Effect of an Antioxidant Based on Red Beetroot Extract on the Abiotic Stability of Polylactide and Polycaprolactone
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
RP/CPS/2020/002
Ministerstvo Školství, Mládeže a Tělovýchovy
IGA/CPS/2020/002
Univerzita Tomáše Bati ve Zlíně
PubMed
34500624
PubMed Central
PMC8434083
DOI
10.3390/molecules26175190
PII: molecules26175190
Knihovny.cz E-resources
- Keywords
- abiotic stability, antioxidant, beetroot, biodegradable polymer, degradation, polycaprolactone, polylactide,
- MeSH
- Antioxidants chemistry MeSH
- Bentonite chemistry MeSH
- Beta vulgaris chemistry MeSH
- Stress, Physiological drug effects MeSH
- Plant Roots chemistry MeSH
- Plastics chemistry MeSH
- Polyesters chemistry MeSH
- Plant Extracts chemistry MeSH
- Vegetables chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antioxidants MeSH
- Bentonite MeSH
- Plastics MeSH
- poly(lactide) MeSH Browser
- polycaprolactone MeSH Browser
- Polyesters MeSH
- Plant Extracts MeSH
This study investigated the effect of natural antioxidants inherent to beetroot (Beta vulgaris var. Vulgaris) on the ageing of environmentally friendly plastics. Certain properties were examined in this context, comprising thermal, mechanical, and morphological properties. A visual evaluation of relevant changes in the given polymers (polylactide and polycaprolactone) was conducted during an ageing test in a UV chamber (45 °C, 70% humidity) for 720 h. The films were prepared by a casting process, in which samples with the extract of beetroot were additionally incorporated in a common filler (bentonite), this serving as a carrier for the extract. The results showed the effect of the incorporated antioxidant, which was added to stabilize the biodegradable films. Its efficiency during the ageing test in the polymers tended to exceed or be comparable to that of the reference sample.
See more in PubMed
Râpă M., Popa M., Cinelli P., Lazzeri A., Burnichi R., Mitelut A., Grosu E. Biodegradable alternative to plastics for agriculture application. Rom. Biotechnol. Lett. 2011;16:59–64.
Luckachan G., Pillai C. Biodegradable Polymers—A Review on Recent Trends and Emerging Perspectives. J. Polym. Environ. 2011;19:637–676. doi: 10.1007/s10924-011-0317-1. DOI
Marsh K., Bugusu B. Food Packaging—Roles, Materials, and Environmental Issues. J. Food Sci. 2007;72:R39–R55. doi: 10.1111/j.1750-3841.2007.00301.x. PubMed DOI
Gross R.A., Kalra B. Biodegradable Polymers for the Environment. Science. 2002;297:803–807. doi: 10.1126/science.297.5582.803. PubMed DOI
Siracusa V., Rocculi P., Romani S., Rosa M.D. Biodegradable polymers for food packaging: A review. Trends Food Sci. Technol. 2008;19:634–643. doi: 10.1016/j.tifs.2008.07.003. DOI
Kucharczyk P., Hnátková E., Dvorak Z., Sedlarik V. Novel aspects of the degradation process of PLA based bulky samples under conditions of high partial pressure of water vapour. Polym. Degrad. Stab. 2013;98:150–157. doi: 10.1016/j.polymdegradstab.2012.10.016. DOI
Nampoothiri K.M., Nair N., John R.P. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010;101:8493–8501. doi: 10.1016/j.biortech.2010.05.092. PubMed DOI
Biresaw G., Carriere C.J. Compatibility and mechanical properties of blends of polystyrene with biodegradable polyesters. Compos. Part A Appl. Sci. Manuf. 2004;35:313–320. doi: 10.1016/j.compositesa.2003.09.020. DOI
Msuya N. Poly(lactic-acid) Production from Monomer to Polymer: A review. Sci.-Fed. J. Polym. 2017;1:1–15.
Hu Y., Daoud W., Cheuk K., Lin C. Newly Developed Techniques on Polycondensation, Ring-Opening Polymerization and Polymer Modification: Focus on Poly(Lactic Acid) Materials. 2016;9:133. doi: 10.3390/ma9030133. PubMed DOI PMC
Chen G.-X., Kim H., Kim E.-S., Yoon J.-S. Synthesis of high-molecular-weight poly(L-lactic acid) through the direct condensation polymerization of L-lactic acid in bulk state. Eur. Polym. J. 2006;42:468–472. doi: 10.1016/j.eurpolymj.2005.07.022. DOI
Kricheldorf H. Syntheses and application of polylactides. Chemosphere. 2001;43:49–54. doi: 10.1016/S0045-6535(00)00323-4. PubMed DOI
Wu C.-S. Renewable resource-based composites of recycled natural fibers and maleated polylactide bioplastic: Characterization and biodegradability. Polym. Degrad. Stab. 2009;94:1076–1084. doi: 10.1016/j.polymdegradstab.2009.04.002. DOI
Sin L.T., Rahmat A., Rahman W.A.W.A. Polylactic Acid: PLA Biopolymer Technology and Applications. William Andrew; Norwich, NY, USA: 2012. Polylactic Acid: PLA Biopolymer Technology and Applications; pp. 1–341.
Mclauchlin A., Thomas N. Biodegradable polymer nanocomposites. Adv. Polym. Nanocompos. Types Appl. 2012:398–430. doi: 10.1533/9780857096241.2.398. DOI
Cameron R.E., Moghaddam A. Degradation Rate of Bioresorbable Materials: Prediction and Evaluation. Woodhead Publishing; Cambridge, UK: 2008. Synthetic bioresorbable polymers; pp. 43–66.
Guarino V., Gentile G., Sorrentino L., Ambrosio L. Polycaprolactone: Synthesis, Properties, and Applications. Encycl. Polym. Sci. Technol. 2017:1–36. doi: 10.1002/0471440264.pst658. DOI
Karamanlioglu M., Preziosi R., Robson G.D. Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): A review. Polym. Degrad. Stab. 2017;137:122–130. doi: 10.1016/j.polymdegradstab.2017.01.009. DOI
Arrieta M., Sessini V., Peponi L. Biodegradable poly(ester-urethane) incorporated with catechin with shape memory and antioxidant activity for food packaging. Eur. Polym. J. 2017;94:111–124. doi: 10.1016/j.eurpolymj.2017.06.047. DOI
Nagarajan S., Nagarajan R., Kumar J., Salemme A., Togna A., Saso L., Bruno F. Antioxidant Activity of Synthetic Polymers of Phenolic Compounds. Polymers. 2020;12:1646. doi: 10.3390/polym12081646. PubMed DOI PMC
Jamshidian M., Tehrany E.A., Imran M., Akhtar M.J., Cleymand F., Desobry S. Structural, mechanical and barrier properties of active PLA–antioxidant films. J. Food Eng. 2012;110:380–389. doi: 10.1016/j.jfoodeng.2011.12.034. DOI
Zeid A., Karabagias I.K., Nassif M., Kontominas M.G. Preparation and evaluation of antioxidant packaging films made of polylactic acid containing thyme, rosemary, and oregano essential oils. J. Food Process. Preserv. 2019;43:e14102. doi: 10.1111/jfpp.14102. DOI
Quiles-Carrillo L., Montava-Jordà S., Boronat T., Sammon C., Balart R., Torres-Giner S. On the Use of Gallic Acid as a Potential Natural Antioxidant and Ultraviolet Light Stabilizer in Cast-Extruded Bio-Based High-Density Polyethylene Films. Polymers. 2020;12:31. doi: 10.3390/polym12010031. PubMed DOI PMC
Byun Y., Kim Y., Whiteside S. Characterization of an antioxidant polylactic acid (PLA) film prepared with α-tocopherol, BHT and polyethylene glycol using film cast extruder. J. Food Eng. 2010;100:239–244. doi: 10.1016/j.jfoodeng.2010.04.005. DOI
Fasihnia S.H., Peighambardoust S.H., Peighambardoust S.J., Oromiehie A., Soltanzadeh M., Peressini D. Migration analysis, antioxidant, and mechanical characterization of polypropylene-based active food packaging films loaded with BHA, BHT, and TBHQ. J. Food Sci. 2020;85:2317–2328. doi: 10.1111/1750-3841.15337. PubMed DOI
Hanafi H., Nurdiani N., Sirait S., Widyahapsari D., Irawan C. Migration Test of Polylactic Acid Packaging that Modified with (Butyl hydroxy toluene) and (Tert butyl hydroxy quinon) Synthetic Antioxidant in Food Simulant. Orient. J. Chem. 2019;35:552–556. doi: 10.13005/ojc/350207. DOI
Veiga-Santos P., Silva L., Oliveira de souza C., Silva J., Albuquerque E., Druzian J. Coffee-cocoa additives for bio-based antioxidant packaging. Food Packag. Shelf Life. 2018;18:37–41. doi: 10.1016/j.fpsl.2018.08.005. DOI
Kwak H.S., Ji S., Jeong Y. The effect of air flow in coffee roasting for antioxidant activity and total polyphenol content. Food Control. 2017;71:210–216. doi: 10.1016/j.foodcont.2016.06.047. DOI
Bae I., Ham H., Jeong M., Kim D., Kim H. Simultaneous determination of 15 phenolic compounds and caffeine in teas and mate using RP-HPLC/UV detection: Method development and optimization of extraction process. Food Chem. 2015;172:469–475. doi: 10.1016/j.foodchem.2014.09.050. PubMed DOI
Vostrejs P., Adamcová D., Vaverková M., Enev V., Kalina M., Machovsky M., Šourková M., Marova I., Kovalcik A. Active biodegradable packaging films modified with grape seeds lignin. RSC Adv. 2020;10:29202–29213. doi: 10.1039/D0RA04074F. PubMed DOI PMC
Rehman S., Abbasi K., Qayyum A., Jahangir M., Sohail A., Nisa S., Tareen M., Tareen M., Sopade P. Comparative analysis of citrus fruits for nutraceutical properties. Food Sci. Technol. 2019;40:153–157. doi: 10.1590/fst.07519. DOI
Chan C.L., Gan R.-Y., Corke H. The phenolic composition and antioxidant capacity of soluble and bound extracts in selected dietary spices and medicinal herbs. Int. J. Food Sci. Technol. 2016;51:565–573. doi: 10.1111/ijfs.13024. DOI
Kirschweng B., Tátraaljai D., Földes E., Pukanszky B. Natural antioxidants as stabilizers for polymers. Polym. Degrad. Stab. 2017;145:25–40. doi: 10.1016/j.polymdegradstab.2017.07.012. DOI
Fu Y., Shi J., Xie S.-Y., Zhang T.-Y., Soladoye O., Aluko R. Red Beetroot Betalains: Perspectives on Extraction, Processing, and Potential Health Benefits. J. Agric. Food Chem. 2020;68:11595–11611. doi: 10.1021/acs.jafc.0c04241. PubMed DOI
Ravichandran K., Saw N.M.M.T., Mohdaly A., Gabr A., Kastell A., Riedel H., Cai Z., Knorr D., Smetanska I. Impact of processing of red beet on betalain content and antioxidant activity. Food Res. Int. 2013;50:670–675. doi: 10.1016/j.foodres.2011.07.002. DOI
Bastos E., Schliemann W. Plant Antioxidants and Health. Springer; Cham, Switzerland: 2021. Betalains as Antioxidants; pp. 1–44.
Belhadj Slimen I., Najar T., Abderrabba M. Chemical and Antioxidant Properties of Betalains. J. Agric. Food Chem. 2017;65:675–689. doi: 10.1021/acs.jafc.6b04208. PubMed DOI
Gokhale S., Lele S. Betalain Content and Antioxidant Activity of Beta vulgaris: Effect of Hot Air Convective Drying and Storage. J. Food Process. Preserv. 2014;38:585–590. doi: 10.1111/jfpp.12006. DOI
Scaffaro R., Maio A., Sutera F., Gulino E.F., Morreale M. Degradation and Recycling of Films Based on Biodegradable Polymers: A Short Review. Polymers. 2019;11:651. doi: 10.3390/polym11040651. PubMed DOI PMC
Ganiari S., Choulitoudi E., Oreopoulou V. Edible and active films and coatings as carriers of natural antioxidants for lipid food. Trends Food Sci. Technol. 2017;68:70–82. doi: 10.1016/j.tifs.2017.08.009. DOI
Cheng S.-Y., Wang B., Weng Y.-M. Antioxidant and antimicrobial edible zein/chitosan composite films fabricated by incorporation of phenolic compounds and dicarboxylic acids. LWT Food Sci. Technol. 2015;63:115–121. doi: 10.1016/j.lwt.2015.03.030. DOI
Ribeiro A., Estevinho B., Rocha F. Preparation and Incorporation of Functional Ingredients in Edible Films and Coatings. Food Bioprocess Technol. 2021;14:209–231. doi: 10.1007/s11947-020-02528-4. DOI
Vargas-Rubóczki T., Raczkó V., Takácsné Hájos M. Evaluation of morphological parameters and bioactive compounds in different varieties of beetroot (Beta vulgaris L. ssp. esculenta GURKE var. rubra L.) Int. J. Hortic. Sci. 2015;21:31–35. doi: 10.31421/IJHS/21/3-4./1172. DOI
Shyamala B., Prakash J. Nutritional Content and Antioxidant Properties of Pulp Waste from Daucus carota and Beta vulgaris. Malays. J. Nutr. 2010;16:397–408. PubMed
Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010;2:1231–1246. doi: 10.3390/nu2121231. PubMed DOI PMC
Chiorcea-Paquim A.-M., Enache T.A., De Souza Gil E., Oliveira-Brett A.M. Natural phenolic antioxidants electrochemistry: Towards a new food science methodology. Compr. Rev. Food Sci. Food Saf. 2020;19:1680–1726. doi: 10.1111/1541-4337.12566. PubMed DOI
Rosecler M., Rossetto M.R., Vianello F., Rocha S., Pace G., Lima G. Antioxidant substances and pesticide in parts of beet organic and conventional manure. Afr. J. Plant Sci. 2009;3:245–253.
Lembong E., Utama G.L., Saputra R. IOP Conference Series: Materials Science and Engineering. Volume 306. IOP Publishing; Bristol, UK: 2019. Phytochemical Test, Vitamin C Content and Antioxidant Activities Beet Root (Beta vulgaris Linn.) Extracts as Food Coloring Agent from Some Areas in Java Island; p. 012010. DOI
Jiratanan T., Liu R. Antioxidant Activity of Processed Table Beets (Beta vulgaris var, conditiva) and Green Beans (Phaseolus vulgaris L.) J. Agric. Food Chem. 2004;52:2659–2670. doi: 10.1021/jf034861d. PubMed DOI
Kujala T., Vienola M., Klika K., Loponen J., Pihlaja K. Betalain and phenolic compositions of four beetroot (Beta vulgaris) cultivars. Eur. Food Res. Technol. 2002;214:505–510. doi: 10.1007/s00217-001-0478-6. DOI
Slatnar A., Stampar F., Veberic R., Jakopič J. HPLC-MSn Identification of Betalain Profile of Different Beetroot (Beta vulgaris L. ssp. vulgaris) Parts and Cultivars. J. Food Sci. 2015;80:C1952–C1958. doi: 10.1111/1750-3841.12977. PubMed DOI
Nestora S., Merlier F., Prost E., Haupt K., Rossi C., Bui B.T.S. Solid-phase extraction of betanin and isobetanin from beetroot extracts using a dipicolinic acid molecularly imprinted polymer. J. Chromatogr. A. 2016;1465:47–54. doi: 10.1016/j.chroma.2016.08.069. PubMed DOI
Dintcheva N.T., Al-Malaika S., Morici E., Arrigo R. Thermo-oxidative stabilization of poly(lactic acid)-based nanocomposites through the incorporation of clay with in-built antioxidant activity. J. Appl. Polym. Sci. 2017;134:44974. doi: 10.1002/app.44974. DOI
Syarofi R., Wirjosentono B., Tamrin, Rihayat T. IOP Conference Series: Materials Science and Engineering. Volume 536. IOP Publishing; Bristol, UK: 2019. Mechanical Properties, Morphology and Thermal Degradation of PCL (Poly ε-Caprolactone) Biodegradable Polymer Blended Nanocomposites with Aceh Bentonite as Filler; p. 12040. DOI
Suryani, Agusnar H., Wirjosentono B., Rihayat T., Aidy N. IOP Conference Series: Materials Science and Engineering. Volume 222. IOP Publishing; Bristol, UK: 2017. Improving the quality of biopolymer(poly lactic acid) with the addition of bentonite as filler; p. 012008. DOI
Arrigo R., Dintcheva N. Natural Anti-oxidants for Bio-polymeric Materials. Arch. Chem. Res. 2017;1:2. doi: 10.21767/2572-4657.100013. DOI
Salević A., Prieto C., Cabedo L., Nedović V., Lagaron J. Physicochemical, Antioxidant and Antimicrobial Properties of Electrospun Poly(ε-caprolactone) Films Containing a Solid Dispersion of Sage (Salvia officinalis L.) Extract. Nanomaterials. 2019;9:270. doi: 10.3390/nano9020270. PubMed DOI PMC
Marra A., Cimmino S., Silvestre C. Effect of TiO2 and ZnO on PLA degradation in various media. Adv. Mater. Sci. 2017;2:1–8. doi: 10.15761/AMS.1000122. DOI
Kosowska K., Szatkowski P. Influence of ZnO, SiO2 and TiO2 on the aging process of PLA fibers produced by electrospinning method. J. Therm. Anal. Calorim. 2019;140:1769–1778. doi: 10.1007/s10973-019-08890-6. PubMed DOI PMC
Darain F., Chan W.Y., Chian K. Performance of Surface-Modified Polycaprolactone on Growth Factor Binding, Release, and Proliferation of Smooth Muscle Cells. Soft Mater. 2010;9:64–78. doi: 10.1080/1539445X.2010.520797. DOI
França D., Morais D., Bezerra E., Araujo E., Wellen R. Photodegradation Mechanisms on Poly(ε-caprolactone) (PCL) Mater. Res. 2018;21 doi: 10.1590/1980-5373-mr-2017-0837. DOI
European Standard . EN ISO 4892-3:2016 Plastics—Methods of Exposure to Laboratory Light Sources—Part 3: Fluorescent UV Lamps (EN ISO 4892-3:2016) CEN; Brussels, Belgium: 2016.
European Standard . EN ISO 527-3:2018 Plastics–Determination of Tensile Properties–Part 3: Test Conditions for Films and Sheets. CEN; Brussels, Belgium: 2019.
Latos-Brozio M., Masek A. Environmentally Friendly Polymer Compositions with Natural Amber Acid. Int. J. Mol. Sci. 2021;22:1556. doi: 10.3390/ijms22041556. PubMed DOI PMC
Kortei N., Odamtten G., Mary O., Appiah V., Akonor P. Determination of color parameters of gamma irradiated fresh and dried mushrooms during storage. Croat. J. Food Technol. Biotechnol. Nutr. 2015;10:66–71.