Ir(III) Compounds Containing a Terdentate Ligand Are Potent Inhibitors of Proliferation and Effective Antimetastatic Agents in Aggressive Triple-Negative Breast Cancer Cells
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37410386
PubMed Central
PMC10388354
DOI
10.1021/acs.jmedchem.3c00586
Knihovny.cz E-zdroje
- MeSH
- doxorubicin farmakologie terapeutické užití MeSH
- lidé MeSH
- ligandy MeSH
- nádorové buněčné linie MeSH
- proliferace buněk MeSH
- protinádorové látky * chemie MeSH
- triple-negativní karcinom prsu * farmakoterapie patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- doxorubicin MeSH
- ligandy MeSH
- protinádorové látky * MeSH
Herein, we report a series of new octahedral iridium(III) complexes Ir1-Ir9 of the type [Ir(N^N^N)(C^N)Cl]PF6 (N^N^N = 4'-(p-tolyl)-2,2':6',2″-terpyridine; C^N = deprotonated 2-arylbenzimidazole backbone) to introduce new metal-based compounds for effective inhibition of metastatic processes in triple-negative breast cancer (TNBC). The results show that the structural modifications within the C^N scaffold strongly impact the antimetastatic properties of these complexes in TNBC cells. Furthermore, testing the antimetastatic effects of the investigated Ir complexes revealed that the highest antimetastatic activity in TNBC cells is exhibited by complex Ir1. This result was in contrast to the effects of the clinically used drug doxorubicin used in conventional chemotherapy of TNBC, which conversely promoted metastatic properties of TNBC cells. Thus, the latter result suggests that doxorubicin chemotherapy may increase the risk of metastasis of breast cancer cells, so the search for new drugs to treat breast cancer that would show better antitumor effects than doxorubicin is justified.
Zobrazit více v PubMed
Ganesh K.; Massagué J. Targeting metastatic cancer. Nature Med. 2021, 27, 34–44. 10.1038/s41591-020-01195-4. PubMed DOI PMC
Bergamo A.; Sava G. Linking the future of anticancer metal-complexes to the therapy of tumour metastases. Chem. Soc. Rev. 2015, 44, 8818–8835. 10.1039/C5CS00134J. PubMed DOI
Brindell M.; Gurgul I.; Janczy-Cempa E.; Gajda-Morszewski P.; Mazuryk O. Moving Ru polypyridyl complexes beyond cytotoxic activity towards metastasis inhibition. J. Inorg. Biochem. 2022, 226, 11165210.1016/j.jinorgbio.2021.111652. PubMed DOI
Tian Z.; Yang Y.; Guo L.; Zhong G.; Li J.; Liu Z. Dual-functional cyclometalated iridium imine NHC complexes: highly potent anticancer and antimetastatic agents. Inorg. Chem. Front. 2018, 5, 3106–3112. 10.1039/C8QI00920A. DOI
Ma W.; Ge X.; Xu Z.; Zhang S.; He X.; Li J.; Xia X.; Chen X.; Liu Z. Theranostic lysosomal targeting anticancer and antimetastatic agents: half-sandwich iridium(III) rhodamine complexes. ACS Omega 2019, 4, 15240–15248. 10.1021/acsomega.9b01863. PubMed DOI PMC
Liu X.; Chen S.; Ge X.; Zhang Y.; Xie Y.; Hao Y.; Wu D.; Zhao J.; Yuan X.-A.; Tian L.; Liu Z. Dual functions of iridium(III) 2-phenylpyridine complexes: Metastasis inhibition and lysosomal damage. J. Inorg. Biochem. 2020, 205, 11098310.1016/j.jinorgbio.2019.110983. PubMed DOI
Wang F. X.; Chen M. H.; Lin Y. N.; Zhang H.; Tan C. P.; Ji L. N.; Mao Z. W. Dual Functions of Cyclometalated Iridium(III) Complexes: Anti-Metastasis and Lysosome-Damaged Photodynamic Therapy. ACS Appl. Mater. Interfaces 2017, 9, 42471–42481. 10.1021/acsami.7b10258. PubMed DOI
Panchangam R. L.; Rao R. N.; Balamurali M. M.; Hingamire T. B.; Shanmugam D.; Manickam V.; Chanda K. Antitumor effects of Ir(III)-2H-indazole complexes for triple negative breast cancer. Inorg. Chem. 2021, 60, 17593–17607. 10.1021/acs.inorgchem.1c02193. PubMed DOI
Bianchini G.; De Angelis C.; Licata L.; Gianni L. Treatment landscape of triple-negative breast cancer—Expanded options, evolving needs. Nat. Rev. Clin. Oncol. 2022, 19, 91–113. 10.1038/s41571-021-00565-2. PubMed DOI
Zagami P.; Carey L. A. Triple negative breast cancer: Pitfalls and progress. NPJ Breast Cancer 2022, 8, 95.10.1038/s41523-022-00468-0. PubMed DOI PMC
Yousefi H.; Khosla M.; Lauterboeck L.; Okpechi S. C.; Worthylake D.; Garai J.; Zabaleta J.; Guidry J.; Zarandi M. A.; Wyczechowska D.; Jayawickramarajah J.; Yang Q.; Kissil J.; Alahari S. K. A combination of novel NSC small molecule inhibitor along with doxorubicin inhibits proliferation of triple-negative breast cancer through metabolic reprogramming. Oncogene 2022, 41, 5076–5091. 10.1038/s41388-022-02497-2. PubMed DOI
Humber C. E.; Tierney J. F.; Symonds R. P.; Collingwood M.; Kirwan J.; Williams C.; Green J. A. Chemotherapy for advanced, recurrent or metastatic endometrial cancer: a systematic review of Cochrane collaboration. Ann. Oncol. 2007, 18, 409–420. 10.1093/annonc/mdl417. PubMed DOI
Zhang X.; Hu C.; Kong C. Y.; Song P.; Wu H. M.; Xu S. C.; Yuan Y. P.; Deng W.; Ma Z. G.; Tang Q. Z. FNDC5 alleviates oxidative stress and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via activating AKT. Cell Death Differ. 2020, 27, 540–555. 10.1038/s41418-019-0372-z. PubMed DOI PMC
Yu X.; Ruan Y.; Huang X.; Dou L.; Lan M.; Cui J.; Chen B.; Gong H.; Wang Q.; Yan M.; Sun S.; Qiu Q.; Zhang X.; Man Y.; Tang W.; Li J.; Shen T. Dexrazoxane ameliorates doxorubicin-induced cardiotoxicity by inhibiting both apoptosis and necroptosis in cardiomyocytes. Biochem. Biophys. Res. Commun. 2020, 523, 140–146. 10.1016/j.bbrc.2019.12.027. PubMed DOI
Carmo-Pereira J.; Costa F. O.; Henriques E.; Godinho F.; Cantinho-Lopes M. G.; Sales-Luis A.; Rubens R. D. A comparison of two doses of adriamycin in the primary chemotherapy of disseminated breast carcinoma. Br. J. Cancer 1987, 56, 471–473. 10.1038/bjc.1987.226. PubMed DOI PMC
Sun Z.; Zhou D.; Yang J.; Zhang D. Doxorubicin promotes breast cancer cell migration and invasion via DCAF13. FEBS Open Bio 2022, 12, 221–230. 10.1002/2211-5463.13330. PubMed DOI PMC
Ortega-Forte E.; Hernandez-Garcia S.; Vigueras G.; Henarejos-Escudero P.; Cutillas N.; Ruiz J.; Gandia-Herrero F. Potent anticancer activity of a novel iridium metallodrug via oncosis. Cell. Mol. Sci. 2022, 79, 510.10.1007/s00018-022-04526-5. PubMed DOI PMC
Wang L.; Guan R.; Xie L.; Liao X.; Xiong K.; Rees T. W.; Chen Y.; Ji L.; Chao H. An ER-targeting iridium(III) complex that induces immunogenic cell death in non-small-cell lung cancer. Angew. Chem., Int. Ed. 2021, 60, 4657–4665. 10.1002/anie.202013987. PubMed DOI
Ho P.-Y.; Ho C.-L.; Wong W.-Y. Recent advances of iridium(III) metallophosphors for health-related applications. Coord. Chem. Rev. 2020, 413, 21326710.1016/j.ccr.2020.213267. DOI
Guan R.; Chen Y.; Zeng L.; Rees T. W.; Jin C.; Huang J.; Chen Z.-S.; Ji L.; Chao H. Oncosis-inducing cyclometalated iridium(III) complexes. Chem. Sci. 2018, 9, 5183–5190. 10.1039/C8SC01142G. PubMed DOI PMC
Wang W.-J.; Ling Y.-Y.; Zhong Y.-M.; Li Z.-Y.; Tan C.-P.; Mao Z.-W. Ferroptosis-enhanced cancer immunity by a ferrocene-appended iridium(III) diphosphine complex. Angew. Chem., Int. Ed. 2022, 61, e202115247. PubMed
Yang J.; Fang H.-J.; Cao Q.; Mao Z.-W. The design of cyclometalated iridium(III)–metformin complexes for hypoxic cancer treatment. Chem. Commun. 2021, 57, 1093–1096. 10.1039/D0CC07104H. PubMed DOI
Li S.; Yuan H.; Chen Y.; Guo Z. Metal complexes induced ferroptosis for anticancer therapy. Fundam. Res. 2022, 10.1016/j.fmre.2022.10.001. PubMed DOI PMC
Ma J.; Zhang X.; Huang X.; Luo S.; Meggers E. Preparation of chiral-at-metal catalysts and their use in asymmetric photoredox chemistry. Nat. Protoc. 2018, 13, 605–632. 10.1038/nprot.2017.138. PubMed DOI
Liu B.; Monro S.; Li Z.; Jabed M. A.; Ramirez D.; Cameron C. G.; Colón K.; Roque J. III; Kilina S.; Tian J.; McFarland S. A.; Sun W. New class of homoleptic and heteroleptic bis(terpyridine) iridium(III) complexes with strong photodynamic therapy effects. ACS Appl. Bio Mater. 2019, 2, 2964–2977. 10.1021/acsabm.9b00312. PubMed DOI PMC
Huang H.; Banerjee S.; Qiu K.; Zhang P.; Blacque O.; Malcomson T.; Paterson M. J.; Clarkson G. J.; Staniforth M.; Stavros V. G.; Gasser G.; Chao H.; Sadler P. J. Targeted photoredox catalysis in cancer cells. Nat. Chem. 2019, 11, 1041–1048. 10.1038/s41557-019-0328-4. PubMed DOI
Wei L.; Kushwaha R.; Dao A.; Fan Z.; Banerjee S.; Huang H. Axisymmetric bis-tridentate Ir(III) photoredox catalysts for anticancer phototherapy under hypoxia. Chem. Commun. 2023, 59, 3083–3086. 10.1039/D2CC06721H. PubMed DOI
Fan Z.; Rong Y.; Sadhukhan T.; Liang S.; Li W.; Yuan Z.; Zhu Z.; Guo S.; Ji S.; Wang J.; Kushwaha R.; Banerjee S.; Raghavachari K.; Huang H. Single-cell quantification of a highly biocompatible dinuclear iridium(III) complex for photocatalytic cancer therapy. Angew. Chem., Int. Ed. 2022, 61, e202202098. PubMed
Yellol J.; Perez S. A.; Buceta A.; Yellol G.; Donaire A.; Szumlas P.; Bednarski P. J.; Makhloufi G.; Janiak C.; Espinosa A.; Ruiz J. Novel C,N-cyclometalated benzimidazole ruthenium(II) and iridium(III) complexes as antitumor and antiangiogenic agents: A structure-activity relationship study. J. Med. Chem. 2015, 58, 7310–7327. 10.1021/acs.jmedchem.5b01194. PubMed DOI
Yellol J.; Pérez S. A.; Yellol G.; Zajac J.; Donaire A.; Vigueras G.; Novohradsky V.; Janiak C.; Brabec V.; Ruiz J. Highly potent extranuclear-targeted luminescent iridium(III) antitumor agents containing benzimidazole-based ligands with a handle for functionalization. Chem. Commun. 2016, 52, 14165–14168. 10.1039/C6CC07909A. PubMed DOI
Novohradsky V.; Zamora A.; Gandioso A.; Brabec V.; Ruiz J.; Marchan V. Somatostatin receptor-targeted organometallic iridium(III) complexes as novel theranostic agents. Chem. Commun. 2017, 53, 5523–5526. 10.1039/C7CC01946G. PubMed DOI
Betti M.; Genesio E.; Marconi G.; Sanna Coccone S.; Wiedenau P. A scalable route to the SMO receptor antagonist SEN826: Benzimidazole synthesis via enhanced in situ formation of the bisulfite–aldehyde complex. Org. Process Res. Dev. 2014, 18, 699–708. 10.1021/op4002092. DOI
Novohradsky V.; Vigueras G.; Pracharova J.; Cutillas N.; Janiak C.; Kostrhunova H.; Brabec V.; Ruiz J.; Kasparkova J. Molecular superoxide radical photogeneration in cancer cells by dipyridophenazine iridium(III) complexes. Inorg. Chem. Front. 2019, 6, 2500–2513. 10.1039/C9QI00811J. DOI
Wang C.-T.; Chen J.; Xu J.; Wei F.; Yam C. Y.; Wong K. M.-C.; Sit P. H. L.; Teoh W. Y. Selective visible light reduction of carbon dioxide over iridium(III)-terpyridine photocatalysts. Mater. Today Chem. 2021, 22, 100563.
Yang T.; Wang B.; He Y.; Zhou A.; Yao Z.; Xing G.; Tao Y. Triplet homoleptic iridium(III) complex as a potential donor material for organic solar cells. Inorg. Chem. 2023, 62, 5920–5930. 10.1021/acs.inorgchem.2c04017. PubMed DOI
Redrado M.; Miñana M.; Coogan M. P.; Concepción Gimeno M.; Fernández-Moreira V. Tunable emissive Ir(III) benzimidazole-quinoline hybrids as promising theranostic lead compounds. ChemMedChem 2022, 17, e20220024410.1002/cmdc.202200244. PubMed DOI PMC
Martínez-Vollbert E.; Philouze C.; Gautier-Luneau I.; Moreau Y.; Lanoë P.-H.; Loiseau F. Study of a phosphorescent cationic iridium(iii) complex displaying a blue-shift in crystals. Phys. Chem. Chem. Phys. 2021, 23, 24789–24800. 10.1039/D1CP03341G. PubMed DOI
Millán G.; Nieddu M.; López I. P.; Ezquerro C.; Berenguer J. R.; Larráyoz I. M.; Pichel J. G.; Lalinde E. A new family of luminescent iridium complexes: synthesis, optical, and cytotoxic studies. Dalton Trans. 2023, 52, 6360–6374. 10.1039/D3DT00028A. PubMed DOI
DiLuzio S.; Mdluli V.; Connell T. U.; Lewis J.; VanBenschoten V.; Bernhard S. High-throughput screening and automated data-driven analysis of the triplet photophysical properties of structurally diverse, heteroleptic iridium(III) complexes. J. Am. Chem. Soc. 2021, 143, 1179–1194. 10.1021/jacs.0c12290. PubMed DOI
Zhang W.-Y.; Yi Q.-Y.; Wang Y.-J.; Du F.; He M.; Tang B.; Wan D.; Liu Y.-J.; Huang H.-L. Photoinduced anticancer activity studies of iridium(III) complexes targeting mitochondria and tubules. Eur. J. Med. Chem. 2018, 151, 568–584. 10.1016/j.ejmech.2018.04.013. PubMed DOI
Li J.; Chen H.; Zeng L.; Rees T. W.; Xiong K.; Chen Y.; Ji L.; Chao H. Mitochondria-targeting cyclometalated iridium(III) complexes for tumor hypoxic imaging and therapy. Inorg. Chem. Front. 2019, 6, 1003–1010. 10.1039/C9QI00081J. DOI
Hao J.; Zhang H.; Tian L.; Yang L.; Zhou Y.; Zhang Y.; Liu Y.; Xing D. Evaluation of anticancer effects in vitro of new iridium(III) complexes targeting the mitochondria. J. Inorg. Biochem. 2021, 221, 11146510.1016/j.jinorgbio.2021.111465. PubMed DOI
Markova L.; Novohradsky V.; Kasparkova J.; Ruiz J.; Brabec V. Dipyridophenazine iridium(III) complex as a phototoxic cancer stem cell selective, mitochondria targeting agent. Chem.-Biol. Interact. 2022, 360, 10995510.1016/j.cbi.2022.109955. PubMed DOI
Vigueras G.; Markova L.; Novohradsky V.; Marco A.; Cutillas N.; Kostrhunova H.; Kasparkova J.; Ruiz J.; Brabec V. A photoactivated Ir(III) complex targets cancer stem cells and induces secretion of damage-associated molecular patterns in melamoma cells characteristic of immunogenic cell death. Inorg. Chem. Front. 2021, 8, 4696–4711. 10.1039/D1QI00856K. DOI
Eastman A. Improving anticancer drug development begins with cell culture: misinformation perpetrated by the misuse of cytotoxicity assays. Oncotarget 2017, 8, 8854–8866. 10.18632/oncotarget.12673. PubMed DOI PMC
Henriet E.; Knutsdottir H.; Grasset E. M.; Dunworth M.; Haynes M.; Bader J. S.; Ewald A. J. Triple negative breast tumors contain heterogeneous cancer cells expressing distinct KRAS-dependent collective and disseminative invasion programs. Oncogene 2023, 42, 737–747. 10.1038/s41388-022-02586-2. PubMed DOI PMC
Xu H. N.; Nioka S.; Glickson J. D.; Chance B.; Li L. Z. Quantitative mitochondrial redox imaging of breast cancer metastatic potential. J. Biomed. Opt. 2010, 15, 03601010.1117/1.3431714. PubMed DOI PMC
Bouchalova P.; Bouchal P. Current methods for studying metastatic potential of tumor cells. Cancer Cell Int. 2022, 22, 394.10.1186/s12935-022-02801-w. PubMed DOI PMC
Winter M.; Meignan S.; Völkel P.; Angrand P. O.; Chopin V.; Bidan N.; Toillon R. A.; Adriaenssens E.; Lagadec C.; Le Bourhis X. Vimentin promotes the aggressiveness of triple negative breast cancer cells surviving chemotherapeutic treatment. Cell 2021, 10, 1504.10.3390/cells10061504. PubMed DOI PMC
Wan P. K.; Tong K. C.; Lok C. N.; Zhang C.; Chang X. Y.; Sze K. H.; Wong A. S. T.; Che C. M. Platinum(II) N-heterocyclic carbene complexes arrest metastatic tumor growth. Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e202580611810.1073/pnas.2025806118. PubMed DOI PMC
Chen W. C.; Lai Y. A.; Lin Y. C.; Ma J. W.; Huang L. F.; Yang N. S.; Ho C. T.; Kuo S. C.; Way T. D. Curcumin suppresses doxorubicin-induced epithelial-mesenchymal transition via the inhibition of TGF-β and PI3K/AKT signaling pathways in triple-negative breast cancer cells. J. Agric. Food Chem. 2013, 61, 11817–11824. 10.1021/jf404092f. PubMed DOI
Liu C. L.; Chen M. J.; Lin J. C.; Lin C. H.; Huang W. C.; Cheng S. P.; Chen S. N.; Chang Y. C. Doxorubicin promotes migration and invasion of breast cancer cells through the upregulation of the RhoA/MLC pathway. J. Breast Cancer 2019, 22, 185–195. 10.4048/jbc.2019.22.e22. PubMed DOI PMC
Mohammed S.; Shamseddine A. A.; Newcomb B.; Chavez R. S.; Panzner T. D.; Lee A. H.; Canals D.; Okeoma C. M.; Clarke C. J.; Hannun Y. A. Sublethal doxorubicin promotes migration and invasion of breast cancer cells: role of Src Family non-receptor tyrosine kinases. Breast Cancer Res. 2021, 23, 76.10.1186/s13058-021-01452-5. PubMed DOI PMC
Li Q. Q.; Xu J. D.; Wang W. J.; Cao X. X.; Chen Q.; Tang F.; Chen Z. Q.; Liu X. P.; Xu Z. D. Twist1-mediated adriamycin-induced epithelial-mesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells. Clin. Cancer Res. 2009, 15, 2657–2665. 10.1158/1078-0432.CCR-08-2372. PubMed DOI
Lin Y.; Kang T.; Zhou B. P. Doxorubicin enhances Snail/LSD1-mediated PTEN suppression in a PARP1-dependent manner. Cell Cycle 2014, 13, 1708–1716. 10.4161/cc.28619. PubMed DOI PMC
Mirzaei S.; Abadi A. J.; Gholami M. H.; Hashemi F.; Zabolian A.; Hushmandi K.; Zarrabi A.; Entezari M.; Aref A. R.; Khan H.; Ashrafizadeh M.; Samarghandian S. The involvement of epithelial-to-mesenchymal transition in doxorubicin resistance: Possible molecular targets. Eur. J. Pharmacol. 2021, 908, 17434410.1016/j.ejphar.2021.174344. PubMed DOI
De Pascalis C.; Pérez-González C.; Seetharaman S.; Boëda B.; Vianay B.; Burute M.; Leduc C.; Borghi N.; Trepat X.; Etienne-Manneville S. Intermediate filaments control collective migration by restricting traction forces and sustaining cell-cell contacts. J. Cell. Biol. 2018, 217, 3031–3044. 10.1083/jcb.201801162. PubMed DOI PMC
Strouhalova K.; Přechová M.; Gandalovičová A.; Brábek J.; Gregor M.; Rosel D. Vimentin intermediate filaments as potential target for cancer treatment. Cancers 2020, 12, 184.10.3390/cancers12010184. PubMed DOI PMC
Hugo H.; Ackland M. L.; Blick T.; Lawrence M. G.; Clements J. A.; Williams E. D.; Thompson E. W. Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression. J. Cell. Physiol. 2007, 213, 374–383. 10.1002/jcp.21223. PubMed DOI
Mendez M. G.; Kojima S.; Goldman R. D. Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J. 2010, 24, 1838–1851. 10.1096/fj.09-151639. PubMed DOI PMC
Xuan B.; Ghosh D.; Jiang J.; Shao R.; Dawson M. R. Vimentin filaments drive migratory persistence in polyploidal cancer cells. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 26756–26765. 10.1073/pnas.2011912117. PubMed DOI PMC
Liang C.-C.; Park A. Y.; Guan J.-L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2007, 2, 329–333. 10.1038/nprot.2007.30. PubMed DOI
Bergers G.; Fendt S. M. The metabolism of cancer cells during metastasis. Nat. Rev. Cancer 2021, 21, 162–180. 10.1038/s41568-020-00320-2. PubMed DOI PMC
He Y.; Xiong L.; Gao X.; Hai M.; Liu Y.; Wang G.; Chen G.; Shuai J.; Jiao Y.; Zhang X.; Liu R.; Liu L. Morphological quantification of proliferation-to-invasion transition in tumor spheroids. Biochim. Biophys. Acta Gen. Subj. 1864, 2020, 129460. PubMed
Froehlich K.; Haeger J. D.; Heger J.; Pastuschek J.; Photini S. M.; Yan Y.; Lupp A.; Pfarrer C.; Mrowka R.; Schleußner E.; Markert U. R.; Schmidt A. Generation of multicellular breast cancer tumor spheroids: Comparison of different protocols. J. Mammary Gland Biol. Neoplasia 2016, 21, 89–98. 10.1007/s10911-016-9359-2. PubMed DOI
Amaral R. L. F.; Miranda M.; Marcato P. D.; Swiech K. Comparative analysis of 3D bladder tumor spheroids obtained by forced floating and hanging drop methods for drug screening. Front. Physiol. 2017, 8, 605.10.3389/fphys.2017.00605. PubMed DOI PMC
Porras J. A.; Mills I. N.; Transue W. J.; Bernhard S. Highly fluorinated Ir(III)–2,2′:6′,2″-terpyridine–phenylpyridine–X complexes via selective C–F activation: Robust photocatalysts for solar fuel generation and photoredox catalysis. J. Amer. Chem. Soc. 2016, 138, 9460–9472. 10.1021/jacs.6b03246. PubMed DOI
Yoshikawa N.; Yamabe S.; Kanehisa N.; Kai Y.; Takashima H.; Tsukahara K. Synthesis, characterization, and DFT investigation of IrIII tolylterpyridine complexes. Eur. J. Inorg. Chem. 2007, 2007, 1911–1919. 10.1002/ejic.200600995. DOI
Livak K. J.; Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. 10.1006/meth.2001.1262. PubMed DOI