Ir(III) Compounds Containing a Terdentate Ligand Are Potent Inhibitors of Proliferation and Effective Antimetastatic Agents in Aggressive Triple-Negative Breast Cancer Cells

. 2023 Jul 27 ; 66 (14) : 9766-9783. [epub] 20230706

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37410386

Herein, we report a series of new octahedral iridium(III) complexes Ir1-Ir9 of the type [Ir(N^N^N)(C^N)Cl]PF6 (N^N^N = 4'-(p-tolyl)-2,2':6',2″-terpyridine; C^N = deprotonated 2-arylbenzimidazole backbone) to introduce new metal-based compounds for effective inhibition of metastatic processes in triple-negative breast cancer (TNBC). The results show that the structural modifications within the C^N scaffold strongly impact the antimetastatic properties of these complexes in TNBC cells. Furthermore, testing the antimetastatic effects of the investigated Ir complexes revealed that the highest antimetastatic activity in TNBC cells is exhibited by complex Ir1. This result was in contrast to the effects of the clinically used drug doxorubicin used in conventional chemotherapy of TNBC, which conversely promoted metastatic properties of TNBC cells. Thus, the latter result suggests that doxorubicin chemotherapy may increase the risk of metastasis of breast cancer cells, so the search for new drugs to treat breast cancer that would show better antitumor effects than doxorubicin is justified.

Zobrazit více v PubMed

Ganesh K.; Massagué J. Targeting metastatic cancer. Nature Med. 2021, 27, 34–44. 10.1038/s41591-020-01195-4. PubMed DOI PMC

Bergamo A.; Sava G. Linking the future of anticancer metal-complexes to the therapy of tumour metastases. Chem. Soc. Rev. 2015, 44, 8818–8835. 10.1039/C5CS00134J. PubMed DOI

Brindell M.; Gurgul I.; Janczy-Cempa E.; Gajda-Morszewski P.; Mazuryk O. Moving Ru polypyridyl complexes beyond cytotoxic activity towards metastasis inhibition. J. Inorg. Biochem. 2022, 226, 11165210.1016/j.jinorgbio.2021.111652. PubMed DOI

Tian Z.; Yang Y.; Guo L.; Zhong G.; Li J.; Liu Z. Dual-functional cyclometalated iridium imine NHC complexes: highly potent anticancer and antimetastatic agents. Inorg. Chem. Front. 2018, 5, 3106–3112. 10.1039/C8QI00920A. DOI

Ma W.; Ge X.; Xu Z.; Zhang S.; He X.; Li J.; Xia X.; Chen X.; Liu Z. Theranostic lysosomal targeting anticancer and antimetastatic agents: half-sandwich iridium(III) rhodamine complexes. ACS Omega 2019, 4, 15240–15248. 10.1021/acsomega.9b01863. PubMed DOI PMC

Liu X.; Chen S.; Ge X.; Zhang Y.; Xie Y.; Hao Y.; Wu D.; Zhao J.; Yuan X.-A.; Tian L.; Liu Z. Dual functions of iridium(III) 2-phenylpyridine complexes: Metastasis inhibition and lysosomal damage. J. Inorg. Biochem. 2020, 205, 11098310.1016/j.jinorgbio.2019.110983. PubMed DOI

Wang F. X.; Chen M. H.; Lin Y. N.; Zhang H.; Tan C. P.; Ji L. N.; Mao Z. W. Dual Functions of Cyclometalated Iridium(III) Complexes: Anti-Metastasis and Lysosome-Damaged Photodynamic Therapy. ACS Appl. Mater. Interfaces 2017, 9, 42471–42481. 10.1021/acsami.7b10258. PubMed DOI

Panchangam R. L.; Rao R. N.; Balamurali M. M.; Hingamire T. B.; Shanmugam D.; Manickam V.; Chanda K. Antitumor effects of Ir(III)-2H-indazole complexes for triple negative breast cancer. Inorg. Chem. 2021, 60, 17593–17607. 10.1021/acs.inorgchem.1c02193. PubMed DOI

Bianchini G.; De Angelis C.; Licata L.; Gianni L. Treatment landscape of triple-negative breast cancer—Expanded options, evolving needs. Nat. Rev. Clin. Oncol. 2022, 19, 91–113. 10.1038/s41571-021-00565-2. PubMed DOI

Zagami P.; Carey L. A. Triple negative breast cancer: Pitfalls and progress. NPJ Breast Cancer 2022, 8, 95.10.1038/s41523-022-00468-0. PubMed DOI PMC

Yousefi H.; Khosla M.; Lauterboeck L.; Okpechi S. C.; Worthylake D.; Garai J.; Zabaleta J.; Guidry J.; Zarandi M. A.; Wyczechowska D.; Jayawickramarajah J.; Yang Q.; Kissil J.; Alahari S. K. A combination of novel NSC small molecule inhibitor along with doxorubicin inhibits proliferation of triple-negative breast cancer through metabolic reprogramming. Oncogene 2022, 41, 5076–5091. 10.1038/s41388-022-02497-2. PubMed DOI

Humber C. E.; Tierney J. F.; Symonds R. P.; Collingwood M.; Kirwan J.; Williams C.; Green J. A. Chemotherapy for advanced, recurrent or metastatic endometrial cancer: a systematic review of Cochrane collaboration. Ann. Oncol. 2007, 18, 409–420. 10.1093/annonc/mdl417. PubMed DOI

Zhang X.; Hu C.; Kong C. Y.; Song P.; Wu H. M.; Xu S. C.; Yuan Y. P.; Deng W.; Ma Z. G.; Tang Q. Z. FNDC5 alleviates oxidative stress and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via activating AKT. Cell Death Differ. 2020, 27, 540–555. 10.1038/s41418-019-0372-z. PubMed DOI PMC

Yu X.; Ruan Y.; Huang X.; Dou L.; Lan M.; Cui J.; Chen B.; Gong H.; Wang Q.; Yan M.; Sun S.; Qiu Q.; Zhang X.; Man Y.; Tang W.; Li J.; Shen T. Dexrazoxane ameliorates doxorubicin-induced cardiotoxicity by inhibiting both apoptosis and necroptosis in cardiomyocytes. Biochem. Biophys. Res. Commun. 2020, 523, 140–146. 10.1016/j.bbrc.2019.12.027. PubMed DOI

Carmo-Pereira J.; Costa F. O.; Henriques E.; Godinho F.; Cantinho-Lopes M. G.; Sales-Luis A.; Rubens R. D. A comparison of two doses of adriamycin in the primary chemotherapy of disseminated breast carcinoma. Br. J. Cancer 1987, 56, 471–473. 10.1038/bjc.1987.226. PubMed DOI PMC

Sun Z.; Zhou D.; Yang J.; Zhang D. Doxorubicin promotes breast cancer cell migration and invasion via DCAF13. FEBS Open Bio 2022, 12, 221–230. 10.1002/2211-5463.13330. PubMed DOI PMC

Ortega-Forte E.; Hernandez-Garcia S.; Vigueras G.; Henarejos-Escudero P.; Cutillas N.; Ruiz J.; Gandia-Herrero F. Potent anticancer activity of a novel iridium metallodrug via oncosis. Cell. Mol. Sci. 2022, 79, 510.10.1007/s00018-022-04526-5. PubMed DOI PMC

Wang L.; Guan R.; Xie L.; Liao X.; Xiong K.; Rees T. W.; Chen Y.; Ji L.; Chao H. An ER-targeting iridium(III) complex that induces immunogenic cell death in non-small-cell lung cancer. Angew. Chem., Int. Ed. 2021, 60, 4657–4665. 10.1002/anie.202013987. PubMed DOI

Ho P.-Y.; Ho C.-L.; Wong W.-Y. Recent advances of iridium(III) metallophosphors for health-related applications. Coord. Chem. Rev. 2020, 413, 21326710.1016/j.ccr.2020.213267. DOI

Guan R.; Chen Y.; Zeng L.; Rees T. W.; Jin C.; Huang J.; Chen Z.-S.; Ji L.; Chao H. Oncosis-inducing cyclometalated iridium(III) complexes. Chem. Sci. 2018, 9, 5183–5190. 10.1039/C8SC01142G. PubMed DOI PMC

Wang W.-J.; Ling Y.-Y.; Zhong Y.-M.; Li Z.-Y.; Tan C.-P.; Mao Z.-W. Ferroptosis-enhanced cancer immunity by a ferrocene-appended iridium(III) diphosphine complex. Angew. Chem., Int. Ed. 2022, 61, e202115247. PubMed

Yang J.; Fang H.-J.; Cao Q.; Mao Z.-W. The design of cyclometalated iridium(III)–metformin complexes for hypoxic cancer treatment. Chem. Commun. 2021, 57, 1093–1096. 10.1039/D0CC07104H. PubMed DOI

Li S.; Yuan H.; Chen Y.; Guo Z. Metal complexes induced ferroptosis for anticancer therapy. Fundam. Res. 2022, 10.1016/j.fmre.2022.10.001. PubMed DOI PMC

Ma J.; Zhang X.; Huang X.; Luo S.; Meggers E. Preparation of chiral-at-metal catalysts and their use in asymmetric photoredox chemistry. Nat. Protoc. 2018, 13, 605–632. 10.1038/nprot.2017.138. PubMed DOI

Liu B.; Monro S.; Li Z.; Jabed M. A.; Ramirez D.; Cameron C. G.; Colón K.; Roque J. III; Kilina S.; Tian J.; McFarland S. A.; Sun W. New class of homoleptic and heteroleptic bis(terpyridine) iridium(III) complexes with strong photodynamic therapy effects. ACS Appl. Bio Mater. 2019, 2, 2964–2977. 10.1021/acsabm.9b00312. PubMed DOI PMC

Huang H.; Banerjee S.; Qiu K.; Zhang P.; Blacque O.; Malcomson T.; Paterson M. J.; Clarkson G. J.; Staniforth M.; Stavros V. G.; Gasser G.; Chao H.; Sadler P. J. Targeted photoredox catalysis in cancer cells. Nat. Chem. 2019, 11, 1041–1048. 10.1038/s41557-019-0328-4. PubMed DOI

Wei L.; Kushwaha R.; Dao A.; Fan Z.; Banerjee S.; Huang H. Axisymmetric bis-tridentate Ir(III) photoredox catalysts for anticancer phototherapy under hypoxia. Chem. Commun. 2023, 59, 3083–3086. 10.1039/D2CC06721H. PubMed DOI

Fan Z.; Rong Y.; Sadhukhan T.; Liang S.; Li W.; Yuan Z.; Zhu Z.; Guo S.; Ji S.; Wang J.; Kushwaha R.; Banerjee S.; Raghavachari K.; Huang H. Single-cell quantification of a highly biocompatible dinuclear iridium(III) complex for photocatalytic cancer therapy. Angew. Chem., Int. Ed. 2022, 61, e202202098. PubMed

Yellol J.; Perez S. A.; Buceta A.; Yellol G.; Donaire A.; Szumlas P.; Bednarski P. J.; Makhloufi G.; Janiak C.; Espinosa A.; Ruiz J. Novel C,N-cyclometalated benzimidazole ruthenium(II) and iridium(III) complexes as antitumor and antiangiogenic agents: A structure-activity relationship study. J. Med. Chem. 2015, 58, 7310–7327. 10.1021/acs.jmedchem.5b01194. PubMed DOI

Yellol J.; Pérez S. A.; Yellol G.; Zajac J.; Donaire A.; Vigueras G.; Novohradsky V.; Janiak C.; Brabec V.; Ruiz J. Highly potent extranuclear-targeted luminescent iridium(III) antitumor agents containing benzimidazole-based ligands with a handle for functionalization. Chem. Commun. 2016, 52, 14165–14168. 10.1039/C6CC07909A. PubMed DOI

Novohradsky V.; Zamora A.; Gandioso A.; Brabec V.; Ruiz J.; Marchan V. Somatostatin receptor-targeted organometallic iridium(III) complexes as novel theranostic agents. Chem. Commun. 2017, 53, 5523–5526. 10.1039/C7CC01946G. PubMed DOI

Betti M.; Genesio E.; Marconi G.; Sanna Coccone S.; Wiedenau P. A scalable route to the SMO receptor antagonist SEN826: Benzimidazole synthesis via enhanced in situ formation of the bisulfite–aldehyde complex. Org. Process Res. Dev. 2014, 18, 699–708. 10.1021/op4002092. DOI

Novohradsky V.; Vigueras G.; Pracharova J.; Cutillas N.; Janiak C.; Kostrhunova H.; Brabec V.; Ruiz J.; Kasparkova J. Molecular superoxide radical photogeneration in cancer cells by dipyridophenazine iridium(III) complexes. Inorg. Chem. Front. 2019, 6, 2500–2513. 10.1039/C9QI00811J. DOI

Wang C.-T.; Chen J.; Xu J.; Wei F.; Yam C. Y.; Wong K. M.-C.; Sit P. H. L.; Teoh W. Y. Selective visible light reduction of carbon dioxide over iridium(III)-terpyridine photocatalysts. Mater. Today Chem. 2021, 22, 100563.

Yang T.; Wang B.; He Y.; Zhou A.; Yao Z.; Xing G.; Tao Y. Triplet homoleptic iridium(III) complex as a potential donor material for organic solar cells. Inorg. Chem. 2023, 62, 5920–5930. 10.1021/acs.inorgchem.2c04017. PubMed DOI

Redrado M.; Miñana M.; Coogan M. P.; Concepción Gimeno M.; Fernández-Moreira V. Tunable emissive Ir(III) benzimidazole-quinoline hybrids as promising theranostic lead compounds. ChemMedChem 2022, 17, e20220024410.1002/cmdc.202200244. PubMed DOI PMC

Martínez-Vollbert E.; Philouze C.; Gautier-Luneau I.; Moreau Y.; Lanoë P.-H.; Loiseau F. Study of a phosphorescent cationic iridium(iii) complex displaying a blue-shift in crystals. Phys. Chem. Chem. Phys. 2021, 23, 24789–24800. 10.1039/D1CP03341G. PubMed DOI

Millán G.; Nieddu M.; López I. P.; Ezquerro C.; Berenguer J. R.; Larráyoz I. M.; Pichel J. G.; Lalinde E. A new family of luminescent iridium complexes: synthesis, optical, and cytotoxic studies. Dalton Trans. 2023, 52, 6360–6374. 10.1039/D3DT00028A. PubMed DOI

DiLuzio S.; Mdluli V.; Connell T. U.; Lewis J.; VanBenschoten V.; Bernhard S. High-throughput screening and automated data-driven analysis of the triplet photophysical properties of structurally diverse, heteroleptic iridium(III) complexes. J. Am. Chem. Soc. 2021, 143, 1179–1194. 10.1021/jacs.0c12290. PubMed DOI

Zhang W.-Y.; Yi Q.-Y.; Wang Y.-J.; Du F.; He M.; Tang B.; Wan D.; Liu Y.-J.; Huang H.-L. Photoinduced anticancer activity studies of iridium(III) complexes targeting mitochondria and tubules. Eur. J. Med. Chem. 2018, 151, 568–584. 10.1016/j.ejmech.2018.04.013. PubMed DOI

Li J.; Chen H.; Zeng L.; Rees T. W.; Xiong K.; Chen Y.; Ji L.; Chao H. Mitochondria-targeting cyclometalated iridium(III) complexes for tumor hypoxic imaging and therapy. Inorg. Chem. Front. 2019, 6, 1003–1010. 10.1039/C9QI00081J. DOI

Hao J.; Zhang H.; Tian L.; Yang L.; Zhou Y.; Zhang Y.; Liu Y.; Xing D. Evaluation of anticancer effects in vitro of new iridium(III) complexes targeting the mitochondria. J. Inorg. Biochem. 2021, 221, 11146510.1016/j.jinorgbio.2021.111465. PubMed DOI

Markova L.; Novohradsky V.; Kasparkova J.; Ruiz J.; Brabec V. Dipyridophenazine iridium(III) complex as a phototoxic cancer stem cell selective, mitochondria targeting agent. Chem.-Biol. Interact. 2022, 360, 10995510.1016/j.cbi.2022.109955. PubMed DOI

Vigueras G.; Markova L.; Novohradsky V.; Marco A.; Cutillas N.; Kostrhunova H.; Kasparkova J.; Ruiz J.; Brabec V. A photoactivated Ir(III) complex targets cancer stem cells and induces secretion of damage-associated molecular patterns in melamoma cells characteristic of immunogenic cell death. Inorg. Chem. Front. 2021, 8, 4696–4711. 10.1039/D1QI00856K. DOI

Eastman A. Improving anticancer drug development begins with cell culture: misinformation perpetrated by the misuse of cytotoxicity assays. Oncotarget 2017, 8, 8854–8866. 10.18632/oncotarget.12673. PubMed DOI PMC

Henriet E.; Knutsdottir H.; Grasset E. M.; Dunworth M.; Haynes M.; Bader J. S.; Ewald A. J. Triple negative breast tumors contain heterogeneous cancer cells expressing distinct KRAS-dependent collective and disseminative invasion programs. Oncogene 2023, 42, 737–747. 10.1038/s41388-022-02586-2. PubMed DOI PMC

Xu H. N.; Nioka S.; Glickson J. D.; Chance B.; Li L. Z. Quantitative mitochondrial redox imaging of breast cancer metastatic potential. J. Biomed. Opt. 2010, 15, 03601010.1117/1.3431714. PubMed DOI PMC

Bouchalova P.; Bouchal P. Current methods for studying metastatic potential of tumor cells. Cancer Cell Int. 2022, 22, 394.10.1186/s12935-022-02801-w. PubMed DOI PMC

Winter M.; Meignan S.; Völkel P.; Angrand P. O.; Chopin V.; Bidan N.; Toillon R. A.; Adriaenssens E.; Lagadec C.; Le Bourhis X. Vimentin promotes the aggressiveness of triple negative breast cancer cells surviving chemotherapeutic treatment. Cell 2021, 10, 1504.10.3390/cells10061504. PubMed DOI PMC

Wan P. K.; Tong K. C.; Lok C. N.; Zhang C.; Chang X. Y.; Sze K. H.; Wong A. S. T.; Che C. M. Platinum(II) N-heterocyclic carbene complexes arrest metastatic tumor growth. Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e202580611810.1073/pnas.2025806118. PubMed DOI PMC

Chen W. C.; Lai Y. A.; Lin Y. C.; Ma J. W.; Huang L. F.; Yang N. S.; Ho C. T.; Kuo S. C.; Way T. D. Curcumin suppresses doxorubicin-induced epithelial-mesenchymal transition via the inhibition of TGF-β and PI3K/AKT signaling pathways in triple-negative breast cancer cells. J. Agric. Food Chem. 2013, 61, 11817–11824. 10.1021/jf404092f. PubMed DOI

Liu C. L.; Chen M. J.; Lin J. C.; Lin C. H.; Huang W. C.; Cheng S. P.; Chen S. N.; Chang Y. C. Doxorubicin promotes migration and invasion of breast cancer cells through the upregulation of the RhoA/MLC pathway. J. Breast Cancer 2019, 22, 185–195. 10.4048/jbc.2019.22.e22. PubMed DOI PMC

Mohammed S.; Shamseddine A. A.; Newcomb B.; Chavez R. S.; Panzner T. D.; Lee A. H.; Canals D.; Okeoma C. M.; Clarke C. J.; Hannun Y. A. Sublethal doxorubicin promotes migration and invasion of breast cancer cells: role of Src Family non-receptor tyrosine kinases. Breast Cancer Res. 2021, 23, 76.10.1186/s13058-021-01452-5. PubMed DOI PMC

Li Q. Q.; Xu J. D.; Wang W. J.; Cao X. X.; Chen Q.; Tang F.; Chen Z. Q.; Liu X. P.; Xu Z. D. Twist1-mediated adriamycin-induced epithelial-mesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells. Clin. Cancer Res. 2009, 15, 2657–2665. 10.1158/1078-0432.CCR-08-2372. PubMed DOI

Lin Y.; Kang T.; Zhou B. P. Doxorubicin enhances Snail/LSD1-mediated PTEN suppression in a PARP1-dependent manner. Cell Cycle 2014, 13, 1708–1716. 10.4161/cc.28619. PubMed DOI PMC

Mirzaei S.; Abadi A. J.; Gholami M. H.; Hashemi F.; Zabolian A.; Hushmandi K.; Zarrabi A.; Entezari M.; Aref A. R.; Khan H.; Ashrafizadeh M.; Samarghandian S. The involvement of epithelial-to-mesenchymal transition in doxorubicin resistance: Possible molecular targets. Eur. J. Pharmacol. 2021, 908, 17434410.1016/j.ejphar.2021.174344. PubMed DOI

De Pascalis C.; Pérez-González C.; Seetharaman S.; Boëda B.; Vianay B.; Burute M.; Leduc C.; Borghi N.; Trepat X.; Etienne-Manneville S. Intermediate filaments control collective migration by restricting traction forces and sustaining cell-cell contacts. J. Cell. Biol. 2018, 217, 3031–3044. 10.1083/jcb.201801162. PubMed DOI PMC

Strouhalova K.; Přechová M.; Gandalovičová A.; Brábek J.; Gregor M.; Rosel D. Vimentin intermediate filaments as potential target for cancer treatment. Cancers 2020, 12, 184.10.3390/cancers12010184. PubMed DOI PMC

Hugo H.; Ackland M. L.; Blick T.; Lawrence M. G.; Clements J. A.; Williams E. D.; Thompson E. W. Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression. J. Cell. Physiol. 2007, 213, 374–383. 10.1002/jcp.21223. PubMed DOI

Mendez M. G.; Kojima S.; Goldman R. D. Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J. 2010, 24, 1838–1851. 10.1096/fj.09-151639. PubMed DOI PMC

Xuan B.; Ghosh D.; Jiang J.; Shao R.; Dawson M. R. Vimentin filaments drive migratory persistence in polyploidal cancer cells. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 26756–26765. 10.1073/pnas.2011912117. PubMed DOI PMC

Liang C.-C.; Park A. Y.; Guan J.-L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2007, 2, 329–333. 10.1038/nprot.2007.30. PubMed DOI

Bergers G.; Fendt S. M. The metabolism of cancer cells during metastasis. Nat. Rev. Cancer 2021, 21, 162–180. 10.1038/s41568-020-00320-2. PubMed DOI PMC

He Y.; Xiong L.; Gao X.; Hai M.; Liu Y.; Wang G.; Chen G.; Shuai J.; Jiao Y.; Zhang X.; Liu R.; Liu L. Morphological quantification of proliferation-to-invasion transition in tumor spheroids. Biochim. Biophys. Acta Gen. Subj. 1864, 2020, 129460. PubMed

Froehlich K.; Haeger J. D.; Heger J.; Pastuschek J.; Photini S. M.; Yan Y.; Lupp A.; Pfarrer C.; Mrowka R.; Schleußner E.; Markert U. R.; Schmidt A. Generation of multicellular breast cancer tumor spheroids: Comparison of different protocols. J. Mammary Gland Biol. Neoplasia 2016, 21, 89–98. 10.1007/s10911-016-9359-2. PubMed DOI

Amaral R. L. F.; Miranda M.; Marcato P. D.; Swiech K. Comparative analysis of 3D bladder tumor spheroids obtained by forced floating and hanging drop methods for drug screening. Front. Physiol. 2017, 8, 605.10.3389/fphys.2017.00605. PubMed DOI PMC

Porras J. A.; Mills I. N.; Transue W. J.; Bernhard S. Highly fluorinated Ir(III)–2,2′:6′,2″-terpyridine–phenylpyridine–X complexes via selective C–F activation: Robust photocatalysts for solar fuel generation and photoredox catalysis. J. Amer. Chem. Soc. 2016, 138, 9460–9472. 10.1021/jacs.6b03246. PubMed DOI

Yoshikawa N.; Yamabe S.; Kanehisa N.; Kai Y.; Takashima H.; Tsukahara K. Synthesis, characterization, and DFT investigation of IrIII tolylterpyridine complexes. Eur. J. Inorg. Chem. 2007, 2007, 1911–1919. 10.1002/ejic.200600995. DOI

Livak K. J.; Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. 10.1006/meth.2001.1262. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...