Vimentin Intermediate Filaments as Potential Target for Cancer Treatment

. 2020 Jan 11 ; 12 (1) : . [epub] 20200111

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31940801

Grantová podpora
18-15684J Grantová Agentura České Republiky
19-03932S Grantová Agentura České Republiky
17-31538A Grantová Agentura České Republiky
LQ1604 Ministerstvo Zdravotnictví Ceské Republiky
CZ.02.1.01/0.0/0.0/16_019/ 0000785 Ministerstvo Zdravotnictví Ceské Republiky
LTC17063 European Cooperation in Science and Technology

Intermediate filaments constitute the third component of the cellular skeleton. Unlike actin and microtubule cytoskeletons, the intermediate filaments are composed of a wide variety of structurally related proteins showing distinct expression patterns in tissues and cell types. Changes in the expression patterns of intermediate filaments are often associated with cancer progression; in particular with phenotypes leading to increased cellular migration and invasion. In this review we will describe the role of vimentin intermediate filaments in cancer cell migration, cell adhesion structures, and metastasis formation. The potential for targeting vimentin in cancer treatment and the development of drugs targeting vimentin will be reviewed.

Zobrazit více v PubMed

Ishikawa H., Bischoff R., Holtzer H. Mitosis and intermediate-sized filaments in developing skeletal muscle. J. Cell Boil. 1968;38:538–555. doi: 10.1083/jcb.38.3.538. PubMed DOI PMC

Hesse M., Magin T.M., Weber K. Genes for intermediate filament proteins and the draft sequence of the human genome: Novel keratin genes and a surprisingly high number of pseudogenes related to keratin genes 8 and 18. J. Cell Sci. 2001;114:2569–2575. PubMed

Peter A., Stick R. Evolutionary aspects in intermediate filament proteins. Curr. Opin. Cell Biol. 2015;32:48–55. doi: 10.1016/j.ceb.2014.12.009. PubMed DOI

Chung B.M., Rotty J.D., Coulombe P.A. Networking galore: Intermediate filaments and cell migration. Curr. Opin. Cell Biol. 2013;25:600–612. doi: 10.1016/j.ceb.2013.06.008. PubMed DOI PMC

Leduc C., Etienne-Manneville S. Intermediate filaments in cell migration and invasion: The unusual suspects. Curr. Opin. Cell Biol. 2015;32:102–112. doi: 10.1016/j.ceb.2015.01.005. PubMed DOI

Cheng F., Eriksson J.E. Intermediate Filaments and the Regulation of Cell Motility during Regeneration and Wound Healing. Cold Spring Harb. Perspect. Biol. 2017;9:a022046. doi: 10.1101/cshperspect.a022046. PubMed DOI PMC

Battaglia R.A., Delic S., Herrmann H., Snider N.T. Vimentin on the move: New developments in cell migration. F1000Research. 2018;7 doi: 10.12688/f1000research.15967.1. PubMed DOI PMC

Kokkinos M.I., Wafai R., Wong M.K., Newgreen D.F., Thompson E.W., Waltham M. Vimentin and epithelial-mesenchymal transition in human breast cancer—Observations in vitro and in vivo. Cells Tissues Organs. 2007;185:191–203. doi: 10.1159/000101320. PubMed DOI

Satelli A., Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol. Life Sci. 2011;68:3033–3046. doi: 10.1007/s00018-011-0735-1. PubMed DOI PMC

Liu C.Y., Lin H.H., Tang M.J., Wang Y.K. Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. Oncotarget. 2015;6:15966–15983. doi: 10.18632/oncotarget.3862. PubMed DOI PMC

Mendez M.G., Kojima S., Goldman R.D. Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J. 2010;24:1838–1851. doi: 10.1096/fj.09-151639. PubMed DOI PMC

Messica Y., Laser-Azogui A., Volberg T., Elisha Y., Lysakovskaia K., Eils R., Gladilin E., Geiger B., Beck R. The role of Vimentin in Regulating Cell Invasive Migration in Dense Cultures of Breast Carcinoma Cells. Nano Lett. 2017;17:6941–6948. doi: 10.1021/acs.nanolett.7b03358. PubMed DOI

Paccione R.J., Miyazaki H., Patel V., Waseem A., Gutkind J.S., Zehner Z.E., Yeudall W.A. Keratin down-regulation in vimentin-positive cancer cells is reversible by vimentin RNA interference, which inhibits growth and motility. Mol. Cancer Ther. 2008;7:2894–2903. doi: 10.1158/1535-7163.MCT-08-0450. PubMed DOI

Peinado H., Quintanilla M., Cano A. Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: Mechanisms for epithelial mesenchymal transitions. J. Biol. Chem. 2003;278:21113–21123. doi: 10.1074/jbc.M211304200. PubMed DOI

Rogel M.R., Soni P.N., Troken J.R., Sitikov A., Trejo H.E., Ridge K.M. Vimentin is sufficient and required for wound repair and remodeling in alveolar epithelial cells. FASEB J. 2011;25:3873–3883. doi: 10.1096/fj.10-170795. PubMed DOI PMC

Yoshida H., Kanamori Y., Asano H., Hashimoto O., Murakami M., Kawada T., Matsui T., Funaba M. Regulation of brown adipogenesis by the Tgf-beta family: Involvement of Srebp1c in Tgf-beta- and Activin-induced inhibition of adipogenesis. Biochim. Biophys. Acta. 2013;1830:5027–5035. doi: 10.1016/j.bbagen.2013.06.036. PubMed DOI

Liu S., Liu L., Ye W., Ye D., Wang T., Guo W., Liao Y., Xu D., Song H., Zhang L., et al. High Vimentin Expression Associated with Lymph Node Metastasis and Predicated a Poor Prognosis in Oral Squamous Cell Carcinoma. Sci. Rep. 2016;6:38834. doi: 10.1038/srep38834. PubMed DOI PMC

Cano A., Perez-Moreno M.A., Rodrigo I., Locascio A., Blanco M.J., del Barrio M.G., Portillo F., Nieto M.A. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2000;2:76–83. doi: 10.1038/35000025. PubMed DOI

Bindels S., Mestdagt M., Vandewalle C., Jacobs N., Volders L., Noel A., van Roy F., Berx G., Foidart J.M., Gilles C. Regulation of vimentin by SIP1 in human epithelial breast tumor cells. Oncogene. 2006;25:4975–4985. doi: 10.1038/sj.onc.1209511. PubMed DOI

Virtakoivu R., Mai A., Mattila E., De Franceschi N., Imanishi S.Y., Corthals G., Kaukonen R., Saari M., Cheng F., Torvaldson E., et al. Vimentin-ERK Signaling Uncouples Slug Gene Regulatory Function. Cancer Res. 2015;75:2349–2362. doi: 10.1158/0008-5472.CAN-14-2842. PubMed DOI

Wu Y., Zhang X., Salmon M., Lin X., Zehner Z.E. TGFbeta1 regulation of vimentin gene expression during differentiation of the C2C12 skeletal myogenic cell line requires Smads, AP-1 and Sp1 family members. Biochim. Biophys. Acta. 2007;1773:427–439. doi: 10.1016/j.bbamcr.2006.11.017. PubMed DOI PMC

Lilienbaum A., Duc Dodon M., Alexandre C., Gazzolo L., Paulin D. Effect of human T-cell leukemia virus type I tax protein on activation of the human vimentin gene. J. Virol. 1990;64:256–263. doi: 10.1128/JVI.64.1.256-263.1990. PubMed DOI PMC

Rittling S.R., Coutinho L., Amram T., Kolbe M. AP-1/jun binding sites mediate serum inducibility of the human vimentin promoter. Nucleic Acids Res. 1989;17:1619–1633. doi: 10.1093/nar/17.4.1619. PubMed DOI PMC

Gilles C., Polette M., Mestdagt M., Nawrocki-Raby B., Ruggeri P., Birembaut P., Foidart J.M. Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Res. 2003;63:2658–2664. doi: 10.1136/ijgc-00009577-200303001-00219. PubMed DOI

Cong H., Yao R.Y., Sun Z.Q., Qiu W.S., Yao Y.S., Feng T.T., Xin C., Liang J., Yue L.U. DNA hypermethylation of the vimentin gene inversely correlates with vimentin expression in intestinal- and diffuse-type gastric cancer. Oncol. Lett. 2016;11:842–848. doi: 10.3892/ol.2015.3937. PubMed DOI PMC

Zhu S., He C., Deng S., Li X., Cui S., Zeng Z., Liu M., Zhao S., Chen J., Jin Y., et al. MiR-548an, Transcriptionally Downregulated by HIF1alpha/HDAC1, Suppresses Tumorigenesis of Pancreatic Cancer by Targeting Vimentin Expression. Mol. Cancer Ther. 2016;15:2209–2219. doi: 10.1158/1535-7163.MCT-15-0877. PubMed DOI

Xu M., Li J., Wang X., Meng S., Shen J., Wang S., Xu X., Xie B., Liu B., Xie L. MiR-22 suppresses epithelial-mesenchymal transition in bladder cancer by inhibiting Snail and MAPK1/Slug/vimentin feedback loop. Cell Death Dis. 2018;9:209. doi: 10.1038/s41419-017-0206-1. PubMed DOI PMC

Zhang J., Liu D., Feng Z., Mao J., Zhang C., Lu Y., Li J., Zhang Q., Li Q., Li L. MicroRNA-138 modulates metastasis and EMT in breast cancer cells by targeting vimentin. Biomed. Pharmacother. 2016;77:135–141. doi: 10.1016/j.biopha.2015.12.018. PubMed DOI

Meng J., Chen S., Han J.X., Qian B., Wang X.R., Zhong W.L., Qin Y., Zhang H., Gao W.F., Lei Y.Y., et al. Twist1 Regulates Vimentin through Cul2 Circular RNA to Promote EMT in Hepatocellular Carcinoma. Cancer Res. 2018;78:4150–4162. doi: 10.1158/0008-5472.CAN-17-3009. PubMed DOI

Cheng F., Shen Y., Mohanasundaram P., Lindstrom M., Ivaska J., Ny T., Eriksson J.E. Vimentin coordinates fibroblast proliferation and keratinocyte differentiation in wound healing via TGF-beta-Slug signaling. Proc. Natl. Acad. Sci. USA. 2016;113:E4320–E4327. doi: 10.1073/pnas.1519197113. PubMed DOI PMC

Dmello C., Sawant S., Alam H., Gangadaran P., Tiwari R., Dongre H., Rana N., Barve S., Costea D.E., Chaukar D., et al. Vimentin-mediated regulation of cell motility through modulation of beta4 integrin protein levels in oral tumor derived cells. Int. J. Biochem. Cell Biol. 2016;70:161–172. doi: 10.1016/j.biocel.2015.11.015. PubMed DOI

Leung C.L., Green K.J., Liem R.K. Plakins: A family of versatile cytolinker proteins. Trends Cell Biol. 2002;12:37–45. doi: 10.1016/S0962-8924(01)02180-8. PubMed DOI

Bouameur J.E., Favre B., Borradori L. Plakins, a versatile family of cytolinkers: Roles in skin integrity and in human diseases. J. Investig. Dermatol. 2014;134:885–894. doi: 10.1038/jid.2013.498. PubMed DOI

Wiche G., Osmanagic-Myers S., Castanon M.J. Networking and anchoring through plectin: A key to IF functionality and mechanotransduction. Curr. Opin. Cell Boil. 2015;32:21–29. doi: 10.1016/j.ceb.2014.10.002. PubMed DOI

Bornslaeger E.A., Corcoran C.M., Stappenbeck T.S., Green K.J. Breaking the connection: Displacement of the desmosomal plaque protein desmoplakin from cell-cell interfaces disrupts anchorage of intermediate filament bundles and alters intercellular junction assembly. J. Cell Biol. 1996;134:985–1001. doi: 10.1083/jcb.134.4.985. PubMed DOI PMC

Guo L., Degenstein L., Dowling J., Yu Q.C., Wollmann R., Perman B., Fuchs E. Gene targeting of BPAG1: Abnormalities in mechanical strength and cell migration in stratified epithelia and neurologic degeneration. Cell. 1995;81:233–243. doi: 10.1016/0092-8674(95)90333-X. PubMed DOI

Burgstaller G., Gregor M., Winter L., Wiche G. Keeping the vimentin network under control: Cell-matrix adhesion-associated plectin 1f affects cell shape and polarity of fibroblasts. Mol. Biol. Cell. 2010;21:3362–3375. doi: 10.1091/mbc.e10-02-0094. PubMed DOI PMC

Wilhelmsen K., Litjens S.H., Kuikman I., Tshimbalanga N., Janssen H., van den Bout I., Raymond K., Sonnenberg A. Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. J. Cell Boil. 2005;171:799–810. doi: 10.1083/jcb.200506083. PubMed DOI PMC

Castanon M.J., Walko G., Winter L., Wiche G. Plectin-intermediate filament partnership in skin, skeletal muscle, and peripheral nerve. Histochem. Cell Biol. 2013;140:33–53. doi: 10.1007/s00418-013-1102-0. PubMed DOI PMC

Sakamoto Y., Boeda B., Etienne-Manneville S. APC binds intermediate filaments and is required for their reorganization during cell migration. J. Cell Biol. 2013;200:249–258. doi: 10.1083/jcb.201206010. PubMed DOI PMC

Svitkina T.M., Verkhovsky A.B., Borisy G.G. Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton. J. Cell Biol. 1996;135:991–1007. doi: 10.1083/jcb.135.4.991. PubMed DOI PMC

Gan Z., Ding L., Burckhardt C.J., Lowery J., Zaritsky A., Sitterley K., Mota A., Costigliola N., Starker C.G., Voytas D.F., et al. Vimentin Intermediate Filaments Template Microtubule Networks to Enhance Persistence in Cell Polarity and Directed Migration. Cell Syst. 2016;3:252–263.e258. doi: 10.1016/j.cels.2016.08.007. PubMed DOI PMC

Esue O., Carson A.A., Tseng Y., Wirtz D. A direct interaction between actin and vimentin filaments mediated by the tail domain of vimentin. J. Boil. Chem. 2006;281:30393–30399. doi: 10.1074/jbc.M605452200. PubMed DOI

Fontao L., Geerts D., Kuikman I., Koster J., Kramer D., Sonnenberg A. The interaction of plectin with actin: Evidence for cross-linking of actin filaments by dimerization of the actin-binding domain of plectin. J. Cell Sci. 2001;114:2065–2076. PubMed

Jiu Y., Lehtimaki J., Tojkander S., Cheng F., Jaalinoja H., Liu X., Varjosalo M., Eriksson J.E., Lappalainen P. Bidirectional Interplay between Vimentin Intermediate Filaments and Contractile Actin Stress Fibers. Cell Rep. 2015;11:1511–1518. doi: 10.1016/j.celrep.2015.05.008. PubMed DOI

Costigliola N., Ding L., Burckhardt C.J., Han S.J., Gutierrez E., Mota A., Groisman A., Mitchison T.J., Danuser G. Vimentin fibers orient traction stress. Proc. Natl. Acad. Sci. USA. 2017;114:5195–5200. doi: 10.1073/pnas.1614610114. PubMed DOI PMC

Jiu Y., Peranen J., Schaible N., Cheng F., Eriksson J.E., Krishnan R., Lappalainen P. Vimentin intermediate filaments control actin stress fiber assembly through GEF-H1 and RhoA. J. Cell Sci. 2017;130:892–902. doi: 10.1242/jcs.196881. PubMed DOI PMC

Gregor M., Osmanagic-Myers S., Burgstaller G., Wolfram M., Fischer I., Walko G., Resch G.P., Jorgl A., Herrmann H., Wiche G. Mechanosensing through focal adhesion-anchored intermediate filaments. FASEB J. 2014;28:715–729. doi: 10.1096/fj.13-231829. PubMed DOI

Walko G., Vukasinovic N., Gross K., Fischer I., Sibitz S., Fuchs P., Reipert S., Jungwirth U., Berger W., Salzer U., et al. Targeted proteolysis of plectin isoform 1a accounts for hemidesmosome dysfunction in mice mimicking the dominant skin blistering disease EBS-Ogna. PLoS Genet. 2011;7:e1002396. doi: 10.1371/journal.pgen.1002396. PubMed DOI PMC

Tsuruta D., Jones J.C. The vimentin cytoskeleton regulates focal contact size and adhesion of endothelial cells subjected to shear stress. J. Cell Sci. 2003;116:4977–4984. doi: 10.1242/jcs.00823. PubMed DOI

Seltmann K., Cheng F., Wiche G., Eriksson J.E., Magin T.M. Keratins Stabilize Hemidesmosomes through Regulation of beta4-Integrin Turnover. J. Investig. Dermatol. 2015;135:1609–1620. doi: 10.1038/jid.2015.46. PubMed DOI

Kostan J., Gregor M., Walko G., Wiche G. Plectin Isoform-dependent Regulation of Keratin-Integrin {alpha} 6 {beta} 4 Anchorage via Ca2+/Calmodulin. J. Biol. Chem. 2009;284:18525–18536. doi: 10.1074/jbc.M109.008474. PubMed DOI PMC

Jirouskova M., Nepomucka K., Oyman-Eyrilmez G., Kalendova A., Havelkova H., Sarnova L., Chalupsky K., Schuster B., Benada O., Miksatkova P., et al. Plectin controls biliary tree architecture and stability in cholestasis. J. Hepatol. 2018;68:1006–1017. doi: 10.1016/j.jhep.2017.12.011. PubMed DOI

Janostiak R., Pataki A.C., Brabek J., Rosel D. Mechanosensors in integrin signaling: The emerging role of p130Cas. Eur. J. Cell Biol. 2014;93:445–454. doi: 10.1016/j.ejcb.2014.07.002. PubMed DOI

Kreis S., Schonfeld H.J., Melchior C., Steiner B., Kieffer N. The intermediate filament protein vimentin binds specifically to a recombinant integrin alpha2/beta1 cytoplasmic tail complex and co-localizes with native alpha2/beta1 in endothelial cell focal adhesions. Exp. Cell Res. 2005;305:110–121. doi: 10.1016/j.yexcr.2004.12.023. PubMed DOI

Bhattacharya R., Gonzalez A.M., Debiase P.J., Trejo H.E., Goldman R.D., Flitney F.W., Jones J.C. Recruitment of vimentin to the cell surface by beta3 integrin and plectin mediates adhesion strength. J. Cell Sci. 2009;122:1390–1400. doi: 10.1242/jcs.043042. PubMed DOI PMC

Kim H., Nakamura F., Lee W., Hong C., Perez-Sala D., McCulloch C.A. Regulation of cell adhesion to collagen via beta1 integrins is dependent on interactions of filamin A with vimentin and protein kinase C epsilon. Exp. Cell Res. 2010;316:1829–1844. doi: 10.1016/j.yexcr.2010.02.007. PubMed DOI

Terriac E., Coceano G., Mavajian Z., Hageman T.A., Christ A.F., Testa I., Lautenschlager F., Gad A.K. Vimentin Levels and Serine 71 Phosphorylation in the Control of Cell-Matrix Adhesions, Migration Speed, and Shape of Transformed Human Fibroblasts. Cells. 2017;6:2. doi: 10.3390/cells6010002. PubMed DOI PMC

Lynch C.D., Lazar A.M., Iskratsch T., Zhang X., Sheetz M.P. Endoplasmic spreading requires coalescence of vimentin intermediate filaments at force-bearing adhesions. Mol. Boil. Cell. 2013;24:21–30. doi: 10.1091/mbc.e12-05-0377. PubMed DOI PMC

Spurny R., Gregor M., Castañón M.J., Wiche G. Plectin deficiency affects precursor formation and dynamics of vimentin networks. Exp. Cell Res. 2008;314:3570–3580. doi: 10.1016/j.yexcr.2008.09.012. PubMed DOI

Ivaska J., Vuoriluoto K., Huovinen T., Izawa I., Inagaki M., Parker P.J. PKCepsilon-mediated phosphorylation of vimentin controls integrin recycling and motility. EMBO J. 2005;24:3834–3845. doi: 10.1038/sj.emboj.7600847. PubMed DOI PMC

Kim J., Yang C., Kim E.J., Jang J., Kim S.J., Kang S.M., Kim M.G., Jung H., Park D., Kim C. Vimentin filaments regulate integrin-ligand interactions by binding to the cytoplasmic tail of integrin beta3. J. Cell Sci. 2016;129:2030–2042. doi: 10.1242/jcs.180315. PubMed DOI

Vohnoutka R.B., Gulvady A.C., Goreczny G., Alpha K., Handelman S.K., Sexton J.Z., Turner C.E. The Focal Adhesion Scaffold Protein Hic-5 Regulates Vimentin Organization in Fibroblasts. Mol. Biol. Cell. 2019;30:3037–3056. doi: 10.1091/mbc.E19-08-0442. PubMed DOI PMC

Havel L.S., Kline E.R., Salgueiro A.M., Marcus A.I. Vimentin regulates lung cancer cell adhesion through a VAV2-Rac1 pathway to control focal adhesion kinase activity. Oncogene. 2015;34:1979–1990. doi: 10.1038/onc.2014.123. PubMed DOI PMC

De Pascalis C., Perez-Gonzalez C., Seetharaman S., Boeda B., Vianay B., Burute M., Leduc C., Borghi N., Trepat X., Etienne-Manneville S. Intermediate filaments control collective migration by restricting traction forces and sustaining cell-cell contacts. J. Cell Biol. 2018;217:3031–3044. doi: 10.1083/jcb.201801162. PubMed DOI PMC

Leube R.E., Moch M., Windoffer R. Intermediate filaments and the regulation of focal adhesion. Curr. Opin. Cell Boil. 2015;32:13–20. doi: 10.1016/j.ceb.2014.09.011. PubMed DOI

Osmanagic-Myers S., Wiche G. Plectin-RACK1 (receptor for activated C kinase 1) scaffolding: A novel mechanism to regulate protein kinase C activity. J. Biol. Chem. 2004;279:18701–18710. doi: 10.1074/jbc.M312382200. PubMed DOI

Dave J.M., Kang H., Abbey C.A., Maxwell S.A., Bayless K.J. Proteomic profiling of endothelial invasion revealed receptor for activated C kinase 1 (RACK1) complexed with vimentin to regulate focal adhesion kinase (FAK) J. Biol. Chem. 2013;288:30720–30733. doi: 10.1074/jbc.M113.512467. PubMed DOI PMC

Osmanagic-Myers S., Gregor M., Walko G., Burgstaller G., Reipert S., Wiche G. Plectin-controlled keratin cytoarchitecture affects MAP kinases involved in cellular stress response and migration. J. Cell Biol. 2006;174:557–568. doi: 10.1083/jcb.200605172. PubMed DOI PMC

Murray M.E., Mendez M.G., Janmey P.A. Substrate stiffness regulates solubility of cellular vimentin. Mol. Biol. Cell. 2014;25:87–94. doi: 10.1091/mbc.e13-06-0326. PubMed DOI PMC

Gilles C., Polette M., Zahm J.M., Tournier J.M., Volders L., Foidart J.M., Birembaut P. Vimentin contributes to human mammary epithelial cell migration. Pt 24J. Cell Sci. 1999;112:4615–4625. PubMed

Rodriguez M.I., Peralta-Leal A., O’Valle F., Rodriguez-Vargas J.M., Gonzalez-Flores A., Majuelos-Melguizo J., Lopez L., Serrano S., de Herreros A.G., Rodriguez-Manzaneque J.C., et al. PARP-1 regulates metastatic melanoma through modulation of vimentin-induced malignant transformation. PLoS Genet. 2013;9:e1003531. doi: 10.1371/journal.pgen.1003531. PubMed DOI PMC

Eckes B., Colucci-Guyon E., Smola H., Nodder S., Babinet C., Krieg T., Martin P. Impaired wound healing in embryonic and adult mice lacking vimentin. Pt 13J. Cell Sci. 2000;113:2455–2462. PubMed

Yoshida K., Saito T., Kamida A., Matsumoto K., Saeki K., Mochizuki M., Sasaki N., Nakagawa T. Transforming growth factor-beta transiently induces vimentin expression and invasive capacity in a canine mammary gland tumor cell line. Res. Vet. Sci. 2013;94:539–541. doi: 10.1016/j.rvsc.2012.10.016. PubMed DOI

Vuoriluoto K., Haugen H., Kiviluoto S., Mpindi J.P., Nevo J., Gjerdrum C., Tiron C., Lorens J.B., Ivaska J. Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene. 2011;30:1436–1448. doi: 10.1038/onc.2010.509. PubMed DOI

Osorio L.A., Farfan N.M., Castellon E.A., Contreras H.R. SNAIL transcription factor increases the motility and invasive capacity of prostate cancer cells. Mol. Med. Rep. 2016;13:778–786. doi: 10.3892/mmr.2015.4585. PubMed DOI PMC

Yang C.Y., Chang P.W., Hsu W.H., Chang H.C., Chen C.L., Lai C.C., Chiu W.T., Chen H.C. Src and SHP2 coordinately regulate the dynamics and organization of vimentin filaments during cell migration. Oncogene. 2019;38:4075–4094. doi: 10.1038/s41388-019-0705-x. PubMed DOI PMC

Helfand B.T., Mendez M.G., Murthy S.N., Shumaker D.K., Grin B., Mahammad S., Aebi U., Wedig T., Wu Y.I., Hahn K.M., et al. Vimentin organization modulates the formation of lamellipodia. Mol. Biol. Cell. 2011;22:1274–1289. doi: 10.1091/mbc.e10-08-0699. PubMed DOI PMC

Colburn Z.T., Jones J.C.R. Complexes of alpha6beta4 integrin and vimentin act as signaling hubs to regulate epithelial cell migration. J. Cell Sci. 2018;131 doi: 10.1242/jcs.214593. PubMed DOI PMC

Pankova K., Rosel D., Novotny M., Brabek J. The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell Mol. Life Sci. 2010;67:63–71. doi: 10.1007/s00018-009-0132-1. PubMed DOI PMC

Mierke C.T., Rosel D., Fabry B., Brabek J. Contractile forces in tumor cell migration. Eur. J. Cell Biol. 2008;87:669–676. doi: 10.1016/j.ejcb.2008.01.002. PubMed DOI PMC

Koster S., Weitz D.A., Goldman R.D., Aebi U., Herrmann H. Intermediate filament mechanics in vitro and in the cell: From coiled coils to filaments, fibers and networks. Curr. Opin. Cell Boil. 2015;32:82–91. doi: 10.1016/j.ceb.2015.01.001. PubMed DOI PMC

Mendez M.G., Restle D., Janmey P.A. Vimentin enhances cell elastic behavior and protects against compressive stress. Biophys. J. 2014;107:314–323. doi: 10.1016/j.bpj.2014.04.050. PubMed DOI PMC

Rathje L.S., Nordgren N., Pettersson T., Ronnlund D., Widengren J., Aspenstrom P., Gad A.K. Oncogenes induce a vimentin filament collapse mediated by HDAC6 that is linked to cell stiffness. Proc. Natl. Acad. Sci. USA. 2014;111:1515–1520. doi: 10.1073/pnas.1300238111. PubMed DOI PMC

Northey J.J., Przybyla L., Weaver V.M. Tissue Force Programs Cell Fate and Tumor Aggression. Cancer Discov. 2017;7:1224–1237. doi: 10.1158/2159-8290.CD-16-0733. PubMed DOI PMC

Petrie R.J., Koo H., Yamada K.M. Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix. Science. 2014;345:1062–1065. doi: 10.1126/science.1256965. PubMed DOI PMC

Stankevicins L.D.C., Urbanska M., Flormann D.A., Terriac E., Mostajeran Z., Gad A.K.B., Cheng F., Eriksson J.E., Lautenschläger F. Vimentin provides the mechanical resilience required for amoeboid migration and protection of the nucleus. bioRxiv. 2019 doi: 10.1101/720946. DOI

Patteson A.E., Vahabikashi A., Pogoda K., Adam S.A., Mandal K., Kittisopikul M., Sivagurunathan S., Goldman A., Goldman R.D., Janmey P.A. Vimentin protects cells against nuclear rupture and DNA damage during migration. J. Cell Biol. 2019;218:4079–4092. doi: 10.1083/jcb.201902046. PubMed DOI PMC

Tudor S.M., Lavenus S.B., Logue J.S. A flexible network of Vimentin intermediate filaments promotes the migration of amoeboid cancer cells through confined environments. bioRxiv. 2019 doi: 10.1101/788810. PubMed DOI PMC

Terriac E., Schutz S., Lautenschlager F. Vimentin Intermediate Filament Rings Deform the Nucleus during the First Steps of Adhesion. Front. Cell Dev. Biol. 2019;7:106. doi: 10.3389/fcell.2019.00106. PubMed DOI PMC

Castro-Castro A., Marchesin V., Monteiro P., Lodillinsky C., Rosse C., Chavrier P. Cellular and Molecular Mechanisms of MT1-MMP-Dependent Cancer Cell Invasion. Annu. Rev. Cell Dev. Biol. 2016;32:555–576. doi: 10.1146/annurev-cellbio-111315-125227. PubMed DOI

Schoumacher M., Goldman R.D., Louvard D., Vignjevic D.M. Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. J. Cell Biol. 2010;189:541–556. doi: 10.1083/jcb.200909113. PubMed DOI PMC

Sutoh Yoneyama M., Hatakeyama S., Habuchi T., Inoue T., Nakamura T., Funyu T., Wiche G., Ohyama C., Tsuboi S. Vimentin intermediate filament and plectin provide a scaffold for invadopodia, facilitating cancer cell invasion and extravasation for metastasis. Eur. J. Cell Biol. 2014;93:157–169. doi: 10.1016/j.ejcb.2014.03.002. PubMed DOI

Kwak H.I., Kang H., Dave J.M., Mendoza E.A., Su S.C., Maxwell S.A., Bayless K.J. Calpain-mediated vimentin cleavage occurs upstream of MT1-MMP membrane translocation to facilitate endothelial sprout initiation. Angiogenesis. 2012;15:287–303. doi: 10.1007/s10456-012-9262-4. PubMed DOI PMC

Hyder C.L., Kemppainen K., Isoniemi K.O., Imanishi S.Y., Goto H., Inagaki M., Fazeli E., Eriksson J.E., Tornquist K. Sphingolipids inhibit vimentin-dependent cell migration. J. Cell Sci. 2015;128:2057–2069. doi: 10.1242/jcs.160341. PubMed DOI

Piotrowski-Daspit A.S., Tien J., Nelson C.M. Interstitial fluid pressure regulates collective invasion in engineered human breast tumors via Snail, vimentin, and E-cadherin. Integr. Biol. 2016;8:319–331. doi: 10.1039/c5ib00282f. PubMed DOI PMC

Richardson A.M., Havel L.S., Koyen A.E., Konen J.M., Shupe J., Wiles W.G.T., Martin W.D., Grossniklaus H.E., Sica G., Gilbert-Ross M., et al. Vimentin Is Required for Lung Adenocarcinoma Metastasis via Heterotypic Tumor Cell-Cancer-Associated Fibroblast Interactions during Collective Invasion. Clin. Cancer Res. 2018;24:420–432. doi: 10.1158/1078-0432.CCR-17-1776. PubMed DOI PMC

Sleeman J., Steeg P.S. Cancer metastasis as a therapeutic target. Eur. J. Cancer. 2010;46:1177–1180. doi: 10.1016/j.ejca.2010.02.039. PubMed DOI PMC

Gandalovicova A., Rosel D., Fernandes M., Vesely P., Heneberg P., Cermak V., Petruzelka L., Kumar S., Sanz-Moreno V., Brabek J. Migrastatics-Anti-metastatic and Anti-invasion Drugs: Promises and Challenges. Trends Cancer. 2017;3:391–406. doi: 10.1016/j.trecan.2017.04.008. PubMed DOI PMC

Kaschula C.H., Tuveri R., Ngarande E., Dzobo K., Barnett C., Kusza D.A., Graham L.M., Katz A.A., Rafudeen M.S., Parker M.I., et al. The garlic compound ajoene covalently binds vimentin, disrupts the vimentin network and exerts anti-metastatic activity in cancer cells. BMC Cancer. 2019;19:248. doi: 10.1186/s12885-019-5388-8. PubMed DOI PMC

Burikhanov R., Sviripa V.M., Hebbar N., Zhang W., Layton W.J., Hamza A., Zhan C.G., Watt D.S., Liu C., Rangnekar V.M. Arylquins target vimentin to trigger Par-4 secretion for tumor cell apoptosis. Nat. Chem. Biol. 2014;10:924–926. doi: 10.1038/nchembio.1631. PubMed DOI PMC

Chen B., Zhou S., Zhan Y., Ke J., Wang K., Liang Q., Hou Y., Zhu P., Ao W., Wei X., et al. Dioscin Inhibits the Invasion and Migration of Hepatocellular Carcinoma HepG2 Cells by Reversing TGF-beta1-Induced Epithelial-Mesenchymal Transition. Molecules. 2019;24:2222. doi: 10.3390/molecules24122222. PubMed DOI PMC

Bollong M.J., Pietila M., Pearson A.D., Sarkar T.R., Ahmad I., Soundararajan R., Lyssiotis C.A., Mani S.A., Schultz P.G., Lairson L.L. A vimentin binding small molecule leads to mitotic disruption in mesenchymal cancers. Proc. Natl. Acad. Sci. USA. 2017;114:E9903–E9912. doi: 10.1073/pnas.1716009114. PubMed DOI PMC

Kanugula A.K., Dhople V.M., Volker U., Ummanni R., Kotamraju S. Fluvastatin mediated breast cancer cell death: A proteomic approach to identify differentially regulated proteins in MDA-MB-231 cells. PLoS ONE. 2014;9:e108890. doi: 10.1371/journal.pone.0108890. PubMed DOI PMC

Kim Y.J., Choi W.I., Jeon B.N., Choi K.C., Kim K., Kim T.J., Ham J., Jang H.J., Kang K.S., Ko H. Stereospecific effects of ginsenoside 20-Rg3 inhibits TGF-beta1-induced epithelial-mesenchymal transition and suppresses lung cancer migration, invasion and anoikis resistance. Toxicology. 2014;322:23–33. doi: 10.1016/j.tox.2014.04.002. PubMed DOI

Zamay T.N., Kolovskaya O.S., Glazyrin Y.E., Zamay G.S., Kuznetsova S.A., Spivak E.A., Wehbe M., Savitskaya A.G., Zubkova O.A., Kadkina A., et al. DNA-aptamer targeting vimentin for tumor therapy in vivo. Nucleic Acid Ther. 2014;24:160–170. doi: 10.1089/nat.2013.0471. PubMed DOI PMC

Yoon S., Armstrong B., Habib N., Rossi J.J. Blind SELEX Approach Identifies RNA Aptamers That Regulate EMT and Inhibit Metastasis. Mol. Cancer Res. 2017;15:811–820. doi: 10.1158/1541-7786.MCR-16-0462. PubMed DOI PMC

Ji Q., Liu X., Han Z., Zhou L., Sui H., Yan L., Jiang H., Ren J., Cai J., Li Q. Resveratrol suppresses epithelial-to-mesenchymal transition in colorectal cancer through TGF-beta1/Smads signaling pathway mediated Snail/E-cadherin expression. BMC Cancer. 2015;15:97. doi: 10.1186/s12885-015-1119-y. PubMed DOI PMC

Miyazaki Y., Shibuya M., Sugawara H., Kawaguchi O., Hirsoe C. Salinomycin, a new polyether antibiotic. J. Antibiot. 1974;27:814–821. doi: 10.7164/antibiotics.27.814. PubMed DOI

Dong T.T., Zhou H.M., Wang L.L., Feng B., Lv B., Zheng M.H. Salinomycin selectively targets ‘CD133+’ cell subpopulations and decreases malignant traits in colorectal cancer lines. Ann. Surg. Oncol. 2011;18:1797–1804. doi: 10.1245/s10434-011-1561-2. PubMed DOI

Li R., Dong T., Hu C., Lu J., Dai J., Liu P. Salinomycin repressed the epithelial-mesenchymal transition of epithelial ovarian cancer cells via downregulating Wnt/beta-catenin pathway. Onco Targets Ther. 2017;10:1317–1325. doi: 10.2147/OTT.S126463. PubMed DOI PMC

Singh R.P., Raina K., Sharma G., Agarwal R. Silibinin inhibits established prostate tumor growth, progression, invasion, and metastasis and suppresses tumor angiogenesis and epithelial-mesenchymal transition in transgenic adenocarcinoma of the mouse prostate model mice. Clin. Cancer Res. 2008;14:7773–7780. doi: 10.1158/1078-0432.CCR-08-1309. PubMed DOI PMC

Wu K., Zeng J., Li L., Fan J., Zhang D., Xue Y., Zhu G., Yang L., Wang X., He D. Silibinin reverses epithelial-to-mesenchymal transition in metastatic prostate cancer cells by targeting transcription factors. Oncol. Rep. 2010;23:1545–1552. PubMed

Trogden K.P., Battaglia R.A., Kabiraj P., Madden V.J., Herrmann H., Snider N.T. An image-based small-molecule screen identifies vimentin as a pharmacologically relevant target of simvastatin in cancer cells. FASEB J. 2018;32:2841–2854. doi: 10.1096/fj.201700663R. PubMed DOI PMC

Hajar R. Statins: Past and present. Heart Views. 2011;12:121–127. doi: 10.4103/1995-705X.95070. PubMed DOI PMC

Wang X., Wang T., Yi F., Duan C., Wanwg Q., He N., Zhu L., Li Q., Deng W. Ursolic Acid Inhibits Tumor Growth via Epithelial-to-Mesenchymal Transition in Colorectal Cancer Cells. Biol. Pharm. Bull. 2019;42:685–691. doi: 10.1248/bpb.b18-00613. PubMed DOI

Steegmaier M., Hoffmann M., Baum A., Lenart P., Petronczki M., Krssak M., Gurtler U., Garin-Chesa P., Lieb S., Quant J., et al. BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr. Biol. 2007;17:316–322. doi: 10.1016/j.cub.2006.12.037. PubMed DOI

Singh R., Peng S., Viswanath P., Sambandam V., Shen L., Rao X., Fang B., Wang J., Johnson F.M. Non-canonical cMet regulation by vimentin mediates Plk1 inhibitor-induced apoptosis. EMBO Mol. Med. 2019;11 doi: 10.15252/emmm.201809960. PubMed DOI PMC

Lee D.H., Lim I.H., Sung E.G., Kim J.Y., Song I.H., Park Y.K., Lee T.J. Withaferin A inhibits matrix metalloproteinase-9 activity by suppressing the Akt signaling pathway. Oncol. Rep. 2013;30:933–938. doi: 10.3892/or.2013.2487. PubMed DOI

Shohat B., Gitter S., Abraham A., Lavie D. Antitumor activity of withaferin A (NSC-101088) Cancer Chemother. Rep. 1967;51:271–276. PubMed

Thaiparambil J.T., Bender L., Ganesh T., Kline E., Patel P., Liu Y., Tighiouart M., Vertino P.M., Harvey R.D., Garcia A., et al. Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. Int. J. Cancer. 2011;129:2744–2755. doi: 10.1002/ijc.25938. PubMed DOI

Noh H., Yan J., Hong S., Kong L.Y., Gabrusiewicz K., Xia X., Heimberger A.B., Li S. Discovery of cell surface vimentin targeting mAb for direct disruption of GBM tumor initiating cells. Oncotarget. 2016;7:72021–72032. doi: 10.18632/oncotarget.12458. PubMed DOI PMC

Bargagna-Mohan P., Hamza A., Kim Y.E., Khuan Abby Ho Y., Mor-Vaknin N., Wendschlag N., Liu J., Evans R.M., Markovitz D.M., Zhan C.G., et al. The tumor inhibitor and antiangiogenic agent withaferin A targets the intermediate filament protein vimentin. Chem. Biol. 2007;14:623–634. doi: 10.1016/j.chembiol.2007.04.010. PubMed DOI PMC

Vanden Berghe W., Sabbe L., Kaileh M., Haegeman G., Heyninck K. Molecular insight in the multifunctional activities of Withaferin A. Biochem. Pharmacol. 2012;84:1282–1291. doi: 10.1016/j.bcp.2012.08.027. PubMed DOI

Stan S.D., Hahm E.R., Warin R., Singh S.V. Withaferin A causes FOXO3a- and Bim-dependent apoptosis and inhibits growth of human breast cancer cells in vivo. Cancer Res. 2008;68:7661–7669. doi: 10.1158/0008-5472.CAN-08-1510. PubMed DOI PMC

Lee J., Hahm E.R., Marcus A.I., Singh S.V. Withaferin A inhibits experimental epithelial-mesenchymal transition in MCF-10A cells and suppresses vimentin protein level in vivo in breast tumors. Mol. Carcinog. 2015;54:417–429. doi: 10.1002/mc.22110. PubMed DOI PMC

Ruan J.S., Zhou H., Yang L., Wang L., Jiang Z.S., Sun H., Wang S.M. Ursolic Acid Attenuates TGF-beta1-Induced Epithelial-Mesenchymal Transition in NSCLC by Targeting Integrin alphaVbeta5/MMPs Signaling. Oncol. Res. 2019;27:593–600. doi: 10.3727/096504017X15051723858706. PubMed DOI PMC

Gupta P.B., Onder T.T., Jiang G., Tao K., Kuperwasser C., Weinberg R.A., Lander E.S. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138:645–659. doi: 10.1016/j.cell.2009.06.034. PubMed DOI PMC

Sun H., Zhu X., Lu P.Y., Rosato R.R., Tan W., Zu Y. Oligonucleotide aptamers: New tools for targeted cancer therapy. Mol. Ther. Nucleic Acids. 2014;3:e182. doi: 10.1038/mtna.2014.32. PubMed DOI PMC

Shigyo M., Kuboyama T., Sawai Y., Tada-Umezaki M., Tohda C. Extracellular vimentin interacts with insulin-like growth factor 1 receptor to promote axonal growth. Sci. Rep. 2015;5:12055. doi: 10.1038/srep12055. PubMed DOI PMC

Sun S., Poon R.T., Lee N.P., Yeung C., Chan K.L., Ng I.O., Day P.J., Luk J.M. Proteomics of hepatocellular carcinoma: Serum vimentin as a surrogate marker for small tumors (<or = 2 cm) J. Proteome Res. 2010;9:1923–1930. doi: 10.1021/pr901085z. PubMed DOI

Wei T., Zhang X., Zhang Q., Yang J., Chen Q., Wang J., Li X., Chen J., Ma T., Li G., et al. Vimentin-positive circulating tumor cells as a biomarker for diagnosis and treatment monitoring in patients with pancreatic cancer. Cancer Lett. 2019;452:237–243. doi: 10.1016/j.canlet.2019.03.009. PubMed DOI

Walker J.L., Bleaken B.M., Romisher A.R., Alnwibit A.A., Menko A.S. In wound repair vimentin mediates the transition of mesenchymal leader cells to a myofibroblast phenotype. Mol. Biol. Cell. 2018;29:1555–1570. doi: 10.1091/mbc.E17-06-0364. PubMed DOI PMC

Haversen L., Sundelin J.P., Mardinoglu A., Rutberg M., Stahlman M., Wilhelmsson U., Hulten L.M., Pekny M., Fogelstrand P., Bentzon J.F., et al. Vimentin deficiency in macrophages induces increased oxidative stress and vascular inflammation but attenuates atherosclerosis in mice. Sci. Rep. 2018;8:16973. doi: 10.1038/s41598-018-34659-2. PubMed DOI PMC

Colucci-Guyon E., Portier M.M., Dunia I., Paulin D., Pournin S., Babinet C. Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell. 1994;79:679–694. doi: 10.1016/0092-8674(94)90553-3. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...