Plectin-mediated cytoskeletal crosstalk controls cell tension and cohesion in epithelial sheets
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35139142
PubMed Central
PMC8932528
DOI
10.1083/jcb.202105146
PII: 212995
Knihovny.cz E-zdroje
- MeSH
- aktiny metabolismus MeSH
- biomechanika MeSH
- buňky MDCK MeSH
- cytoskelet metabolismus ultrastruktura MeSH
- desmozomy metabolismus ultrastruktura MeSH
- epitelové buňky metabolismus ultrastruktura MeSH
- genový knockout MeSH
- keratiny metabolismus MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- myši MeSH
- pevnost v tahu MeSH
- plektin metabolismus MeSH
- protein - isoformy metabolismus MeSH
- psi MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aktiny MeSH
- keratiny MeSH
- plektin MeSH
- protein - isoformy MeSH
The coordinated interplay of cytoskeletal networks critically determines tissue biomechanics and structural integrity. Here, we show that plectin, a major intermediate filament-based cytolinker protein, orchestrates cortical cytoskeletal networks in epithelial sheets to support intercellular junctions. By combining CRISPR/Cas9-based gene editing and pharmacological inhibition, we demonstrate that in an F-actin-dependent context, plectin is essential for the formation of the circumferential keratin rim, organization of radial keratin spokes, and desmosomal patterning. In the absence of plectin-mediated cytoskeletal cross-linking, the aberrant keratin-desmosome (DSM)-network feeds back to the actin cytoskeleton, which results in elevated actomyosin contractility. Also, by complementing a predictive mechanical model with Förster resonance energy transfer-based tension sensors, we provide evidence that in the absence of cytoskeletal cross-linking, major intercellular junctions (adherens junctions and DSMs) are under intrinsically generated tensile stress. Defective cytoarchitecture and tensional disequilibrium result in reduced intercellular cohesion, associated with general destabilization of plectin-deficient sheets upon mechanical stress.
Department of Analytical Chemistry University of Vienna Vienna Austria
Department of Biochemistry and Cell Biology Max Perutz Labs University of Vienna Vienna Austria
Department of Physics University of Erlangen Nuremberg Erlangen Germany
Department of Physiology Faculty of Science Charles University Prague Czech Republic
Zobrazit více v PubMed
Acharya, B.R., Nestor-Bergmann A., Liang X., Gupta S., Duszyc K., Gauquelin E., Gomez G.A., Budnar S., Marcq P., Jensen O.E., et al. . 2018. A mechanosensitive RhoA pathway that protects epithelia against acute tensile stress. Dev. Cell. 47:439–452.e6. 10.1016/j.devcel.2018.09.016 PubMed DOI
Ackerl, R., Walko G., Fuchs P., Fischer I., Schmuth M., and Wiche G.. 2007. Conditional targeting of plectin in prenatal and adult mouse stratified epithelia causes keratinocyte fragility and lesional epidermal barrier defects. J. Cell Sci. 120:2435–2443. 10.1242/jcs.004481 PubMed DOI
Andra, K., Nikolic B., Stocher M., Drenckhahn D., and Wiche G.. 1998. Not just scaffolding: plectin regulates actin dynamics in cultured cells. Genes Dev. 12:3442–3451. 10.1101/gad.12.21.3442 PubMed DOI PMC
Angulo-Urarte, A., van der Wal T., and Huveneers S.. 2020. Cell-cell junctions as sensors and transducers of mechanical forces. Biochim. Biophys. Acta Biomembr. 1862:183316. 10.1016/j.bbamem.2020.183316 PubMed DOI
Bauer, A., Prechova M., Fischer L., Thievessen I., Gregor M., and Fabry B.. 2021. pyTFM: a tool for traction force and monolayer stress microscopy. PLoS Comput. Biol. 17:e1008364. PubMed PMC
Beriault, D.R., Haddad O., McCuaig J.V., Robinson Z.J., Russell D., Lane E.B., and Fudge D.S.. 2012. The mechanical behavior of mutant K14-R125P keratin bundles and networks in NEB-1 keratinocytes. PLoS One. 7:e31320. PubMed PMC
Borghi, N., Sorokina M., Shcherbakova O.G., Weis W.I., Pruitt B.L., Nelson W.J., and Dunn A.R.. 2012. E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. Proc. Natl. Acad. Sci. USA. 109:12568–12573. 10.1073/pnas.1204390109 PubMed DOI PMC
Broussard, J.A., Jaiganesh A., Zarkoob H., Conway D.E., Dunn A.R., Espinosa H.D., Janmey P.A., and Green K.J.. 2020. Scaling up single-cell mechanics to multicellular tissues - the role of the intermediate filament-desmosome network. J. Cell Sci. 133:jcs228031. 10.1242/jcs.228031 PubMed DOI PMC
Broussard, J.A., Yang R., Huang C., Nathamgari S.S.P., Beese A.M., Godsel L.M., Hegazy M.H., Lee S., Zhou F., Sniadecki N.J., et al. . 2017. The desmoplakin-intermediate filament linkage regulates cell mechanics. Mol. Biol. Cell. 28:3156–3164. 10.1091/mbc.E16-07-0520 PubMed DOI PMC
Burgstaller, G., Gregor M., Winter L., and Wiche G.. 2010. Keeping the vimentin network under control: cell-matrix adhesion-associated plectin 1f affects cell shape and polarity of fibroblasts. Mol. Biol. Cell. 21:3362–3375. 10.1091/mbc.E10-02-0094 PubMed DOI PMC
Chugh, P., and Paluch E.K.. 2018. The actin cortex at a glance. J. Cell Sci. 131:jcs186254. 10.1242/jcs.186254 PubMed DOI PMC
Eger, A., Stockinger A., Wiche G., and Foisner R.. 1997. Polarisation-dependent association of plectin with desmoplakin and the lateral submembrane skeleton in MDCK cells. J. Cell Sci. 110:1307–1316. PubMed
Feige, J.N., Sage D., Wahli W., Desvergne B., and Gelman L.. 2005. PixFRET, an ImageJ plug-in for FRET calculation that can accommodate variations in spectral bleed-throughs. Microsc. Res. Tech. 68:51–58. 10.1002/jemt.20215 PubMed DOI
Felder, E., Siebenbrunner M., Busch T., Fois G., Miklavc P., Walther P., and Dietl P.. 2008. Mechanical strain of alveolar type II cells in culture: changes in the transcellular cytokeratin network and adaptations. Am. J. Physiol. Lung Cell Mol Physiol. 295:L849–L857. 10.1152/ajplung.00503.2007 PubMed DOI PMC
Fuchs, P., Zorer M., Rezniczek G.A., Spazierer D., Oehler S., Castanon M.J., Hauptmann R., and Wiche G.. 1999. Unusual 5′ transcript complexity of plectin isoforms: novel tissue-specific exons modulate actin binding activity. Hum. Mol. Genet. 8:2461–2472. 10.1093/hmg/8.13.2461 PubMed DOI
Hatzfeld, M., Keil R., and Magin T.M.. 2017. Desmosomes and intermediate filaments: their consequences for tissue mechanics. Cold Spring Harb Perspect. Biol. 9:a029157. 10.1101/cshperspect.a029157 PubMed DOI PMC
Ingber, D.E. 2003. Tensegrity I. Cell structure and hierarchical systems biology. J. Cell Sci. 116:1157–1173. 10.1242/jcs.00359 PubMed DOI
Jirouskova, M., Nepomucka K., Oyman-Eyrilmez G., Kalendova A., Havelkova H., Sarnova L., Chalupsky K., Schuster B., Benada O., Miksatkova P., et al. . 2018. Plectin controls biliary tree architecture and stability in cholestasis. J. Hepatol. 68:1006–1017. 10.1016/j.jhep.2017.12.011 PubMed DOI
Kah, D., Winterl A., Přechová M., Schöler U., Schneider W., Friedrich O., Gregor M., and Fabry B.. 2021. A low-cost uniaxial cell stretcher for six parallel wells. HardwareX. 9:e00162. 10.1016/j.ohx.2020.e00162 PubMed DOI PMC
Khalilgharibi, N., Fouchard J., Asadipour N., Barrientos R., Duda M., Bonfanti A., Yonis A., Harris A., Mosaffa P., Fujita Y., et al. . 2019. Stress relaxation in epithelial monolayers is controlled by the actomyosin cortex. Nat. Phys. 15:839–847. PubMed PMC
Krausova, A., Buresova P., Sarnova L., Oyman-Eyrilmez G., Skarda J., Wohl P., Bajer L., Sticova E., Bartonova L., Pacha J., et al. . 2021. Plectin ensures intestinal epithelial integrity and protects colon against colitis. Mucosal Immunol. 14:691–702. 10.1038/s41385-021-00380-z PubMed DOI PMC
Laly, A.C., Sliogeryte K., Pundel O.J., Ross R., Keeling M.C., Avisetti D., Waseem A., Gavara N., and Connelly J.T.. 2021. The keratin network of intermediate filaments regulates keratinocyte rigidity sensing and nuclear mechanotransduction. Sci. Adv. 7:eabd6187. 10.1126/sciadv.abd6187 PubMed DOI PMC
Latorre, E., Kale S., Casares L., Gomez-Gonzalez M., Uroz M., Valon L., Nair R.V., Garreta E., Montserrat N., Del Campo A., et al. . 2018. Active superelasticity in three-dimensional epithelia of controlled shape. Nature. 563:203–208. 10.1038/s41586-018-0671-4 PubMed DOI PMC
Leerberg, J.M., Gomez G.A., Verma S., Moussa E.J., Wu S.K., Priya R., Hoffman B.D., Grashoff C., Schwartz M.A., and Yap A.S.. 2014. Tension-sensitive actin assembly supports contractility at the epithelial zonula adherens. Curr. Biol. 24:1689–1699. 10.1016/j.cub.2014.06.028 PubMed DOI PMC
Lutz, A., Jung D., Diem K., Fauler M., Port F., Gottschalk K., and Felder E.. 2020. Acute effects of cell stretch on keratin filaments in A549 lung cells. FASEB J. 34:11227–11242. 10.1096/fj.201903160RR PubMed DOI
Mano, Y., Ishii M., Kisara N., Kobayashi Y., Ueno Y., Kobayashi K., Hamada H., and Toyota T.. 1998. Duct formation by immortalized mouse cholangiocytes: an in vitro model for cholangiopathies. Lab Invest. 78:1467–1468. PubMed
Meier, S.M., Kreutz D., Winter L., Klose M.H.M., Cseh K., Weiss T., Bileck A., Alte B., Mader J.C., Jana S., et al. . 2017. An organoruthenium anticancer agent shows unexpected target selectivity for plectin. Angew. Chem. Int. Ed. Engl. 56:8267–8271. 10.1002/anie.201702242 PubMed DOI
Moch, M., Windoffer R., Schwarz N., Pohl R., Omenzetter A., Schnakenberg U., Herb F., Chaisaowong K., Merhof D., Ramms L., et al. . 2016. Effects of plectin depletion on keratin network dynamics and organization. PLoS One. 11:e0149106. PubMed PMC
Na, S., Chowdhury F., Tay B., Ouyang M., Gregor M., Wang Y., Wiche G., and Wang N.. 2009. Plectin contributes to mechanical properties of living cells. Am. J. Physiol. Cell Physiol. 296:C868–C877. 10.1152/ajpcell.00604.2008 PubMed DOI PMC
Nikolic, B., Mac Nulty E., Mir B., and Wiche G.. 1996. Basic amino acid residue cluster within nuclear targeting sequence motif is essential for cytoplasmic plectin-vimentin network junctions. J. Cell Biol. 134:1455–1467. 10.1083/jcb.134.6.1455 PubMed DOI PMC
Osmanagic-Myers, S., Gregor M., Walko G., Burgstaller G., Reipert S., and Wiche G.. 2006. Plectin-controlled keratin cytoarchitecture affects MAP kinases involved in cellular stress response and migration. J. Cell Biol. 174:557–568. 10.1083/jcb.200605172 PubMed DOI PMC
Paszek, M.J., DuFort C.C., Rossier O., Bainer R., Mouw J.K., Godula K., Hudak J.E., Lakins J.N., Wijekoon A.C., Cassereau L., et al. . 2014. The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature. 511:319–325. 10.1038/nature13535 PubMed DOI PMC
Pelham, R.J., Jr., and Wang Y.L.. 1998. Cell locomotion and focal adhesions are regulated by the mechanical properties of the substrate. Biol. Bull. 194:348–349. 10.2307/1543109 PubMed DOI
Price, A.J., Cost A.L., Ungewiss H., Waschke J., Dunn A.R., and Grashoff C.. 2018. Mechanical loading of desmosomes depends on the magnitude and orientation of external stress. Nat. Commun. 9:5284. 10.1038/s41467-018-07523-0 PubMed DOI PMC
Quinlan, R.A., Schwarz N., Windoffer R., Richardson C., Hawkins T., Broussard J.A., Green K.J., and Leube R.E.. 2017. A rim-and-spoke hypothesis to explain the biomechanical roles for cytoplasmic intermediate filament networks. J. Cell Sci. 130:3437–3445. 10.1242/jcs.202168 PubMed DOI PMC
Raupach, C., Zitterbart D.P., Mierke C.T., Metzner C., Muller F.A., and Fabry B.. 2007. Stress fluctuations and motion of cytoskeletal-bound markers. Phys. Rev. E Stat. Nonlin Soft Matter Phys. 76:011918. 10.1103/PhysRevE.76.011918 PubMed DOI
Rezniczek, G.A., Abrahamsberg C., Fuchs P., Spazierer D., and Wiche G.. 2003. Plectin 5′-transcript diversity: short alternative sequences determine stability of gene products, initiation of translation and subcellular localization of isoforms. Hum. Mol. Genet. 12:3181–3194. PubMed
Rezniczek, G.A., Walko G., and Wiche G.. 2010. Plectin gene defects lead to various forms of epidermolysis bullosa simplex. Dermatol. Clin. 28:33–41. 10.1016/j.det.2009.10.004 PubMed DOI
Ruhrberg, C., and Watt F.M.. 1997. The plakin family: versatile organizers of cytoskeletal architecture. Curr. Opin. Genet. Dev. 7:392–397. 10.1016/s0959-437x(97)80154-2 PubMed DOI
Russell, D., Andrews P.D., James J., and Lane E.B.. 2004. Mechanical stress induces profound remodelling of keratin filaments and cell junctions in epidermolysis bullosa simplex keratinocytes. J. Cell Sci. 117:5233–5243. PubMed
Schindelin, J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. . 2012. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 9:676–682. 10.1038/nmeth.2019 PubMed DOI PMC
Serres, M.P., Samwer M., Truong Quang B.A., Lavoie G., Perera U., Gorlich D., Charras G., Petronczki M., Roux P.P., and Paluch E.K.. 2020. F-Actin interactome reveals vimentin as a key regulator of actin organization and cell mechanics in mitosis. Dev. Cell. 52:210–222.e7. 10.1016/j.devcel.2019.12.011 PubMed DOI PMC
Staszewska, I., Fischer I., and Wiche G.. 2015. Plectin isoform 1-dependent nuclear docking of desmin networks affects myonuclear architecture and expression of mechanotransducers. Hum. Mol. Genet. 24:7373–7389. 10.1093/hmg/ddv438 PubMed DOI PMC
Svitkina, T.M., Verkhovsky A.B., and Borisy G.G.. 1996. Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton. J. Cell Biol. 135:991–1007. 10.1083/jcb.135.4.991 PubMed DOI PMC
Walko, G., Vukasinovic N., Gross K., Fischer I., Sibitz S., Fuchs P., Reipert S., Jungwirth U., Berger W., Salzer U., et al. . 2011. Targeted proteolysis of plectin isoform 1a accounts for hemidesmosome dysfunction in mice mimicking the dominant skin blistering disease EBS-Ogna. PLoS Genet. 7:e1002396. PubMed PMC
Wang, W., Zuidema A., Te Molder L., Nahidiazar L., Hoekman L., Schmidt T., Coppola S., and Sonnenberg A.. 2020. Hemidesmosomes modulate force generation via focal adhesions. J. Cell Biol. 219:e201904137. 10.1083/jcb.201904137 PubMed DOI PMC
Werner, N.S., Windoffer R., Strnad P., Grund C., Leube R.E., and Magin T.M.. 2004. Epidermolysis bullosa simplex-type mutations alter the dynamics of the keratin cytoskeleton and reveal a contribution of actin to the transport of keratin subunits. Mol. Biol. Cell. 15:990–1002. PubMed PMC
Wiche, G., Osmanagic-Myers S., and Castanon M.J.. 2015. Networking and anchoring through plectin: a key to IF functionality and mechanotransduction. Curr. Opin. Cell Biol. 32:21–29. 10.1016/j.ceb.2014.10.002 PubMed DOI
Winter, L., Abrahamsberg C., and Wiche G.. 2008. Plectin isoform 1b mediates mitochondrion-intermediate filament network linkage and controls organelle shape. J. Cell Biol. 181:903–911. 10.1083/jcb.200710151 PubMed DOI PMC
Wu, S.H., Hsu J.S., Chen H.L., Chien M.M., Wu J.F., Ni Y.H., Liou B.Y., Ho M.C., Jeng Y.M., Chang M.H., et al. . 2019. Plectin mutations in progressive familial intrahepatic cholestasis. Hepatology. 70:2221–2224. 10.1002/hep.30841 PubMed DOI
Yonemura, S., Wada Y., Watanabe T., Nagafuchi A., and Shibata M.. 2010. alpha-Catenin as a tension transducer that induces adherens junction development. Nat. Cell Biol. 12:533–542. 10.1038/ncb2055 PubMed DOI