. Eur. Food Res. Technol. 2002;214:505–510. doi: 10.1007/s00217-001-0478-6. DOI

Slatnar A., Stampar F., Veberic R., Jakopič J. HPLC-MSn Identification of Betalain Profile of Different Beetroot (Beta vulgaris L. ssp. vulgaris) Parts and Cultivars. J. Food Sci. 2015;80:C1952–C1958. doi: 10.1111/1750-3841.12977. PubMed DOI

Nestora S., Merlier F., Prost E., Haupt K., Rossi C., Bui B.T.S. Solid-phase extraction of betanin and isobetanin from beetroot extracts using a dipicolinic acid molecularly imprinted polymer. J. Chromatogr. A. 2016;1465:47–54. doi: 10.1016/j.chroma.2016.08.069. PubMed DOI

Dintcheva N.T., Al-Malaika S., Morici E., Arrigo R. Thermo-oxidative stabilization of poly(lactic acid)-based nanocomposites through the incorporation of clay with in-built antioxidant activity. J. Appl. Polym. Sci. 2017;134:44974. doi: 10.1002/app.44974. DOI

Syarofi R., Wirjosentono B., Tamrin, Rihayat T. IOP Conference Series: Materials Science and Engineering. Volume 536. IOP Publishing; Bristol, UK: 2019. Mechanical Properties, Morphology and Thermal Degradation of PCL (Poly ε-Caprolactone) Biodegradable Polymer Blended Nanocomposites with Aceh Bentonite as Filler; p. 12040. DOI

Suryani, Agusnar H., Wirjosentono B., Rihayat T., Aidy N. IOP Conference Series: Materials Science and Engineering. Volume 222. IOP Publishing; Bristol, UK: 2017. Improving the quality of biopolymer(poly lactic acid) with the addition of bentonite as filler; p. 012008. DOI

Arrigo R., Dintcheva N. Natural Anti-oxidants for Bio-polymeric Materials. Arch. Chem. Res. 2017;1:2. doi: 10.21767/2572-4657.100013. DOI

Salević A., Prieto C., Cabedo L., Nedović V., Lagaron J. Physicochemical, Antioxidant and Antimicrobial Properties of Electrospun Poly(ε-caprolactone) Films Containing a Solid Dispersion of Sage (Salvia officinalis L.) Extract. Nanomaterials. 2019;9:270. doi: 10.3390/nano9020270. PubMed DOI PMC

Marra A., Cimmino S., Silvestre C. Effect of TiO2 and ZnO on PLA degradation in various media. Adv. Mater. Sci. 2017;2:1–8. doi: 10.15761/AMS.1000122. DOI

Kosowska K., Szatkowski P. Influence of ZnO, SiO2 and TiO2 on the aging process of PLA fibers produced by electrospinning method. J. Therm. Anal. Calorim. 2019;140:1769–1778. doi: 10.1007/s10973-019-08890-6. PubMed DOI PMC

Darain F., Chan W.Y., Chian K. Performance of Surface-Modified Polycaprolactone on Growth Factor Binding, Release, and Proliferation of Smooth Muscle Cells. Soft Mater. 2010;9:64–78. doi: 10.1080/1539445X.2010.520797. DOI

França D., Morais D., Bezerra E., Araujo E., Wellen R. Photodegradation Mechanisms on Poly(ε-caprolactone) (PCL) Mater. Res. 2018;21 doi: 10.1590/1980-5373-mr-2017-0837. DOI

European Standard . EN ISO 4892-3:2016 Plastics—Methods of Exposure to Laboratory Light Sources—Part 3: Fluorescent UV Lamps (EN ISO 4892-3:2016) CEN; Brussels, Belgium: 2016.

European Standard . EN ISO 527-3:2018 Plastics–Determination of Tensile Properties–Part 3: Test Conditions for Films and Sheets. CEN; Brussels, Belgium: 2019.

Latos-Brozio M., Masek A. Environmentally Friendly Polymer Compositions with Natural Amber Acid. Int. J. Mol. Sci. 2021;22:1556. doi: 10.3390/ijms22041556. PubMed DOI PMC

Kortei N., Odamtten G., Mary O., Appiah V., Akonor P. Determination of color parameters of gamma irradiated fresh and dried mushrooms during storage. Croat. J. Food Technol. Biotechnol. Nutr. 2015;10:66–71.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...