Mechanics of cell sheets: plectin as an integrator of cytoskeletal networks

. 2025 Jan ; 15 (1) : 240208. [epub] 20250129

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39875099

Grantová podpora
Grantová Agentura České Republiky
Institutional Research Project of the Czech Academy of Sciences
National Institute for Cancer Research

Epithelia are multicellular sheets that form barriers defining the internal and external environments. The constant stresses acting at this interface require that epithelial sheets are mechanically robust and provide a selective barrier to the hostile exterior. These properties are mediated by cellular junctions which are physically linked with heavily crosslinked cytoskeletal networks. Such hardwiring is facilitated by plakins, a family of giant modular proteins which serve as 'molecular bridges' between different cytoskeletal filaments and multiprotein adhesion complexes. Dysfunction of cytoskeletal crosslinking compromises epithelial biomechanics and structural integrity. Subsequent loss of barrier function leads to disturbed tissue homeostasis and pathological consequences such as skin blistering or intestinal inflammation. In this article, we highlight the importance of the cytolinker protein plectin for the functional organization of epithelial cytoskeletal networks. In particular, we focus on the ability of plectin to act as an integrator of the epithelial cytoarchitecture that defines the biomechanics of the whole tissue. Finally, we also discuss the role of cytoskeletal crosslinking in emerging aspects of epithelial mechanobiology that are critical for the maintenance of epithelial homeostasis.

Zobrazit více v PubMed

Ruhrberg C, Watt FM. 1997. The plakin family: versatile organizers of cytoskeletal architecture. Curr. Opin. Genet. Dev. 7, 392–397. (10.1016/s0959-437x(97)80154-2) PubMed DOI

Wiche G, Osmanagic-Myers S, Castañón MJ. 2015. Networking and anchoring through plectin: a key to IF functionality and mechanotransduction. Curr. Opin. Cell Biol. 32, 21–29. (10.1016/j.ceb.2014.10.002) PubMed DOI

Prechova M, Korelova K, Gregor M. 2023. Plectin. Curr. Biol. 33, R128–R130. (10.1016/j.cub.2022.12.061) PubMed DOI

Skalli O, Jones JC, Gagescu R, Goldman RD. 1994. IFAP 300 is common to desmosomes and hemidesmosomes and is a possible linker of intermediate filaments to these junctions. J. Cell Biol. 125, 159–170. (10.1083/jcb.125.1.159) PubMed DOI PMC

Hieda Y, Nishizawa Y, Uematsu J, Owaribe K. 1992. Identification of a new hemidesmosomal protein, HD1: a major, high molecular mass component of isolated hemidesmosomes. J. Cell Biol. 116, 1497–1506. (10.1083/jcb.116.6.1497) PubMed DOI PMC

Wiche G, Herrmann H, Leichtfried F, Pytela R. 1982. Plectin: a high-molecular-weight cytoskeletal polypeptide component that copurifies with intermediate filaments of the Vimentin Type. Cold Spring Harb. Symp. Quant. Biol. 46, 475–482. (10.1101/sqb.1982.046.01.044) PubMed DOI

Bouameur JE, Favre B, Borradori L. 2014. Plakins, a versatile family of cytolinkers: roles in skin integrity and in human diseases. J. Investig. Dermatol. 134, 885–894. (10.1038/jid.2013.498) PubMed DOI

Leung CL, Green KJ, Liem RKH. 2002. Plakins: a family of versatile cytolinker proteins. Trends Cell Biol. 12, 37–45. (10.1016/s0962-8924(01)02180-8) PubMed DOI

Jefferson JJ, Ciatto C, Shapiro L, Liem RKH. 2007. Structural analysis of the plakin domain of bullous pemphigoid Antigen1 (BPAG1) suggests that plakins are members of the spectrin superfamily. J. Mol. Biol. 366, 244–257. (10.1016/j.jmb.2006.11.036) PubMed DOI PMC

Ortega E, Buey RM, Sonnenberg A, de Pereda JM. 2011. The structure of the plakin domain of plectin reveals a non-canonical SH3 domain interacting with its fourth spectrin repeat. J. Biol. Chem. 286, 12429–12438. (10.1074/jbc.m110.197467) PubMed DOI PMC

Sonnenberg A, Rojas AM, de Pereda JM. 2007. The structure of a tandem pair of spectrin repeats of plectin reveals a modular organization of the plakin domain. J. Mol. Biol. 368, 1379–1391. (10.1016/j.jmb.2007.02.090) PubMed DOI

Baek A, Son S, Baek YM, Kim DE. 2021. KRT8 (keratin 8) attenuates necrotic cell death by facilitating mitochondrial fission-mediated mitophagy through interaction with PLEC (plectin). Autophagy 17, 3939–3956. (10.1080/15548627.2021.1897962) PubMed DOI PMC

Foisner R, Leichtfried FE, Herrmann H, Small JV, Lawson D, Wiche G. 1988. Cytoskeleton-associated plectin: In situ localization, in vitro reconstitution, and binding to immobilized intermediate filament proteins. J. Cell Biol. 106, 723–733. (10.1083/jcb.106.3.723) PubMed DOI PMC

Foisner R, Traub P, Wiche G. 1991. Protein kinase A- and protein kinase C-regulated interaction of plectin with lamin B and vimentin. Proc. Natl Acad. Sci. USA 88, 3812–3816. (10.1073/pnas.88.9.3812) PubMed DOI PMC

Steinböck FA, Nikolic B, Coulombe PA, Fuchs E, Traub P, Wiche G. 2000. Dose-dependent linkage, assembly inhibition and disassembly of vimentin and cytokeratin 5/14 filaments through plectin’s intermediate filament-binding domain. J. Cell Sci. 113, 483–491. (10.1242/jcs.113.3.483) PubMed DOI

Yu PT, et al. . 2012. The RON-receptor regulates pancreatic cancer cell migration through phosphorylation-dependent breakdown of the hemidesmosome. Int. J. Cancer 131, 1744–1754. (10.1002/ijc.27447) PubMed DOI PMC

Ševčík J, Urbániková L, Košt’an J, Janda L, Wiche G. 2004. Actin‐binding domain of mouse plectin. Eur. J. Biochem. 271, 1873–1884. (10.1111/j.1432-1033.2004.04095.x) PubMed DOI

Foisner R, Wiche G. 1987. Structure and hydrodynamic properties of plectin molecules. J. Mol. Biol. 198, 515–531. (10.1016/0022-2836(87)90297-x) PubMed DOI

Sun D, Leung CL, Liem RKH. 2001. Characterization of the microtubule binding domain of microtubule actin crosslinking factor (MACF): identification of a novel group of microtubule associated proteins. J. Cell Sci. 114, 161–172. (10.1242/jcs.114.1.161) PubMed DOI

Valencia RG, et al. . 2021. Plectin dysfunction in neurons leads to tau accumulation on microtubules affecting neuritogenesis, organelle trafficking, pain sensitivity and memory. Neuropathol. Appl. Neurobiol. 47, 73–95. (10.1111/nan.12635) PubMed DOI PMC

Walko G, et al. . 2011. Targeted proteolysis of plectin isoform 1a accounts for hemidesmosome dysfunction in mice mimicking the dominant skin blistering disease EBS-Ogna. PLoS Genet. 7, e1002396. (10.1371/journal.pgen.1002396) PubMed DOI PMC

Prechova M, et al. . 2022. Plectin-mediated cytoskeletal crosstalk controls cell tension and cohesion in epithelial sheets. J. Cell Biol. 221. (10.1083/jcb.202105146) PubMed DOI PMC

Stegh AH, Herrmann H, Lampel S, Weisenberger D, Andrä K, Seper M, Wiche G, Krammer PH, Peter ME. 2000. Identification of the cytolinker plectin as a major early in vivo substrate for Caspase 8 during CD95- and tumor necrosis factor receptor-mediated apoptosis. Mol. Cell. Biol. 20, 5665–5679. (10.1128/mcb.20.15.5665-5679.2000) PubMed DOI PMC

Elliott CE, Becker B, Oehler S, Castañón MJ, Hauptmann R, Wiche G. 1997. Plectin transcript diversity: identification and tissue distribution of variants with distinct first coding exons and rodless isoforms. Genomics 42, 115–125. (10.1006/geno.1997.4724) PubMed DOI

de Pereda JM, Lillo MP, Sonnenberg A. 2009. Structural basis of the interaction between integrin α6β4 and plectin at the hemidesmosomes. EMBO J. 28, 1180–1190. (10.1038/emboj.2009.48) PubMed DOI PMC

Rezniczek GA, De Pereda JM, Reipert S, Wiche G. 1998. Linking integrin α6β4-based cell adhesion to the intermediate filament cytoskeleton: Direct interaction between the β4 subunit and plectin at multiple molecular sites. J. Cell Biol. 141, 209–225. (10.1083/jcb.141.1.209) PubMed DOI PMC

Koster J, Geerts D, Favre B, Borradori L, Sonnenberg A. 2003. Analysis of the interactions between BP180, BP230, plectin and the integrin α6β4 important for hemidesmosome assembly. J. Cell Sci. 116, 387–399. (10.1242/jcs.00241) PubMed DOI

Natsuga K, Nishie W, Nishimura M, Shinkuma S, Watanabe M, Izumi K, Nakamura H, Hirako Y, Shimizu H. 2017. Loss of interaction between plectin and type XVII collagen results in epidermolysis bullosa simplex. Hum. Mutat. 38, 1666–1670. (10.1002/humu.23344) PubMed DOI

Steiner-Champliaud MF, et al. . 2010. BPAG1 isoform-b: Complex distribution pattern in striated and heart muscle and association with plectin and α-actinin. Exp. Cell Res. 316, 297–313. (10.1016/j.yexcr.2009.11.010) PubMed DOI

Boczonadi V, McInroy L, Määttä A. 2007. Cytolinker cross-talk: Periplakin N-terminus interacts with plectin to regulate keratin organisation and epithelial migration. Exp. Cell Res. 313, 3579–3591. (10.1016/j.yexcr.2007.07.005) PubMed DOI

Chen VC, Li X, Perreault H, Nagy JI. 2006. Interaction of Zonula Occludens-1 (ZO-1) with α-Actinin-4: application of functional proteomics for identification of PDZ domain-associated proteins. J. Proteome Res. 5, 2123–2134. (10.1021/pr060216l) PubMed DOI

Wilhelmsen K, Litjens SHM, Kuikman I, Tshimbalanga N, Janssen H, van den Bout I, Raymond K, Sonnenberg A. 2005. Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. J. Cell Biol. 171, 799–810. (10.1083/jcb.200506083) PubMed DOI PMC

Maiweilidan Y, Klauza I, Kordeli E. 2011. Novel interactions of ankyrins-G at the costameres: the muscle-specific Obscurin/Titin-Binding-related Domain (OTBD) binds plectin and filamin C. Exp. Cell Res. 317, 724–736. (10.1016/j.yexcr.2011.01.002) PubMed DOI

Staszewska I, Fischer I, Wiche G. 2015. Plectin isoform 1-dependent nuclear docking of desmin networks affects myonuclear architecture and expression of mechanotransducers. Hum. Mol. Genet. 24, 7373–7389. (10.1093/hmg/ddv438) PubMed DOI PMC

Vannier C, Pesty A, San-Roman MJ, Schmidt AA. 2013. The Bin/Amphiphysin/Rvs (BAR) domain protein endophilin B2 interacts with plectin and controls perinuclear cytoskeletal architecture. J. Biol. Chem. 288, 27619–27637. (10.1074/jbc.m113.485482) PubMed DOI PMC

Kasai N, Kadeer A, Kajita M, Saitoh S, Ishikawa S, Maruyama T, Fujita Y. 2018. The paxillin-plectin-EPLIN complex promotes apical elimination of RasV12-transformed cells by modulating HDAC6-regulated tubulin acetylation. Sci. Rep. 8, 2097. (10.1038/s41598-018-20146-1) PubMed DOI PMC

Valencia RG, Walko G, Janda L, Novacek J, Mihailovska E, Reipert S, Andrä-Marobela K, Wiche G. 2013. Intermediate filament-associated cytolinker plectin 1c destabilizes microtubules in keratinocytes. Mol. Biol. Cell 24, 768–784. (10.1091/mbc.e12-06-0488) PubMed DOI PMC

Lunter PC, Wiche G. 2002. Direct binding of plectin to Fer kinase and negative regulation of its catalytic activity. Biochem. Biophys. Res. Commun. 296, 904–910. (10.1016/s0006-291x(02)02007-7) PubMed DOI

Gregor M, Zeöld A, Oehler S, Marobela KA, Fuchs P, Weigel G, Hardie DG, Wiche G. 2006. Plectin scaffolds recruit energy-controlling AMP-activated protein kinase (AMPK) in differentiated myofibres. J. Cell Sci. 119, 1864–1875. (10.1242/jcs.02891) PubMed DOI

Bouameur JE, Schneider Y, Begré N, Hobbs RP, Lingasamy P, Fontao L, Green KJ, Favre B, Borradori L. 2013. Phosphorylation of serine 4642 in the COOH-extremity of plectin by MNK2 and PKA modulates its interaction with intermediate filaments. J. Cell Sci. 126, 4195–4207. (10.1242/jcs.127779) PubMed DOI PMC

Matsubara T, et al. . 2020. Plectin stabilizes microtubules during osteoclastic bone resorption by acting as a scaffold for Src and Pyk2. Bone 132, 115209. (10.1016/j.bone.2019.115209) PubMed DOI

Osmanagic-Myers S, Gregor M, Walko G, Burgstaller G, Reipert S, Wiche G. 2006. Plectin-controlled keratin cytoarchitecture affects MAP kinases involved in cellular stress response and migration. J. Cell Biol. 174, 557–568. (10.1083/jcb.200605172) PubMed DOI PMC

Osmanagic-Myers S, Wiche G. 2004. Plectin-RACK1 (receptor for activated C kinase 1) scaffolding: a novel mechanism to regulate protein kinase C activity. J. Biol. Chem. 279, 18701–18710. (10.1074/jbc.M312382200) PubMed DOI

Kostan J, Gregor M, Walko G, Wiche G. 2009. Plectin isoform-dependent regulation of keratin-integrin α6β4 anchorage via Ca2+/Calmodulin. J. Biol. Chem. 284, 18525–18536. (10.1074/jbc.m109.008474) PubMed DOI PMC

Song JG, et al. . 2015. Structural insights into Ca2+-Calmodulin regulation of plectin 1a-Integrin β4 interaction in hemidesmosomes. Structure 23, 558–570. (10.1016/j.str.2015.01.011) PubMed DOI PMC

Rezniczek GA, Konieczny P, Nikolic B, Reipert S, Schneller D, Abrahamsberg C, Davies KE, Winder SJ, Wiche G. 2007. Plectin 1f scaffolding at the sarcolemma of dystrophic (mdx) muscle fibers through multiple interactions with β-dystroglycan. J. Cell Biol. 176, 965–977. (10.1083/jcb.200604179) PubMed DOI PMC

Fontao L, Geerts D, Kuikman I, Koster J, Kramer D, Sonnenberg A. 2001. The interaction of plectin with actin: evidence for cross-linking of actin filaments by dimerization of the actin-binding domain of plectin. J. Cell Sci. 114, 2065–2076. (10.1242/jcs.114.11.2065) PubMed DOI

Andrä K, Nikolic B, Stöcher M, Drenckhahn D, Wiche G. 1998. Not just scaffolding: plectin regulates actin dynamics in cultured cells. Genes Dev. 12, 3442–3451. (10.1101/gad.12.21.3442) PubMed DOI PMC

Ding Y, Zhang L, Goodwin JS, Wang Z, Liu B, Zhang J, Fan GH. 2008. Plectin regulates the signaling and trafficking of the HIV-1 co-receptor CXCR4 and plays a role in HIV-1 infection. Exp. Cell Res. 314, 590–602. (10.1016/j.yexcr.2007.10.032) PubMed DOI PMC

Koster J, van Wilpe S, Kuikman I, Litjens SHM, Sonnenberg A. 2004. Role of binding of plectin to the integrin beta4 subunit in the assembly of hemidesmosomes. Mol. Biol. Cell 15, 1211–1223. (10.1091/mbc.e03-09-0697) PubMed DOI PMC

Herrmann H, Wiche G. 1987. Plectin and IFAP-300K are homologous proteins binding to microtubule-associated proteins 1 and 2 and to the 240-kilodalton subunit of spectrin. J. Biol. Chem. 262, 1320–1325. (10.1016/s0021-9258(19)75789-5) PubMed DOI

Niwa T, Saito H, Imajoh‐ohmi S, Kaminishi M, Seto Y, Miki Y, Nakanishi A. 2009. BRCA2 interacts with the cytoskeletal linker protein plectin to form a complex controlling centrosome localization. Cancer Sci. 100, 2115–2125. (10.1111/j.1349-7006.2009.01282.x) PubMed DOI PMC

Favre B, et al. . 2011. Plectin interacts with the rod domain of type III intermediate filament proteins desmin and vimentin. Eur. J. Cell Biol. 90, 390–400. (10.1016/j.ejcb.2010.11.013) PubMed DOI

Tian R, Gregor M, Wiche G, Goldman JE. 2006. Plectin regulates the organization of glial fibrillary acidic protein in Alexander disease. Am. J. Pathol. 168, 888–897. (10.2353/ajpath.2006.051028) PubMed DOI PMC

Bouameur JE, Favre B, Fontao L, Lingasamy P, Begre N, Borradori L. 2014. Interaction of plectin with keratins 5 and 14: dependence on several plectin domains and keratin quaternary structure. J. Investig. Dermatol. 134, 2776–2783. (10.1038/jid.2014.255) PubMed DOI

Eger A, Stockinger A, Wiche G, Foisner R. 1997. Polarisation-dependent association of plectin with desmoplakin and the lateral submembrane skeleton in MDCK cells. J. Cell Sci. 110, 1307–1316. (10.1242/jcs.110.11.1307) PubMed DOI

Yin H, Han S, Cui C, Wang Y, Li D, Zhu Q. 2021. Plectin regulates Wnt signaling mediated-skeletal muscle development by interacting with Dishevelled-2 and antagonizing autophagy. Gene 783, 145562. (10.1016/j.gene.2021.145562) PubMed DOI

Sabbir MG, Dillon R, Mowat MRA. 2016. Dlc1 interaction with non-muscle myosin heavy chain II-A (Myh9) and Rac1 activation. Biol. Open 5, 452–460. (10.1242/bio.015859) PubMed DOI PMC

Hijikata T, Nakamura A, Isokawa K, Imamura M, Yuasa K, Ishikawa R, Kohama K, Takeda S, Yorifuji H. 2008. Plectin 1 links intermediate filaments to costameric sarcolemma through β-synemin, α-dystrobrevin and actin. J. Cell Sci. 121, 2062–2074. (10.1242/jcs.021634) PubMed DOI

Kadeer A, et al. . 2017. Plectin is a novel regulator for apical extrusion of RasV12-transformed cells. Sci. Rep. 7, 44328. (10.1038/srep44328) PubMed DOI PMC

Thomsen C, Udhane S, Runnberg R, Wiche G, Ståhlberg A, Åman P. 2012. Fused in sarcoma (FUS) interacts with the cytolinker protein plectin: Implications for FUS subcellular localization and function. Exp. Cell Res. 318, 653–661. (10.1016/j.yexcr.2011.12.019) PubMed DOI

Ackerman SD, et al. . 2018. GPR56/ADGRG1 regulates development and maintenance of peripheral myelin. J. Exp. Med. 215, 941–961. (10.1084/jem.20161714) PubMed DOI PMC

Liu YH, et al. 2008. . Degradation of plectin with modulation of cytokeratin 18 in human liver cells during staurosporine-induced apoptosis. Vivo 22, 543–548. PubMed

Wang CI, Wang CL, Wu YC, Feng HP, Liu PJ, Chang YS, Yu JS, Yu CJ. 2015. Quantitative proteomics reveals a novel role of karyopherin alpha 2 in cell migration through the regulation of Vimentin–Perk protein complex levels in lung cancer. J. Proteome Res. 14, 1739–1751. (10.1021/pr501097a) PubMed DOI

Eriksson M, Nilsson A, Samuelsson H, Samuelsson EB, Mo L, Åkesson E, Benedikz E, Sundström E. 2007. On the role of NR3A in human NMDA receptors. Physiol. Behav. 92, 54–59. (10.1016/j.physbeh.2007.05.026) PubMed DOI

House CM, Frew IJ, Huang HL, Wiche G, Traficante N, Nice E, Catimel B, Bowtell DDL. 2003. A binding motif for Siah ubiquitin ligase. Proc. Natl Acad. Sci. USA 100, 3101–3106. (10.1073/pnas.0534783100) PubMed DOI PMC

Matsubara T, Kinbara M, Maeda T, Yoshizawa M, Kokabu S, Takano Yamamoto T. 2017. Regulation of osteoclast differentiation and actin ring formation by the cytolinker protein plectin. Biochem. Biophys. Res. Commun. 489, 472–476. (10.1016/j.bbrc.2017.05.174) PubMed DOI

Fish L, et al. . 2021. A prometastatic splicing program regulated by SNRPA1 interactions with structured RNA elements. Science 372. (10.1126/science.abc7531) PubMed DOI PMC

Liu CG, Maercker C, Castañon MJ, Hauptmann R, Wiche G. 1996. Human plectin: organization of the gene, sequence analysis, and chromosome localization (8q24). Proc. Natl Acad. Sci. USA 93, 4278–4283. (10.1073/pnas.93.9.4278) PubMed DOI PMC

Rezniczek GA, Abrahamsberg C, Fuchs P, Spazierer D, Wiche G. 2003. Plectin 5’-transcript diversity: short alternative sequences determine stability of gene products, initiation of translation and subcellular localization of isoforms. Hum. Mol. Genet. 12, 3181–3194. (10.1093/hmg/ddg345) PubMed DOI

Burgstaller G, Gregor M, Winter L, Wiche G. 2010. Keeping the Vimentin network under control: cell–matrix adhesion-associated Plectin 1f affects cell shape and polarity of fibroblasts. Mol. Biol. Cell 21, 3362–3375. (10.1091/mbc.e10-02-0094) PubMed DOI PMC

Fuchs P, Zorer M, Rezniczek GA, Spazierer D, Oehler S, Castanon MJ, Hauptmann R, Wiche G. 1999. Unusual 5’ transcript complexity of plectin isoforms: novel tissue-specific exons modulate actin binding activity. Hum. Mol. Genet. 8, 2461–2472. (10.1093/hmg/8.13.2461) PubMed DOI

Andrä K, Kornacker I, Jörgl A, Zörer M, Spazierer D, Fuchs P, Fischer I, Wiche G. 2003. Plectin-isoform-specific rescue of hemidesmosomal defects in plectin (–/–) keratinocytes. J. Investig. Dermatol. 120, 189–197. (10.1046/j.1523-1747.2003.12027.x) PubMed DOI

Ketema M, Wilhelmsen K, Kuikman I, Janssen H, Hodzic D, Sonnenberg A. 2007. Requirements for the localization of nesprin-3 at the nuclear envelope and its interaction with plectin. J. Cell Sci. 120, 3384–3394. (10.1242/jcs.014191) PubMed DOI

Gregor M, et al. . 2014. Mechanosensing through focal adhesion‐anchored intermediate filaments. FASEB J. 28, 715–729. (10.1096/fj.13-231829) PubMed DOI

Windoffer R, Kölsch A, Wöll S, Leube RE. 2006. Focal adhesions are hotspots for keratin filament precursor formation. J. Cell Biol. 173, 341–348. (10.1083/jcb.200511124) PubMed DOI PMC

Abrahamsberg C, Fuchs P, Osmanagic-Myers S, Fischer I, Propst F, Elbe-Bürger A, Wiche G. 2005. Targeted ablation of plectin isoform 1 uncovers role of cytolinker proteins in leukocyte recruitment. Proc. Natl Acad. Sci. USA 102, 18449–18454. (10.1073/pnas.0505380102) PubMed DOI PMC

Winter L, Abrahamsberg C, Wiche G. 2008. Plectin isoform 1b mediates mitochondrion—intermediate filament network linkage and controls organelle shape. J. Cell Biol. 181, 903–911. (10.1083/jcb.200710151) PubMed DOI PMC

Winter L, Kuznetsov AV, Grimm M, Zeöld A, Fischer I, Wiche G. 2015. Plectin isoform P1b and P1d deficiencies differentially affect mitochondrial morphology and function in skeletal muscle. Hum. Mol. Genet. 24, 4530–4544. (10.1093/hmg/ddv184) PubMed DOI PMC

Fuchs P, et al. . 2009. Targeted inactivation of a developmentally regulated neural plectin isoform (Plectin 1c) in mice leads to reduced motor nerve conduction velocity. J. Biol. Chem. 284, 26502–26509. (10.1074/jbc.m109.018150) PubMed DOI PMC

Konieczny P, Fuchs P, Reipert S, Kunz WS, Zeöld A, Fischer I, Paulin D, Schröder R, Wiche G. 2008. Myofiber integrity depends on desmin network targeting to Z-disks and costameres via distinct plectin isoforms. J. Cell Biol. 181, 667–681. (10.1083/jcb.200711058) PubMed DOI PMC

McInroy L, Määttä A. 2011. Plectin regulates invasiveness of SW480 colon carcinoma cells and is targeted to podosome-like adhesions in an isoform-specific manner. Exp. Cell Res. 317, 2468–2478. (10.1016/j.yexcr.2011.07.013) PubMed DOI

Salas PJ, Forteza R, Mashukova A. 2016. Multiple roles for keratin intermediate filaments in the regulation of epithelial barrier function and apico-basal polarity. Tissue Barriers 4, e1178368. (10.1080/21688370.2016.1178368) PubMed DOI PMC

Hatzfeld M, Keil R, Magin TM. 2017. Desmosomes and intermediate filaments: their consequences for tissue mechanics. Cold Spring Harb. Perspect. Biol. 9, a029157. (10.1101/cshperspect.a029157) PubMed DOI PMC

Jacob JT, Coulombe PA, Kwan R, Omary MB. 2018. Types I and II keratin intermediate filaments. Cold Spring Harb. Perspect. Biol. 10, a018275. (10.1101/cshperspect.a018275) PubMed DOI PMC

Quinlan RA, Hatzfeld M, Franke WW, Lustig A, Schulthess T, Engel J. 1986. Characterization of dimer subunits of intermediate filament proteins. J. Mol. Biol. 192, 337–349. (10.1016/0022-2836(86)90369-4) PubMed DOI

Steinert PM, Gullino MI. 1976. Bovine epidermal keratin filament assembly invitro. Biochem. Biophys. Res. Commun. 70, 221–227. (10.1016/0006-291x(76)91131-1) PubMed DOI

Herrmann H, Wedig T, Porter RM, Lane EB, Aebi U. 2002. Characterization of early assembly intermediates of recombinant human keratins. J. Struct. Biol. 137, 82–96. (10.1006/jsbi.2002.4466) PubMed DOI

Kreplak L, Bär H, Leterrier JF, Herrmann H, Aebi U. 2005. Exploring the mechanical behavior of single intermediate filaments. J. Mol. Biol. 354, 569–577. (10.1016/j.jmb.2005.09.092) PubMed DOI

Lichtenstern T, Mücke N, Aebi U, Mauermann M, Herrmann H. 2012. Complex formation and kinetics of filament assembly exhibited by the simple epithelial keratins K8 and K18. J. Struct. Biol. 177, 54–62. (10.1016/j.jsb.2011.11.003) PubMed DOI

Pawelzyk P, Mücke N, Herrmann H, Willenbacher N. 2014. Attractive interactions among intermediate filaments determine network mechanics in vitro. PLoS One 9, e93194. (10.1371/journal.pone.0093194) PubMed DOI PMC

Latorre E, et al. . 2018. Active superelasticity in three-dimensional epithelia of controlled shape. Nature 563, 203–208. (10.1038/s41586-018-0671-4) PubMed DOI PMC

Chamcheu JC, Siddiqui IA, Syed DN, Adhami VM, Liovic M, Mukhtar H. 2011. Keratin gene mutations in disorders of human skin and its appendages. Arch. Biochem. Biophys. 508, 123–137. (10.1016/j.abb.2010.12.019) PubMed DOI PMC

Omary MB, Ku NO, Strnad P, Hanada S. 2009. Toward unraveling the complexity of simple epithelial keratins in human disease. J Clin Invest 119, 1794–1805. (10.1172/JCI37762) PubMed DOI PMC

Lloyd C, Yu QC, Cheng J, Turksen K, Degenstein L, Hutton E, Fuchs E. 1995. The basal keratin network of stratified squamous epithelia: Defining K15 function in the absence of K14. J. Cell Biol. 129, 1329–1344. (10.1083/jcb.129.5.1329) PubMed DOI PMC

Peters B, Kirfel J, Büssow H, Vidal M, Magin TM. 2001. Complete cytolysis and neonatal lethality in keratin 5 knockout mice reveal its fundamental role in skin integrity and in epidermolysis bullosa simplex. Mol. Biol. Cell 12, 1775–1789. (10.1091/mbc.12.6.1775) PubMed DOI PMC

Coulombe PA, Kerns ML, Fuchs E. 2009. Epidermolysis bullosa simplex: a paradigm for disorders of tissue fragility. J. Clin. Invest. 119, 1784–1793. (10.1172/JCI38177) PubMed DOI PMC

Lane EB, McLean WHI. 2004. Keratins and skin disorders. J. Pathol. 204, 355–366. (10.1002/path.1643) PubMed DOI

Baribault H, Penner J, Iozzo RV, Wilson-Heiner M. 1994. Colorectal hyperplasia and inflammation in keratin 8-deficient FVB/N mice. Genes Dev. 8, 2964–2973. (10.1101/gad.8.24.2964) PubMed DOI

Misiorek JO, et al. . 2016. Keratin 8-deletion induced colitis predisposes to murine colorectal cancer enforced by the inflammasome and IL-22 pathway. Carcinogenesis 37, 777–786. (10.1093/carcin/bgw063) PubMed DOI

Owens DW, et al. . 2004. Human keratin 8 mutations that disturb filament assembly observed in inflammatory bowel disease patients. J. Cell Sci. 117, 1989–1999. (10.1242/jcs.01043) PubMed DOI

Zupancic T, Stojan J, Lane EB, Komel R, Bedina-Zavec A, Liovic M. 2014. Intestinal cell barrier function in vitro is severely compromised by keratin 8 and 18 mutations identified in patients with inflammatory bowel disease. PLoS One 9, e99398. (10.1371/journal.pone.0099398) PubMed DOI PMC

Ku NO, Michie S, Oshima RG, Omary MB. 1995. Chronic hepatitis, hepatocyte fragility, and increased soluble phosphoglycokeratins in transgenic mice expressing a keratin 18 conserved arginine mutant. J. Cell Biol. 131, 1303–1314. (10.1083/jcb.131.5.1303) PubMed DOI PMC

Ku NO, Michie SA, Soetikno RM, Resurreccion EZ, Broome RL, Oshima RG, Omary MB. 1996. Susceptibility to hepatotoxicity in transgenic mice that express a dominant-negative human keratin 18 mutant. J. Clin. Investig. 98, 1034–1046. (10.1172/jci118864) PubMed DOI PMC

Loranger A, Duclos S, Grenier A, Price J, Wilson-Heiner M, Baribault H, Marceau N. 1997. Simple epithelium keratins are required for maintenance of hepatocyte integrity. Am. J. Pathol. 151, 1673–1683. PubMed PMC

Magin TM, Schröder R, Leitgeb S, Wanninger F, Zatloukal K, Grund C, Melton DW. 1998. Lessons from keratin 18 knockout mice: Formation of novel keratin filaments, secondary loss of keratin 7 and accumulation of liver-specific keratin 8-positive aggregates. J. Cell Biol. 140, 1441–1451. (10.1083/jcb.140.6.1441) PubMed DOI PMC

Toivola DM, Omary MB, Ku N on, Peltola O, Baribault H, Eriksson JE. 1998. Protein phosphatase inhibition in normal and keratin 8/18 assembly-incompetent mouse strains supports a functional role of keratin intermediate filaments in preserving hepatocyte integrity. Hepatology 28, 116–128. (10.1002/hep.510280117) PubMed DOI

Ku NO, Gish R, Wright TL, Omary MB. 2001. Keratin 8 mutations in patients with cryptogenic liver disease. N. Engl. J. Med. 344, 1580–1587. (10.1056/nejm200105243442103) PubMed DOI

Schöniger‐Hekele M, Petermann D, Müller C. 2006. Mutation of keratin 8 in patients with liver disease. J. Gastroenterol. Hepatol. 21, 1466–1469. (10.1111/j.1440-1746.2006.04392.x) PubMed DOI

Usachov V, Urban TJ, Fontana RJ, Gross A, Iyer S, Omary MB, Strnad P. 2015. Prevalence of genetic variants of keratins 8 and 18 in patients with drug-induced liver injury. BMC Med. 13, 196. (10.1186/s12916-015-0418-0) PubMed DOI PMC

Zierden M, et al. . 2012. Keratin 8 variants are associated with cryptogenic hepatitis. Virchows Arch. 460, 389–397. (10.1007/s00428-012-1216-0) PubMed DOI

Quinlan RA, Schwarz N, Windoffer R, Richardson C, Hawkins T, Broussard JA, Green KJ, Leube RE. 2017. A rim-and-spoke hypothesis to explain the biomechanical roles for cytoplasmic intermediate filament networks. J. Cell Sci. 130, 3437–3445. (10.1242/jcs.202168) PubMed DOI PMC

Farquhar MG, Palade GE. 1963. Junctional complexes in various epithelia. J. Cell Biol. 17, 375–412. (10.1083/jcb.17.2.375) PubMed DOI PMC

Troyanovsky SM, Eshkind LG, Troyanovsky RB, Leube RE, Franke WW. 1993. Contributions of cytoplasmic domains of desmosomal cadherins to desmosome assembly and intermediate filament anchorage. Cell 72, 561–574. (10.1016/0092-8674(93)90075-2) PubMed DOI

Ketema M, Kreft M, Secades P, Janssen H, Sonnenberg A. 2013. Nesprin-3 connects plectin and vimentin to the nuclear envelope of Sertoli cells but is not required for Sertoli cell function in spermatogenesis. Mol. Biol. Cell 24, 2454–2466. (10.1091/mbc.e13-02-0100) PubMed DOI PMC

Moch M, et al. . 2016. Effects of plectin depletion on keratin network dynamics and organization. PLoS One 11, e0149106. (10.1371/journal.pone.0149106) PubMed DOI PMC

Jirouskova M, et al. . 2018. Plectin controls biliary tree architecture and stability in cholestasis. J. Hepatol. 68, 1006–1017. (10.1016/j.jhep.2017.12.011) PubMed DOI

Laly AC, Sliogeryte K, Pundel OJ, Ross R, Keeling MC, Avisetti D, Waseem A, Gavara N, Connelly JT. 2021. The keratin network of intermediate filaments regulates keratinocyte rigidity sensing and nuclear mechanotransduction. Sci. Adv. 7. (10.1126/sciadv.abd6187) PubMed DOI PMC

Wang W, Zuidema A, te Molder L, Nahidiazar L, Hoekman L, Schmidt T, Coppola S, Sonnenberg A. 2020. Hemidesmosomes modulate force generation via focal adhesions. J. Cell Biol. 219. (10.1083/jcb.201904137) PubMed DOI PMC

Kah D, Winterl A, Přechová M, Schöler U, Schneider W, Friedrich O, Gregor M, Fabry B. 2021. A low-cost uniaxial cell stretcher for six parallel wells. HardwareX 9, e00162. (10.1016/j.ohx.2020.e00162) PubMed DOI PMC

Krausova A, et al. . 2021. Plectin ensures intestinal epithelial integrity and protects colon against colitis. Mucosal Immunol. 14, 691–702. (10.1038/s41385-021-00380-z) PubMed DOI PMC

Fuchs E, Green H. 1980. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell 19, 1033–1042. (10.1016/0092-8674(80)90094-x) PubMed DOI

Moll R, Franke WW, Schiller DL, Geiger B, Krepler R. 1982. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31, 11–24. (10.1016/0092-8674(82)90400-7) PubMed DOI

Guldiken N, et al. . 2016. Keratin 23 is a stress-inducible marker of mouse and human ductular reaction in liver disease. J. Hepatol. 65, 552–559. (10.1016/j.jhep.2016.04.024) PubMed DOI

Omary MB, Ku NO, Toivola DM. 2002. Keratins: guardians of the liver. Hepatology 35, 251–257. (10.1053/jhep.2002.31165) PubMed DOI

Chen Y, et al. . 2015. Loss of keratin 19 favours the development of cholestatic liver disease through decreased ductular reaction. J. Pathol. 237, 343–354. (10.1002/path.4580) PubMed DOI

McGowan KM, Tong X, Colucci-Guyon E, Langa F, Babinet C, Coulombe PA. 2002. Keratin 17 null mice exhibit age- and strain-dependent alopecia. Genes Dev. 16, 1412–1422. (10.1101/gad.979502) PubMed DOI PMC

Reichelt J, Büssow H, Grund C, Magin TM. 2001. Formation of a normal epidermis supported by increased stability of keratins 5 and 14 in keratin 10 null mice. Mol. Biol. Cell 12, 1557–1568. (10.1091/mbc.12.6.1557) PubMed DOI PMC

Gilbert S, Loranger A, Daigle N, Marceau N. 2001. Simple epithelium keratins 8 and 18 provide resistance to Fas-mediated apoptosis. The protection occurs through a receptor-targeting modulation. J. Cell Biol. 154, 763–773. (10.1083/jcb.200102130) PubMed DOI PMC

Liu C, et al. . 2017. Keratin 8 reduces colonic permeability and maintains gut microbiota homeostasis, protecting against colitis and colitis-associated tumorigenesis. Oncotarget 8, 96774–96790. (10.18632/oncotarget.18241) PubMed DOI PMC

Moch M, Leube RE. 2021. Hemidesmosome-related keratin filament bundling and nucleation. Int. J. Mol. Sci. 22, 1-24. 2130. (10.3390/ijms22042130) PubMed DOI PMC

Walko G, Castañón MJ, Wiche G. 2015. Molecular architecture and function of the hemidesmosome. Cell Tissue Res. 360, 529–544. (10.1007/s00441-015-2216-6) PubMed DOI PMC

Owaribe K, Kartenbeck J, Stumpp S, Magin TM, Krieg T, Diaz LA, Franke WW. 1990. The hemidesmosomal plaque. I. Characterization of a major constituent protein as a differentiation marker for certain forms of epithelia. Diff. 45, 207–220. (10.1111/j.1432-0436.1990.tb00475.x) PubMed DOI

Fontao L, Stutzmann J, Gendry P, Launay JF. 1999. Regulation of the Type II hemidesmosomal plaque assembly in intestinal epithelial cells. Exp. Cell Res. 250, 298–312. (10.1006/excr.1999.4549) PubMed DOI

Uematsu J, Nishizawa Y, Sonnenberg A, Owaribe K. 1994. Demonstration of type II hemidesmosomes in a mammary gland epithelial cell line, BMGE-H. J. Biochem. 115, 469–476. (10.1093/oxfordjournals.jbchem.a124361) PubMed DOI

Wiche G. 2021. Plectin-mediated intermediate filament functions: why isoforms matter. Cells 10, 2154. (10.3390/cells10082154) PubMed DOI PMC

Ackerl R, Walko G, Fuchs P, Fischer I, Schmuth M, Wiche G. 2007. Conditional targeting of plectin in prenatal and adult mouse stratified epithelia causes keratinocyte fragility and lesional epidermal barrier defects. J. Cell Sci. 120, 2435–2443. (10.1242/jcs.004481) PubMed DOI

Hartmann C, Schwietzer YA, Otani T, Furuse M, Ebnet K. 2020. Physiological functions of junctional adhesion molecules (JAMs) in tight junctions. Biochim. Et Biophys. Acta Biomembr. 1862, 183299. (10.1016/j.bbamem.2020.183299) PubMed DOI

Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S. 1999. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J. Cell Biol. 147, 1351–1363. (10.1083/jcb.147.6.1351) PubMed DOI PMC

Otani T, Nguyen TP, Tokuda S, Sugihara K, Sugawara T, Furuse K, Miura T, Ebnet K, Furuse M. 2019. Claudins and JAM-A coordinately regulate tight junction formation and epithelial polarity. J. Cell Biol. 218, 3372–3396. (10.1083/jcb.201812157) PubMed DOI PMC

Umeda K, et al. . 2006. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 126, 741–754. (10.1016/j.cell.2006.06.043) PubMed DOI

Niessen CM, Gottardi CJ. 2008. Molecular components of the adherens junction. Biochim. Biophys. Acta 1778, 562–571. (10.1016/j.bbamem.2007.12.015) PubMed DOI PMC

Al-Amoudi A, Castaño-Diez D, Devos DP, Russell RB, Johnson GT, Frangakis AS. 2011. The three-dimensional molecular structure of the desmosomal plaque. Proc. Natl Acad. Sci. USA 108, 6480–6485. (10.1073/pnas.1019469108) PubMed DOI PMC

Harrison OJ, Brasch J, Lasso G, Katsamba PS, Ahlsen G, Honig B, Shapiro L. 2016. Structural basis of adhesive binding by desmocollins and desmogleins. Proc. Natl Acad. Sci. USA 113, 7160–7165. (10.1073/pnas.1606272113) PubMed DOI PMC

Kowalczyk AP, Green KJ. 2013. Structure, function, and regulation of desmosomes. Prog. Mol. Biol. Transl. Sci. 116, 95–118. (10.1016/B978-0-12-394311-8.00005-4) PubMed DOI PMC

Wiche G, Krepler R, Artlieb U, Pytela R, Denk H. 1983. Occurrence and immunolocalization of plectin in tissues. J. Cell Biol. 97, 887–901. (10.1083/jcb.97.3.887) PubMed DOI PMC

Pieperhoff S, et al. . 2012. The plaque protein myozap identified as a novel major component of adhering junctions in endothelia of the blood and the lymph vascular systems. J. Cell. Mol. Med. 16, 1709–1719. (10.1111/j.1582-4934.2011.01463.x) PubMed DOI PMC

Osmanagic-Myers S, Dechat T, Foisner R. 2015. Lamins at the crossroads of mechanosignaling. Genes Dev. 29, 225–237. (10.1101/gad.255968.114) PubMed DOI PMC

Zheng B, Cantley LC. 2007. Regulation of epithelial tight junction assembly and disassembly by AMP-activated protein kinase. Proc. Natl Acad. Sci. USA 104, 819–822. (10.1073/pnas.0610157104) PubMed DOI PMC

Wiche G. 2022. Plectin in health and disease. Cells 11, 1412. (10.3390/cells11091412) PubMed DOI PMC

Vahidnezhad H, et al. . 2022. Mutation update: the spectra of PLEC sequence variants and related plectinopathies. Hum. Mutat. 43, 1706–1731. (10.1002/humu.24434) PubMed DOI PMC

Castañón MJ, Walko G, Winter L, Wiche G. 2013. Plectin–intermediate filament partnership in skin, skeletal muscle, and peripheral nerve. Histochem. Cell Biol. 140, 33–53. (10.1007/s00418-013-1102-0) PubMed DOI PMC

Winter L, Wiche G. 2013. The many faces of plectin and plectinopathies: pathology and mechanisms. Acta Neuropathol. 125, 77–93. (10.1007/s00401-012-1026-0) PubMed DOI

Pfendner E, Rouan F, Uitto J. 2005. Progress in epidermolysis bullosa: the phenotypic spectrum of plectin mutations. Exp. Dermatol. 14, 241–249. (10.1111/j.0906-6705.2005.00324.x) PubMed DOI

Wu S, et al. . 2019. Plectin mutations in progressive familial intrahepatic cholestasis. Hepatology 70, 2221–2224. (10.1002/hep.30841) PubMed DOI

Thébaut A, Aumar M, Gardin A, Almes M, Davit‐Spraul A, Jacquemin E. 2024. Failure of cholic acid therapy in a child with a bile acid synthesis defect and harboring plectin mutations. J. Pediatr. Gastroenterol. Nutr. 78, 1203–1204. (10.1002/jpn3.12171) PubMed DOI

Zrelski MM, Kustermann M, Winter L. 2021. Muscle-related plectinopathies. Cells 10, 2480. (10.3390/cells10092480) PubMed DOI PMC

Gundesli H, Talim B, Korkusuz P, Balci-Hayta B, Cirak S, Akarsu NA, Topaloglu H, Dincer P. 2010. Mutation in Exon 1f of PLEC, leading to disruption of plectin isoform 1f, causes autosomal-recessive limb-girdle muscular dystrophy. Am. J. Hum. Genet. 87, 834–841. (10.1016/j.ajhg.2010.10.017) PubMed DOI PMC

Deev RV, et al. . 2017. Glu20Ter variant in PLEC 1f isoform causes limb-girdle muscle dystrophy with lung injury. Front. Neurol. 8, 367. (10.3389/fneur.2017.00367) PubMed DOI PMC

Gostyńska KB, Nijenhuis M, Lemmink H, Pas HH, Pasmooij AMG, Lang KK, Castañón MJ, Wiche G, Jonkman MF. 2015. Mutation in exon 1a of PLEC, leading to disruption of plectin isoform 1a, causes autosomal-recessive skin-only epidermolysis bullosa simplex. Hum. Mol. Genet. 24, 3155–3162. (10.1093/hmg/ddv066) PubMed DOI

Zhang T, Xu Z, Zheng D, Wang X, He J, Zhang L, Zallocchi M. 2023. Novel biallelic variants in the PLEC gene are associated with severe hearing loss. Hear. Res. 436, 108831. (10.1016/j.heares.2023.108831) PubMed DOI

Andrä K, Lassmann H, Bittner R, Shorny S, Fässler R, Propst F, Wiche G. 1997. Targeted inactivation of plectin reveals essential function in maintaining the integrity of skin, muscle, and heart cytoarchitecture. Genes Dev. 11, 3143–3156. (10.1101/gad.11.23.3143) PubMed DOI PMC

Castañón MJ, Wiche G. 2021. Identifying plectin isoform functions through animal models. Cells 10, 2453. (10.3390/cells10092453) PubMed DOI PMC

Natsuga K, et al. . 2010. Plectin deficiency leads to both muscular dystrophy and pyloric atresia in epidermolysis bullosa simplex. Hum. Mutat. 31, E1687–E1698. (10.1002/humu.21330) PubMed DOI PMC

Ketema M, Secades P, Kreft M, Nahidiazar L, Janssen H, Jalink K, Pereda JM de, Sonnenberg A. 2015. The rod domain is not essential for the function of plectin in maintaining tissue integrity. Mol. Biol. Cell 26, 2402–2417. (10.1091/mbc.e15-01-0043) PubMed DOI PMC

Broussard JA, Jaiganesh A, Zarkoob H, Conway DE, Dunn AR, Espinosa HD, Janmey PA, Green KJ. 2020. Scaling up single-cell mechanics to multicellular tissues – the role of the intermediate filament–desmosome network. J. Cell Sci. 133. (10.1242/jcs.228031) PubMed DOI PMC

Dogterom M, Koenderink GH. 2019. Actin–microtubule crosstalk in cell biology. Nat. Rev. Mol. Cell Biol. 20, 38–54. (10.1038/s41580-018-0067-1) PubMed DOI

Alisafaei F, et al. . 2024. Vimentin is a key regulator of cell mechanosensing through opposite actions on actomyosin and microtubule networks. Commun. Biol. 7, 658. (10.1038/s42003-024-06366-4) PubMed DOI PMC

Beedle AEM, et al. . 2023. Fibrillar adhesion dynamics govern the timescales of nuclear mechano-response via the vimentin cytoskeleton. BioRxiv (10.1101/2023.11.08.566191) DOI

Jiu Y, Lehtimäki J, Tojkander S, Cheng F, Jäälinoja H, Liu X, Varjosalo M, Eriksson JE, Lappalainen P. 2015. Bidirectional interplay between vimentin intermediate filaments and contractile actin stress fibers. Cell Rep. 11, 1511–1518. (10.1016/j.celrep.2015.05.008) PubMed DOI

Strouhalova K, Přechová M, Gandalovičová A, Brábek J, Gregor M, Rosel D. 2020. Vimentin intermediate filaments as potential target for cancer treatment. Cancers 12, 184. (10.3390/cancers12010184) PubMed DOI PMC

Battaglia RA, Delic S, Herrmann H, Snider NT. 2018. Vimentin on the move: new developments in cell migration. F1000Research 7, 1796. (10.12688/f1000research.15967.1) PubMed DOI PMC

Lechuga S, Ivanov AI. 2021. Actin cytoskeleton dynamics during mucosal inflammation: a view from broken epithelial barriers. Curr. Opin. Physiol. 19, 10–16. (10.1016/j.cophys.2020.06.012) PubMed DOI PMC

Ebrahim S, et al. . 2013. NMII forms a contractile transcellular sarcomeric network to regulate apical cell junctions and tissue geometry. Curr. Biol. 23, 731–736. (10.1016/j.cub.2013.03.039) PubMed DOI PMC

Yonemura S, Itoh M, Nagafuchi A, Tsukita S. 1995. Cell-to-cell adherens junction formation and actin filament organization: similarities and differences between non-polarized fibroblasts and polarized epithelial cells. J. Cell Sci. 108, 127–142. (10.1242/jcs.108.1.127) PubMed DOI

Efimova N, Svitkina TM. 2018. Branched actin networks push against each other at adherens junctions to maintain cell–cell adhesion. J. Cell Biol. 217, 1827–1845. (10.1083/jcb.201708103) PubMed DOI PMC

Acharya BR, et al. . 2018. A mechanosensitive RhoA pathway that protects epithelia against acute tensile stress. Dev. Cell 47, 439–452.(10.1016/j.devcel.2018.09.016) PubMed DOI

Stephenson RE, Higashi T, Erofeev IS, Arnold TR, Leda M, Goryachev AB, Miller AL. 2019. Rho flares repair local tight junction leaks. Dev. Cell 48, 445–459.(10.1016/j.devcel.2019.01.016) PubMed DOI PMC

Ruiz WG, Clayton DR, Parakala-Jain T, Dalghi MG, Franks J, Apodaca G. 2024. The umbrella cell keratin network: organization as a tile-like mesh, formation of a girded layer in response to bladder filling, and dependence on the plectin cytolinker. BioRxiv (10.1101/2024.06.11.598498) PubMed DOI PMC

Brunser O, Luft HJ. 1970. Fine structure of the apex of absorptive cell from rat small intestine. J. Ultrastruct. Res. 31, 291–311. (10.1016/s0022-5320(70)90133-4) PubMed DOI

Toivola DM, Baribault H, Magin T, Michie SA, Omary MB. 2000. Simple epithelial keratins are dispensable for cytoprotection in two pancreatitis models. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G1343–G1354. (10.1152/ajpgi.2000.279.6.g1343) PubMed DOI

Baffet G, Loyer P, Glaise D, Corlu A, Etienne PL, Guguen-Guillouzo C. 1991. Distinct effects of cell-cell communication and corticosteroids on the synthesis and distribution of cytokeratins in cultured rat hepatocytes. J. Cell Sci. 99, 609–615. (10.1242/jcs.99.3.609) PubMed DOI

Iwatsuki H, Suda M. 2007. Keratin 20 expressed in the endocrine and exocrine cells of the rabbit duodenum. Acta Histochem Cytochem 40, 123–130. (10.1267/ahc.07007) PubMed DOI PMC

Meier SM, et al. . 2017. An organoruthenium anticancer agent shows unexpected target selectivity for plectin. Angew. Chem. Int. Ed. 56, 8267–8271. (10.1002/anie.201702242) PubMed DOI

Nanavati BN, Noordstra I, Verma S, Duszyc K, Green KJ, Yap AS. 2023. Desmosome-anchored intermediate filaments facilitate tension-sensitive RhoA signaling for epithelial homeostasis. BioRxiv (10.1101/2023.02.23.529786) DOI

Broussard JA, et al. . 2017. The desmoplakin–intermediate filament linkage regulates cell mechanics. Mol. Biol. Cell 28, 3156–3164. (10.1091/mbc.e16-07-0520) PubMed DOI PMC

Nekrasova O, Harmon RM, Broussard JA, Koetsier JL, Godsel LM, Fitz GN, Gardel ML, Green KJ. 2018. Desmosomal cadherin association with Tctex-1 and cortactin-Arp2/3 drives perijunctional actin polymerization to promote keratinocyte delamination. Nat. Commun. 9, 1053. (10.1038/s41467-018-03414-6) PubMed DOI PMC

Kant S, Freytag B, Herzog A, Reich A, Merkel R, Hoffmann B, Krusche CA, Leube RE. 2019. Desmoglein 2 mutation provokes skeletal muscle actin expression and accumulation at intercalated discs in murine hearts. J. Cell Sci. (10.1242/jcs.199612) PubMed DOI

Hatsell S, Cowin P. 2001. Deconstructing desmoplakin. Nat. Cell Biol. 3, E270–E272. (10.1038/ncb1201-e270) PubMed DOI

Vasioukhin V, Bowers E, Bauer C, Degenstein L, Fuchs E. 2001. Desmoplakin is essential in epidermal sheet formation. Nat. Cell Biol. 3, 1076–1085. (10.1038/ncb1201-1076) PubMed DOI

Keil R, Rietscher K, Hatzfeld M. 2016. Antagonistic regulation of intercellular cohesion by plakophilins 1 and 3. J Invest Dermatol 136, 2022–2029. (10.1016/j.jid.2016.05.124) PubMed DOI

Godsel LM, Dubash AD, Bass-Zubek AE, Amargo EV, Klessner JL, Hobbs RP, Chen X, Green KJ. 2010. Plakophilin 2 couples actomyosin remodeling to desmosomal plaque assembly via RhoA. Mol. Biol. Cell 21, 2844–2859. (10.1091/mbc.e10-02-0131) PubMed DOI PMC

Moch M, Schieren J, Leube RE. 2022. Cortical tension regulates desmosomal morphogenesis. Front. Cell Dev. Biol. 10, 946190. (10.3389/fcell.2022.946190) PubMed DOI PMC

Rübsam M, et al. . 2023. Polarity signaling balances epithelial contractility and mechanical resistance. Sci. Rep. 13, 7743. (10.1038/s41598-023-33485-5) PubMed DOI PMC

Buckley A, Turner JR. 2018. Cell biology of tight junction barrier regulation and mucosal disease. Cold Spring Harb. Perspect. Biol. 10, a029314. (10.1101/cshperspect.a029314) PubMed DOI PMC

Ruder B, Atreya R, Becker C. 2019. Tumour necrosis factor alpha in intestinal homeostasis and gut related diseases. Int. J. Mol. Sci. 20, 1887. (10.3390/ijms20081887) PubMed DOI PMC

Son S, Baek A, Lee JH, Kim DE. 2022. Autophagosome–lysosome fusion is facilitated by plectin-stabilized actin and keratin 8 during macroautophagic process. Cell. Mol. Life Sci. 79, 95. (10.1007/s00018-022-04144-1) PubMed DOI PMC

Serres MP, et al. . 2020. F-actin interactome reveals vimentin as a key regulator of actin organization and cell mechanics in mitosis. Dev. Cell 52, 210–222.(10.1016/j.devcel.2019.12.011) PubMed DOI PMC

Koenderink GH, Paluch EK. 2018. Architecture shapes contractility in actomyosin networks. Curr. Opin. Cell Biol. 50, 79–85. (10.1016/j.ceb.2018.01.015) PubMed DOI

Janson LW, Kolega J, Taylor DL. 1991. Modulation of contraction by gelation/solation in a reconstituted motile model. J. Cell Biol. 114, 1005–1015. (10.1083/jcb.114.5.1005) PubMed DOI PMC

Matsudaira P. 1994. Actin crosslinking proteins at the leading edge. Semin. Cell Biol. 5, 165–174. (10.1006/scel.1994.1021) PubMed DOI

Ennomani H, Letort G, Guérin C, Martiel JL, Cao W, Nédélec F, De La Cruz EM, Théry M, Blanchoin L. 2016. Architecture and connectivity govern actin network contractility. Curr. Biol. 26, 616–626. (10.1016/j.cub.2015.12.069) PubMed DOI PMC

Ingber DE. 2008. Tensegrity and mechanotransduction. J. Bodyw. Mov. Ther. 12, 198–200. (10.1016/j.jbmt.2008.04.038) PubMed DOI PMC

Ingber DE. 2003. Tensegrity I. Cell structure and hierarchical systems biology. J. Cell Sci. 116, 1157–1173. (10.1242/jcs.00359) PubMed DOI

Ingber DE. 2003. Tensegrity II. How structural networks influence cellular information processing networks. J. Cell Sci. 116, 1397–1408. (10.1242/jcs.00360) PubMed DOI

Angulo-Urarte A, van der Wal T, Huveneers S. 2020. Cell-cell junctions as sensors and transducers of mechanical forces. Biochim Biophys Acta Biomembr 1862, 183316. (10.1016/j.bbamem.2020.183316) PubMed DOI

Charras G, Yap AS. 2018. Tensile forces and mechanotransduction at cell–cell junctions. Curr. Biol. 28, R445–R457. (10.1016/j.cub.2018.02.003) PubMed DOI

Chugh P, Paluch EK. 2018. The actin cortex at a glance. J. Cell Sci. 131. (10.1242/jcs.186254) PubMed DOI PMC

Bellingham-Johnstun K, Tyree ZL, Martinez-Baird J, Thorn A, Laplante C. 2023. Actin–microtubule crosstalk imparts stiffness to the contractile ring in fission yeast. Cells 12, 917. (10.3390/cells12060917) PubMed DOI PMC

Liang X, Michael M, Gomez GA. 2016. Measurement of mechanical tension at cell-cell junctions using two-photon laser ablation. Bio Protoc. 6, e2068. (10.21769/BioProtoc.2068) PubMed DOI PMC

Tojkander S, Gateva G, Husain A, Krishnan R, Lappalainen P. 2015. Generation of contractile actomyosin bundles depends on mechanosensitive actin filament assembly and disassembly. eLife 4, e06126. (10.7554/elife.06126) PubMed DOI PMC

Tinevez JY, Schulze U, Salbreux G, Roensch J, Joanny JF, Paluch E. 2009. Role of cortical tension in bleb growth. Proc. Natl Acad. Sci. USA 106, 18581–18586. (10.1073/pnas.0903353106) PubMed DOI PMC

Zulueta-Coarasa T, Fernandez-Gonzalez R. 2015. Integrative mechanobiology: micro- and nano- techniques in cell mechanobiology. Cambridge, UK: Cambridge University Press.

Style RW, Boltyanskiy R, German GK, Hyland C, MacMinn CW, Mertz AF, Wilen LA, Xu Y, Dufresne ER. 2014. Traction force microscopy in physics and biology. Soft Matter 10, 4047. (10.1039/c4sm00264d) PubMed DOI

Bauer A, Prechová M, Fischer L, Thievessen I, Gregor M, Fabry B. 2021. pyTFM: A tool for traction force and monolayer stress microscopy. PLoS Comput. Biol. 17, e1008364. (10.1371/journal.pcbi.1008364) PubMed DOI PMC

Trepat X, Wasserman MR, Angelini TE, Millet E, Weitz DA, Butler JP, Fredberg JJ. 2009. Physical forces during collective cell migration. Nat. Phys. 5, 426–430. (10.1038/nphys1269) DOI

Tang X, Tofangchi A, Anand SV, Saif TA. 2014. A novel cell traction force microscopy to study multi-cellular system. PLoS Comput. Biol. 10, e1003631. (10.1371/journal.pcbi.1003631) PubMed DOI PMC

Dembo M, Wang YL. 1999. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76, 2307–2316. (10.1016/s0006-3495(99)77386-8) PubMed DOI PMC

Lekka M, Gnanachandran K, Kubiak A, Zieliński T, Zemła J. 2021. Traction force microscopy: measuring the forces exerted by cells. Micron 150, 103138. (10.1016/j.micron.2021.103138) PubMed DOI

Hur SS, Jeong JH, Ban MJ, Park JH, Yoon JK, Hwang Y. 2020. Traction force microscopy for understanding cellular mechanotransduction. BMB Rep. 53, 74–081. (10.5483/bmbrep.2020.53.2.308) PubMed DOI PMC

Grashoff C, et al. . 2010. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–266. (10.1038/nature09198) PubMed DOI PMC

Cost AL, Khalaji S, Grashoff C. 2019. Genetically encoded FRET-based tension sensors. Curr. Protoc. Cell Biol. 83, e85. (10.1002/cpcb.85) PubMed DOI

Kumar A, et al. . 2016. Talin tension sensor reveals novel features of focal adhesion force transmission and mechanosensitivity. J. Cell Biol. 213, 371–383. (10.1083/jcb.201510012) PubMed DOI PMC

Borghi N, Sorokina M, Shcherbakova OG, Weis WI, Pruitt BL, Nelson WJ, Dunn AR. 2012. E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. Proc. Natl Acad. Sci. USA 109, 12568–12573. (10.1073/pnas.1204390109) PubMed DOI PMC

Price AJ, Cost AL, Ungewiß H, Waschke J, Dunn AR, Grashoff C. 2018. Mechanical loading of desmosomes depends on the magnitude and orientation of external stress. Nat. Commun. 9, 5284. (10.1038/s41467-018-07523-0) PubMed DOI PMC

Baddam SR, et al. . 2018. The desmosomal cadherin Desmoglein-2 experiences mechanical tension as demonstrated by a FRET-based tension biosensor expressed in living cells. Cells 7, 66. (10.3390/cells7070066) PubMed DOI PMC

Haas AJ, Zihni C, Ruppel A, Hartmann C, Ebnet K, Tada M, Balda MS, Matter K. 2020. Interplay between extracellular matrix stiffness and JAM-A regulates mechanical load on ZO-1 and tight junction assembly. Cell Rep. 32, 107924. (10.1016/j.celrep.2020.107924) PubMed DOI PMC

Narayanan V, et al. . 2020. Osmotic gradients in epithelial acini increase mechanical tension across e-cadherin, drive morphogenesis, and maintain homeostasis. Curr. Biol. 30, 624–633.(10.1016/j.cub.2019.12.025) PubMed DOI PMC

Kumar S, Weaver VM. 2009. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28, 113–127. (10.1007/s10555-008-9173-4) PubMed DOI PMC

Hogan C, et al. . 2009. Characterization of the interface between normal and transformed epithelial cells. Nat. Cell Biol. 11, 460–467. (10.1038/ncb1853) PubMed DOI

Kajita M, Hogan C, Harris AR, Dupre-Crochet S, Itasaki N, Kawakami K, Charras G, Tada M, Fujita Y. 2010. Interaction with surrounding normal epithelial cells influences signalling pathways and behaviour of Src-transformed cells. J. Cell Sci. 123, 171–180. (10.1242/jcs.057976) PubMed DOI PMC

Yilmaz M, Christofori G. 2009. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 28, 15–33. (10.1007/s10555-008-9169-0) PubMed DOI

Friedl P, Wolf K. 2010. Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. 188, 11–19. (10.1083/jcb.200909003) PubMed DOI PMC

Taubenberger AV, Baum B, Matthews HK. 2020. The mechanics of mitotic cell rounding. Front. Cell Dev. Biol. 8, 687. (10.3389/fcell.2020.00687) PubMed DOI PMC

Salbreux G, Charras G, Paluch E. 2012. Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol. 22, 536–545. (10.1016/j.tcb.2012.07.001) PubMed DOI

Escuin S, Vernay B, Savery D, Gurniak CB, Witke W, Greene NDE, Copp AJ. 2015. Rho kinase-dependent actin turnover and actomyosin disassembly are necessary for mouse spinal neural tube closure. J. Cell Sci. 128, 2468–2481. (10.1242/jcs.164574) PubMed DOI PMC

Moulding DA, Record J, Malinova D, Thrasher AJ. 2013. Actin cytoskeletal defects in immunodeficiency. Immunol. Rev. 256, 282–299. (10.1111/imr.12114) PubMed DOI PMC

Na S, Chowdhury F, Tay B, Ouyang M, Gregor M, Wang Y, Wiche G, Wang N. 2009. Plectin contributes to mechanical properties of living cells. Am. J. Physiol. Cell Physiol. 296, C868–C877. (10.1152/ajpcell.00604.2008) PubMed DOI PMC

Werner NS, Windoffer R, Strnad P, Grund C, Leube RE, Magin TM. 2004. Epidermolysis bullosa simplex-type mutations alter the dynamics of the keratin cytoskeleton and reveal a contribution of actin to the transport of keratin subunits. Mol. Biol. Cell 15, 990–1002. (10.1091/mbc.e03-09-0687) PubMed DOI PMC

Russell D, Andrews PD, James J, Lane EB. 2004. Mechanical stress induces profound remodelling of keratin filaments and cell junctions in epidermolysis bullosa simplex keratinocytes. J. Cell Sci. 117, 5233–5243. (10.1242/jcs.01407) PubMed DOI

Shirinsky VP, Antonov AS, Birukov KG, Sobolevsky AV, Romanov YA, Kabaeva NV, Antonova GN, Smirnov VN. 1989. Mechano-chemical control of human endothelium orientation and size. J. Cell Biol. 109, 331–339. (10.1083/jcb.109.1.331) PubMed DOI PMC

Chen T, Saw TB, Mège RM, Ladoux B. 2018. Mechanical forces in cell monolayers. J. Cell Sci. 131. (10.1242/jcs.218156) PubMed DOI

Denais CM, et al. . 2016. Nuclear envelope rupture and repair during cancer cell migration. Science 352, 353–358. (10.1126/science.aad7297) PubMed DOI PMC

Xia Y, et al. . 2018. Nuclear rupture at sites of high curvature compromises retention of DNA repair factors. J. Cell Biol. 217, 3796–3808. (10.1083/jcb.201711161) PubMed DOI PMC

Le HQ, et al. . 2016. Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment. Nat. Cell Biol. 18, 864–875. (10.1038/ncb3387) PubMed DOI

Nava MM, et al. . 2020. Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage. Cell 181, 800–817.(10.1016/j.cell.2020.03.052) PubMed DOI PMC

Gérémie L, Ilker E, Bernheim-Dennery M, Cavaniol C, Viovy JL, Vignjevic DM, Joanny JF, Descroix S. 2022. Evolution of a confluent gut epithelium under on-chip cyclic stretching. Phys. Rev. Res. 4, 023032. (10.1103/physrevresearch.4.023032) DOI

Buck RC. 1980. Reorientation response of cells to repeated stretch and recoil of the substratum. Exp. Cell Res. 127, 470–474. (10.1016/0014-4827(80)90456-5) PubMed DOI

Lien JC, Wang Y li. 2021. Cyclic stretching-induced epithelial cell reorientation is driven by microtubule-modulated transverse extension during the relaxation phase. Sci. Rep. 11, 14803. (10.1038/s41598-021-93987-y) PubMed DOI PMC

Zielinski A, Linnartz C, Pleschka C, Dreissen G, Springer R, Merkel R, Hoffmann B. 2018. Reorientation dynamics and structural interdependencies of actin, microtubules and intermediate filaments upon cyclic stretch application. Cytoskeleton 75, 385–394. (10.1002/cm.21470) PubMed DOI

Kreplak L, Fudge D. 2007. Biomechanical properties of intermediate filaments: from tissues to single filaments and back. BioEssays 29, 26–35. (10.1002/bies.20514) PubMed DOI

Springer R, Zielinski A, Pleschka C, Hoffmann B, Merkel R. 2019. Unbiased pattern analysis reveals highly diverse responses of cytoskeletal systems to cyclic straining. PLoS One 14, e0210570. (10.1371/journal.pone.0210570) PubMed DOI PMC

Goldyn AM, Kaiser P, Spatz JP, Ballestrem C, Kemkemer R. 2010. The kinetics of force‐induced cell reorganization depend on microtubules and actin. Cytoskeleton 67, 241–250. (10.1002/cm.20439) PubMed DOI PMC

Wang JH, Goldschmidt-Clermont P, Wille J, Yin FC. 2001. Specificity of endothelial cell reorientation in response to cyclic mechanical stretching. J. Biomech. 34, 1563–1572. (10.1016/s0021-9290(01)00150-6) PubMed DOI

Iba T, Sumpio BE. 1991. Morphological response of human endothelial cells subjected to cyclic strain in vitro. Microvasc. Res. 42, 245–254. (10.1016/0026-2862(91)90059-k) PubMed DOI

Livne A, Bouchbinder E, Geiger B. 2014. Cell reorientation under cyclic stretching. Nat. Commun. 5, 3938. (10.1038/ncomms4938) PubMed DOI PMC

Galie PA, Georges PC, Janmey PA. 2022. How do cells stiffen? Biochem. J. 479, 1825–1842. (10.1042/bcj20210806) PubMed DOI

Cui Y, Hameed FM, Yang B, Lee K, Pan CQ, Park S, Sheetz M. 2015. Cyclic stretching of soft substrates induces spreading and growth. Nat. Commun. 6, 6333. (10.1038/ncomms7333) PubMed DOI PMC

Faust U, Hampe N, Rubner W, Kirchgeßner N, Safran S, Hoffmann B, Merkel R. 2011. Cyclic stress at mHz frequencies aligns fibroblasts in direction of zero strain. PLoS One 6, e28963. (10.1371/journal.pone.0028963) PubMed DOI PMC

Kaunas R, Nguyen P, Usami S, Chien S. 2005. Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc. Natl Acad. Sci. USA 102, 15895–15900. (10.1073/pnas.0506041102) PubMed DOI PMC

Fujiwara S, Ohashi K, Mashiko T, Kondo H, Mizuno K. 2016. Interplay between Solo and keratin filaments is crucial for mechanical force–induced stress fiber reinforcement. Mol. Biol. Cell 27, 954–966. (10.1091/mbc.e15-06-0417) PubMed DOI PMC

Aragona M, et al. . 2020. Mechanisms of stretch-mediated skin expansion at single-cell resolution. Nature 584, 268–273. (10.1038/s41586-020-2555-7) PubMed DOI PMC

Benham-Pyle BW, Pruitt BL, Nelson WJ. 2015. Mechanical strain induces E-cadherin-dependent Yap1 and β-catenin activation to drive cell cycle entry. Science 348, 1024–1027. (10.1126/science.aaa4559) PubMed DOI PMC

Miralles F, Posern G, Zaromytidou AI, Treisman R. 2003. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113, 329–342. (10.1016/s0092-8674(03)00278-2) PubMed DOI

Vartiainen MK, Guettler S, Larijani B, Treisman R. 2007. Nuclear actin regulates dynamic subcellular localization and activity of the SRF Cofactor MAL. Science 316, 1749–1752. (10.1126/science.1141084) PubMed DOI

Posern G, Treisman R. 2006. Actin’ together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol. 16, 588–596. (10.1016/j.tcb.2006.09.008) PubMed DOI

Dupont S, et al. . 2011. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183. (10.1038/nature10137) PubMed DOI

Panciera T, Azzolin L, Cordenonsi M, Piccolo S. 2017. Mechanobiology of YAP and TAZ in physiology and disease. Nat. Rev. Mol. Cell Biol. Nature publishing group 18, 758–770. (10.1038/nrm.2017.87) PubMed DOI PMC

Yamada K, Green KG, Samarel AM, Saffitz JE. 2005. Distinct pathways regulate expression of cardiac electrical and mechanical junction proteins in response to stretch. Circ. Res. 97, 346–353. (10.1161/01.res.0000178788.76568.8a) PubMed DOI

Liu S, et al. . 2016. High vimentin expression associated with lymph node metastasis and predicated a poor prognosis in oral squamous cell carcinoma. Sci. Rep. 6, 38834. (10.1038/srep38834) PubMed DOI PMC

Leitner L, Shaposhnikov D, Mengel A, Descot A, Julien S, Hoffmann R, Posern G. 2011. MAL/MRTF-A controls migration of non-invasive cells by upregulation of cytoskeleton-associated proteins. J. Cell Sci. 124, 4318–4331. (10.1242/jcs.092791) PubMed DOI

Yates S, Rayner TE. 2002. Transcription factor activation in response to cutaneous injury: Role of AP‐1 in reepithelialization. Wound Repair Regen. 10, 5–15. (10.1046/j.1524-475x.2002.10902.x) PubMed DOI

Janmey PA. 1991. Mechanical properties of cytoskeletal polymers. Curr. Opin. Cell Biol. 3, 4–11. (10.1016/0955-0674(91)90159-v) PubMed DOI

van Bodegraven EJ, Etienne-Manneville S. 2021. Intermediate filaments from tissue integrity to single molecule mechanics. Cells 10, 1905. (10.3390/cells10081905) PubMed DOI PMC

Block J, Schroeder V, Pawelzyk P, Willenbacher N, Koster S. 2015. Physical properties of cytoplasmic intermediate filaments. Biochim. Et Biophys. Acta 1853, 3053–3064. (10.1016/j.bbamcr.2015.05.009) PubMed DOI

Köster S, Weitz DA, Goldman RD, Aebi U, Herrmann H. 2015. Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks. Curr. Opin. Cell Biol. 32, 82–91. (10.1016/j.ceb.2015.01.001) PubMed DOI PMC

Sapra KT, Medalia O. 2021. Bend, push, stretch: remarkable structure and mechanics of single intermediate filaments and meshworks. Cells 10, 1960. (10.3390/cells10081960) PubMed DOI PMC

Ackbarow T, Sen D, Thaulow C, Buehler MJ. 2009. Alpha-helical protein networks are self-protective and flaw-tolerant. PLoS One 4, e6015. (10.1371/journal.pone.0006015) PubMed DOI PMC

Block J, Witt H, Candelli A, Peterman EJG, Wuite GJL, Janshoff A, Köster S. 2017. Nonlinear loading-rate-dependent force response of individual vimentin intermediate filaments to applied strain. Phys. Rev. Lett. 118, 048101. (10.1103/PhysRevLett.118.048101) PubMed DOI

Uray IP, Uray K. 2021. Mechanotransduction at the plasma membrane-cytoskeleton interface. Int. J. Mol. Sci. 22, 11566. (10.3390/ijms222111566) PubMed DOI PMC

Martino F, Perestrelo AR, Vinarský V, Pagliari S, Forte G. 2018. Cellular mechanotransduction: from tension to function. Front. Physiol. 9, 824. (10.3389/fphys.2018.00824) PubMed DOI PMC

Ortega E, Manso JA, Buey RM, Carballido AM, Carabias A, Sonnenberg A, de Pereda JM. 2016. The structure of the plakin domain of plectin reveals an extended rod-like shape. J. Biol. Chem. 291, 18643–18662. (10.1074/jbc.m116.732909) PubMed DOI PMC

Daday C, Kolšek K, Gräter F. 2017. The mechano-sensing role of the unique SH3 insertion in plakin domains revealed by molecular dynamics simulations. Sci. Rep. 7. (10.1038/s41598-017-11017-2) PubMed DOI PMC

Suman SK, Daday C, Ferraro T, Vuong-Brender T, Tak S, Quintin S, Robin F, Gräter F, Labouesse M. 2019. The plakin domain of C. elegans VAB-10/plectin acts as a hub in a mechanotransduction pathway to promote morphogenesis. Development 146. (10.1242/dev.183780) PubMed DOI PMC

Osmanagic-Myers S, et al. . 2015. Plectin reinforces vascular integrity by mediating crosstalk between the vimentin and the actin networks. J. Cell Sci. 128, 4138–4150. (10.1242/jcs.172056) PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...