Current methods for studying metastatic potential of tumor cells

. 2022 Dec 09 ; 22 (1) : 394. [epub] 20221209

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36494720

Grantová podpora
NV19-08-00250 Ministerstvo Zdravotnictví Ceské Republiky
LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 36494720
PubMed Central PMC9733110
DOI 10.1186/s12935-022-02801-w
PII: 10.1186/s12935-022-02801-w
Knihovny.cz E-zdroje

Cell migration and invasiveness significantly contribute to desirable physiological processes, such as wound healing or embryogenesis, as well as to serious pathological processes such as the spread of cancer cells to form tumor metastasis. The availability of appropriate methods for studying these processes is essential for understanding the molecular basis of cancer metastasis and for identifying suitable therapeutic targets for anti-metastatic treatment. This review summarizes the current status of these methods: In vitro methods for studying cell migration involve two-dimensional (2D) assays (wound-healing/scratch assay), and methods based on chemotaxis (the Dunn chamber). The analysis of both cell migration and invasiveness in vitro require more complex systems based on the Boyden chamber principle (Transwell migration/invasive test, xCELLigence system), or microfluidic devices with three-dimensional (3D) microscopy visualization. 3D culture techniques are rapidly becoming routine and involve multicellular spheroid invasion assays or array chip-based, spherical approaches, multi-layer/multi-zone culture, or organoid non-spherical models, including multi-organ microfluidic chips. The in vivo methods are mostly based on mice, allowing genetically engineered mice models and transplant models (syngeneic mice, cell line-derived xenografts and patient-derived xenografts including humanized mice models). These methods currently represent a solid basis for the state-of-the art research that is focused on understanding metastatic fundamentals as well as the development of targeted anti-metastatic therapies, and stratified treatment in oncology.

Zobrazit více v PubMed

Vicente-Manzanares M, Horwitz AR. Cell migration: an overview. Methods Mol Biol. 2011;769:1–24. doi: 10.1007/978-1-61779-207-6_1. PubMed DOI

Patel LR, Camacho DF, Shiozawa Y, Pienta KJ, Taichman RS. Mechanisms of cancer cell metastasis to the bone: a multistep process. Future Oncol. 2011;7:1285–1297. doi: 10.2217/fon.11.112. PubMed DOI PMC

Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147:275–292. doi: 10.1016/j.cell.2011.09.024. PubMed DOI PMC

Maryas J, Faktor J, Dvorakova M, Struharova I, Grell P, Bouchal P. Proteomics in investigation of cancer metastasis: functional and clinical consequences and methodological challenges. Proteomics. 2014;14:426–440. doi: 10.1002/pmic.201300264. PubMed DOI

Penet MF, Chen Z, Bhujwalla ZM. MRI of metastasis-permissive microenvironments. Future Oncol. 2011;7:1269–1284. doi: 10.2217/fon.11.114. PubMed DOI PMC

Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther. 2020;5:28. doi: 10.1038/s41392-020-0134-x. PubMed DOI PMC

Faktor J, Dvorakova M, Maryas J, Struharova I, Bouchal P. Identification and characterisation of pro-metastatic targets, pathways and molecular complexes using a toolbox of proteomic technologies. Klin Onkol. 2012;25(Suppl 2):2S70–7. PubMed

Hsieh TC, Wu JM. Resveratrol suppresses prostate cancer epithelial cell scatter/invasion by targeting inhibition of hepatocyte growth factor (HGF) secretion by prostate stromal cells and upregulation of e-cadherin by prostate cancer epithelial cells. Int J Mol Sci. 2020 doi: 10.3390/ijms21051760. PubMed DOI PMC

Cory G. Scratch-wound assay. Methods Mol Biol. 2011;769:25–30. doi: 10.1007/978-1-61779-207-6_2. PubMed DOI

Eccles SA, Box C, Court W. Cell migration/invasion assays and their application in cancer drug discovery. Biotechnol Annu Rev. 2005;11:391–421. doi: 10.1016/S1387-2656(05)11013-8. PubMed DOI

Magdalena J, Millard TH, Etienne-Manneville S, Launay S, Warwick HK, Machesky LM. Involvement of the Arp2/3 complex and Scar2 in Golgi polarity in scratch wound models. Mol Biol Cell. 2003;14:670–684. doi: 10.1091/mbc.e02-06-0345. PubMed DOI PMC

Sigma-Aldrich. Cell comb scratch assay. Merck KGaA. 2021. https://www.sigmaaldrich.com/CZ/en/product/mm/1710191?context=product. Accessed 24 Aug 2021.

Knopfova L. Funkce proteinu c-Myb ve vybraných aspektech kancerogeneze, vol. 41. Brno: Informacni listy, Geneticka spolecnost Gregora Mendela; 2013. pp. 37–50.

Vang Mouritzen M, Jenssen H. Optimized scratch assay for in vitro testing of cell migration with an automated optical camera. J Vis Exp. 2018 doi: 10.3791/57691. PubMed DOI PMC

Glenn HL, Messner J, Meldrum DR. A simple non-perturbing cell migration assay insensitive to proliferation effects. Sci Rep. 2016;6:31694. doi: 10.1038/srep31694. PubMed DOI PMC

Block ER, Matela AR, SundarRaj N, Iszkula ER, Klarlund JK. Wounding induces motility in sheets of corneal epithelial cells through loss of spatial constraints: role of heparin-binding epidermal growth factor-like growth factor signaling. J Biol Chem. 2004;279:24307–24312. doi: 10.1074/jbc.M401058200. PubMed DOI

Nikolic DL, Boettiger AN, Bar-Sagi D, Carbeck JD, Shvartsman SY. Role of boundary conditions in an experimental model of epithelial wound healing. Am J Physiol Cell Physiol. 2006;291:C68–75. doi: 10.1152/ajpcell.00411.2005. PubMed DOI

Poujade M, Grasland-Mongrain E, Hertzog A, Jouanneau J, Chavrier P, Ladoux B, Buguin A, Silberzan P. Collective migration of an epithelial monolayer in response to a model wound. Proc Natl Acad Sci U S A. 2007;104:15988–15993. doi: 10.1073/pnas.0705062104. PubMed DOI PMC

Gough W, Hulkower KI, Lynch R, McGlynn P, Uhlik M, Yan L, Lee JA. A quantitative, facile, and high-throughput image-based cell migration method is a robust alternative to the scratch assay. J Biomol Screen. 2011;16:155–163. doi: 10.1177/1087057110393340. PubMed DOI

Guy R. Wound healing assay—cell exclusion assays. 2021. Cytosmart. https://cytosmart.com/resources/wound-healing-assays-cell-exclusion-assays?token=kyD-8ln6bA4QX4HhT_7l--Bp-Y4zdKvi. Accessed 01 Sep 2021.

Fram ST, Wells CM, Jones GE. HGF-induced DU145 cell scatter assay. Methods Mol Biol. 2011;769:31–40. doi: 10.1007/978-1-61779-207-6_3. PubMed DOI

Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–454. doi: 10.1038/nrc822. PubMed DOI

Cooper CR, Pienta KJ. Cell adhesion and chemotaxis in prostate cancer metastasis to bone: a minireview. Prostate Cancer Prostatic Dis. 2000;3:6–12. doi: 10.1038/sj.pcan.4500387. PubMed DOI

Roussos ET, Condeelis JS, Patsialou A. Chemotaxis in cancer. Nat Rev Cancer. 2011;11:573–587. doi: 10.1038/nrc3078. PubMed DOI PMC

Zicha D, Dunn GA, Brown AF. A new direct-viewing chemotaxis chamber. J Cell Sci. 1991;99(Pt 4):769–775. doi: 10.1242/jcs.99.4.769. PubMed DOI

ProSciTech_Pty_Ltd. Dunn chemotaxis chamber. Laboratory Resource. 2015. https://laboratoryresource.com.au/?navaction=getitem&id=119. Accessed 06 Sep 2021.

Kassis J, Lauffenburger DA, Turner T, Wells A. Tumor invasion as dysregulated cell motility. Semin Cancer Biol. 2001;11:105–117. doi: 10.1006/scbi.2000.0362. PubMed DOI

Muinonen-Martin AJ, Veltman DM, Kalna G, Insall RH. An improved chamber for direct visualisation of chemotaxis. PLoS ONE. 2010;5:e15309. doi: 10.1371/journal.pone.0015309. PubMed DOI PMC

Zigmond SH. Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J Cell Biol. 1977;75:606–616. doi: 10.1083/jcb.75.2.606. PubMed DOI PMC

Zantl R, Horn E. Chemotaxis of slow migrating mammalian cells analysed by video microscopy. Methods Mol Biol. 2011;769:191–203. doi: 10.1007/978-1-61779-207-6_13. PubMed DOI

IBIDI. Chemotaxis and migration tool. IBIDI Inc. 2021. https://ibidi.com/chemotaxis-analysis/171-chemotaxis-and-migration-tool.html. Accessed 31 Aug 2021

Keurhorst D, Liashkovich I, Frontzek F, Nitzlaff S, Hofschroer V, Dreier R, Stock C. MMP3 activity rather than cortical stiffness determines NHE1-dependent invasiveness of melanoma cells. Cancer Cell Int. 2019;19:285. doi: 10.1186/s12935-019-1015-7. PubMed DOI PMC

Vargas P, Terriac E, Lennon-Dumenil AM, Piel M. Study of cell migration in microfabricated channels. J Vis Exp. 2014 doi: 10.3791/51099. PubMed DOI PMC

IBIDI. Slide for chemotaxis. IBIDI Inc. 2021. https://ibidi.com/channel-slides/9--slide-chemotaxis-ibitreat.html. Accessed 31 Aug 2021.

Kleinman HK, Luckenbill-Edds L, Cannon FW, Sephel GC. Use of extracellular matrix components for cell culture. Anal Biochem. 1987;166:1–13. doi: 10.1016/0003-2697(87)90538-0. PubMed DOI

Sigma-Aldrich. Attachment factors for cell culture. Merck KGaA. 2021. https://www.sigmaaldrich.com/CZ/en/technical-documents/technical-article/cell-culture-and-cell-culture-analysis/3d-cell-culture/attachment-factors-for-cell-culture?gclid=CjwKCAjwvuGJBhB1EiwACU1AiYUmnMUWEi-aqr4UjxtuPneVqdvafg2oL4nqFgg3hpgG9zgTlhC-CBoCDa4QAvD_BwE. Accessed 08 Sep 2021.

Falasca M, Raimondi C, Maffucci T. Boyden chamber. Methods Mol Biol. 2011;769:87–95. doi: 10.1007/978-1-61779-207-6_7. PubMed DOI

Merck-Millipore (2021) Boyden chamber technique. Merck KGaA. https://www.merckmillipore.com/CZ/cs/life-science-research/antibodies-assays/assays-overview/cell-invasion-migration-assays/boyden-chamber-technique/I0qb.qB.KSMAAAFANtY.1ZcQ,nav. Accessed 06 September 2021

Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195–4200. doi: 10.1242/jcs.023820. PubMed DOI PMC

Hughes CS, Postovit LM, Lajoie GA. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics. 2010;10:1886–1890. doi: 10.1002/pmic.200900758. PubMed DOI

ThermoFisherScientific. Application of Alginate Scaffolds for 3D Culture. Thermo Fisher Scientific Inc. 2018. http://assets.thermofisher.com/TFS-Assets/CMD/posters/Application-of-Alginate-Scaffolds-for-3D-Cell-Culture.pdf. Accessed 08 Sep 2021.

Boyden S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med. 1962;115:453–466. doi: 10.1084/jem.115.3.453. PubMed DOI PMC

Marshall J. Transwell((R)) invasion assays. Methods Mol Biol. 2011;769:97–110. doi: 10.1007/978-1-61779-207-6_8. PubMed DOI

ThermoFisherScientific. Application properties of materials used for porous membranes in cell culture inserts. Thermo Fisher Scientific Inc. 2018. https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FBID%2FApplication-Notes%2Fapplication-properties-materials-porous-membranes-cell-culture-inserts-application-note.pdf&title=QXBwbGljYXRpb24gTm90ZTogQXBwbGljYXRpb24gcHJvcGVydGllcyBvZiBtYXRlcmlhbHMgdXNlZCBmb3IgcG9yb3VzIG1lbWJyYW5lcyBpbiBjZWxsIGN1bHR1cmUgaW5zZXJ0cw==. Accessed 06 Sep.

ThermoFisherScientific. Transwell Migration Assay protocol. Thermo Fisher Scientific Inc. 2011. https://www.thermofisher.com/cz/en/home/references/protocols/cell-and-tissue-analysis/cell-profilteration-assay-protocols/angiogenesis-protocols/transwell-migration-assay.html. Accessed 06 Sep 2021.

Agilent. xCELLigence RTCA. Agilent Technologies Inc. 2021. https://explore.agilent.com/ACEA-joins-Agilent. Accessed 16 Nov 2021

Limame R, Wouters A, Pauwels B, Fransen E, Peeters M, Lardon F, De Wever O, Pauwels P. Comparative analysis of dynamic cell viability, migration and invasion assessments by novel real-time technology and classic endpoint assays. PLoS ONE. 2012;7:e46536. doi: 10.1371/journal.pone.0046536. PubMed DOI PMC

Agilent. Cell analysis - xCELLingence. Agilent Technologies Inc. 2019. https://www.agilent.com/cs/library/datasheets/public/datasheet-cell-analysis-xcelligence-dp-5994-1068en-agilent.pdf. Accessed 07 Sep 2021.

Bird C, Kirstein S. Real-time, label-free monitoring of cellular invasion and migration with the xCELLigence system. Nat Methods. 2009;6:v–vi. doi: 10.1038/nmeth.f.263. DOI

Agilent. Real-Time and Dynamic Monitoring of Cell Proliferation and Viability for Adherent Cells. Agilent Technologies Inc. 2020. https://www.agilent.com/cs/library/applications/application-cell-proliferation-viability-adherent-cells-xCELLigence-5994-1695en-agilent.pdf. Accessed 07 Sep 2021.

Li Lei. Three dimensional microscopy—imaging 3D microstructures by freeform microoptics. Wiley Analytical Science; 2011. 10.1002/imaging.2577.

Cain RJ, d'Agua BB, Ridley AJ. Quantification of transendothelial migration using three-dimensional confocal microscopy. Methods Mol Biol. 2011;769:167–190. doi: 10.1007/978-1-61779-207-6_12. PubMed DOI

Jonkman J, Brown CM, Wright GD, Anderson KI, North AJ. Tutorial: guidance for quantitative confocal microscopy. Nat Protoc. 2020;15:1585–1611. doi: 10.1038/s41596-020-0313-9. PubMed DOI

IBIDI. Confocal microscopy. IBIDI Inc. 2021. https://ibidi.com/content/216-confocal-microscopy. Accessed 07 Sep 2021.

Arena ET, Rueden CT, Hiner MC, Wang S, Yuan M, Eliceiri KW. Quantitating the cell: turning images into numbers with ImageJ. Wiley Interdiscip Rev Dev Biol. 2017 doi: 10.1002/wdev.260. PubMed DOI

Perrin L, Bayarmagnai B, Gligorijevic B. Frontiers in intravital multiphoton microscopy of cancer. Cancer Rep (Hoboken) 2020;3:e1192. PubMed PMC

Dunn KW, Young PA. Principles of multiphoton microscopy. Nephron Exp Nephrol. 2006;103:e33–40. doi: 10.1159/000090614. PubMed DOI

Konig K. Multiphoton microscopy in life sciences. J Microsc. 2000;200:83–104. doi: 10.1046/j.1365-2818.2000.00738.x. PubMed DOI

Robinson JP. Principles of confocal microscopy. Methods Cell Biol. 2001;63:89–106. doi: 10.1016/S0091-679X(01)63008-5. PubMed DOI

Zong W, Wu R, Li M, Hu Y, Li Y, Li J, Rong H, Wu H, Xu Y, Lu Y, Jia H, Fan M, Zhou Z, Zhang Y, Wang A, Chen L, Cheng H. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat Methods. 2017;14:713–719. doi: 10.1038/nmeth.4305. PubMed DOI

Fumagalli A, Drost J, Suijkerbuijk SJ, van Boxtel R, de Ligt J, Offerhaus GJ, Begthel H, Beerling E, Tan EH, Sansom OJ, Cuppen E, Clevers H, van Rheenen J. Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proc Natl Acad Sci U S A. 2017;114:E2357–E2364. doi: 10.1073/pnas.1701219114. PubMed DOI PMC

Nedosekin DA, Verkhusha VV, Melerzanov AV, Zharov VP, Galanzha EI. In vivo photoswitchable flow cytometry for direct tracking of single circulating tumor cells. Chem Biol. 2014;21:792–801. doi: 10.1016/j.chembiol.2014.03.012. PubMed DOI PMC

Adams MW, Loftus AF, Dunn SE, Joens MS, Fitzpatrick JAJ. Light Sheet Fluorescence Microscopy (LSFM) Curr Protoc Cytom. 2015;71:12 37 1–12415. PubMed PMC

Greger K, Swoger J, Stelzer EH. Basic building units and properties of a fluorescence single plane illumination microscope. Rev Sci Instrum. 2007;78:023705. doi: 10.1063/1.2428277. PubMed DOI

Pan C, Schoppe O, Parra-Damas A, Cai R, Todorov MI, Gondi G, von Neubeck B, Bogurcu-Seidel N, Seidel S, Sleiman K, Veltkamp C, Forstera B, Mai H, Rong Z, Trompak O, Ghasemigharagoz A, Reimer MA, Cuesta AM, Coronel J, Jeremias I, Saur D, Acker-Palmer A, Acker T, Garvalov BK, Menze B, Zeidler R, Erturk A. Deep learning reveals cancer metastasis and therapeutic antibody targeting in the entire body. Cell. 2019;179(1661–1676):e19. PubMed PMC

Tomer R, Lovett-Barron M, Kauvar I, Andalman A, Burns VM, Sankaran S, Grosenick L, Broxton M, Yang S, Deisseroth K. SPED light sheet microscopy: fast mapping of biological system structure and function. Cell. 2015;163:1796–1806. doi: 10.1016/j.cell.2015.11.061. PubMed DOI PMC

Albert-Smet I, Marcos-Vidal A, Vaquero JJ, Desco M, Munoz-Barrutia A, Ripoll J. Applications of light-sheet microscopy in microdevices. Front Neuroanat. 2019;13:1. doi: 10.3389/fnana.2019.00001. PubMed DOI PMC

Merz SF, Jansen P, Ulankiewicz R, Bornemann L, Schimming T, Griewank K, Cibir Z, Kraus A, Stoffels I, Aspelmeier T, Brandau S, Schadendorf D, Hadaschik E, Ebel G, Gunzer M, Klode J. High-resolution three-dimensional imaging for precise staging in melanoma. Eur J Cancer. 2021;159:182–193. doi: 10.1016/j.ejca.2021.09.026. PubMed DOI

Glaser AK, Bishop KW, Barner LA, Susaki EA, Kubota SI, Gao G, Serafin RB, Balaram P, Turschak E, Nicovich PR, Lai H, Lucas LAG, Yi Y, Nichols EK, Huang H, Reder NP, Wilson JJ, Sivakumar R, Shamskhou E, Stoltzfus CR, Wei X, Hempton AK, Pende M, Murawala P, Dodt HU, Imaizumi T, Shendure J, Beliveau BJ, Gerner MY, Xin L, Zhao H, True LD, Reid RC, Chandrashekar J, Ueda HR, Svoboda K, Liu JTC. A hybrid open-top light-sheet microscope for versatile multi-scale imaging of cleared tissues. Nat Methods. 2022;19:613–619. doi: 10.1038/s41592-022-01468-5. PubMed DOI PMC

Artym VV, Zhang Y, Seillier-Moiseiwitsch F, Yamada KM, Mueller SC. Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Res. 2006;66:3034–3043. doi: 10.1158/0008-5472.CAN-05-2177. PubMed DOI

Fontana R, Yang J. Matrix degradation assay to measure the ability of tumor cells to degrade extracellular matrix. Methods Mol Biol. 2021;2294:151–163. doi: 10.1007/978-1-0716-1350-4_11. PubMed DOI

Jerrell RJ, Parekh A. Cellular traction stresses mediate extracellular matrix degradation by invadopodia. Acta Biomater. 2014;10:1886–1896. doi: 10.1016/j.actbio.2013.12.058. PubMed DOI PMC

Martin KH, Hayes KE, Walk EL, Ammer AG, Markwell SM, Weed SA. Quantitative measurement of invadopodia-mediated extracellular matrix proteolysis in single and multicellular contexts. J Vis Exp. 2012 doi: 10.3791/4119. PubMed DOI PMC

Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32:760–772. doi: 10.1038/nbt.2989. PubMed DOI

Sontheimer-Phelps A, Hassell BA, Ingber DE. Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer. 2019;19:65–81. doi: 10.1038/s41568-018-0104-6. PubMed DOI

Friedl P, Wolf K. Plasticity of cell migration: a multiscale tuning model. J Cell Biol. 2010;188:11–19. doi: 10.1083/jcb.200909003. PubMed DOI PMC

Heuze ML, Collin O, Terriac E, Lennon-Dumenil AM, Piel M. Cell migration in confinement: a micro-channel-based assay. Methods Mol Biol. 2011;769:415–434. doi: 10.1007/978-1-61779-207-6_28. PubMed DOI

Wang M, Cheng B, Yang Y, Liu H, Huang G, Han L, Li F, Xu F. Microchannel stiffness and confinement jointly induce the mesenchymal-amoeboid transition of cancer cell migration. Nano Lett. 2019;19:5949–5958. doi: 10.1021/acs.nanolett.9b01597. PubMed DOI

Ma H, Liu T, Qin J, Lin B. Characterization of the interaction between fibroblasts and tumor cells on a microfluidic co-culture device. Electrophoresis. 2010;31:1599–1605. doi: 10.1002/elps.200900776. PubMed DOI

Mi S, Du Z, Xu Y, Wu Z, Qian X, Zhang M, Sun W. Microfluidic co-culture system for cancer migratory analysis and anti-metastatic drugs screening. Sci Rep. 2016;6:35544. doi: 10.1038/srep35544. PubMed DOI PMC

Chen MB, Lamar JM, Li R, Hynes RO, Kamm RD. Elucidation of the roles of tumor integrin beta1 in the extravasation stage of the metastasis cascade. Cancer Res. 2016;76:2513–2524. doi: 10.1158/0008-5472.CAN-15-1325. PubMed DOI PMC

Chandrasekaran S, Geng Y, DeLouise LA, King MR. Effect of homotypic and heterotypic interaction in 3D on the E-selectin mediated adhesive properties of breast cancer cell lines. Biomaterials. 2012;33:9037–9048. doi: 10.1016/j.biomaterials.2012.08.052. PubMed DOI PMC

Weiswald LB, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia. 2015;17:1–15. doi: 10.1016/j.neo.2014.12.004. PubMed DOI PMC

Sant S, Johnston PA. The production of 3D tumor spheroids for cancer drug discovery. Drug Discov Today Technol. 2017;23:27–36. doi: 10.1016/j.ddtec.2017.03.002. PubMed DOI PMC

Jensen C, Shay C, Teng Y. The new frontier of three-dimensional culture models to scale-up cancer research. Methods Mol Biol. 2022;2343:3–18. doi: 10.1007/978-1-0716-1558-4_1. PubMed DOI

Bjerkvig R, Tonnesen A, Laerum OD, Backlund EO. Multicellular tumor spheroids from human gliomas maintained in organ culture. J Neurosurg. 1990;72:463–475. doi: 10.3171/jns.1990.72.3.0463. PubMed DOI

Salmaggi A, Boiardi A, Gelati M, Russo A, Calatozzolo C, Ciusani E, Sciacca FL, Ottolina A, Parati EA, La Porta C, Alessandri G, Marras C, Croci D, De Rossi M. Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia. 2006;54:850–860. doi: 10.1002/glia.20414. PubMed DOI

Weiswald LB, Richon S, Validire P, Briffod M, Lai-Kuen R, Cordelieres FP, Bertrand F, Dargere D, Massonnet G, Marangoni E, Gayet B, Pocard M, Bieche I, Poupon MF, Bellet D, Dangles-Marie V. Newly characterised ex vivo colospheres as a three-dimensional colon cancer cell model of tumour aggressiveness. Br J Cancer. 2009;101:473–482. doi: 10.1038/sj.bjc.6605173. PubMed DOI PMC

Yuhas JM, Li AP, Martinez AO, Ladman AJ. A simplified method for production and growth of multicellular tumor spheroids. Cancer Res. 1977;37:3639–3643. PubMed

Dangles-Marie V, Pocard M, Richon S, Weiswald LB, Assayag F, Saulnier P, Judde JG, Janneau JL, Auger N, Validire P, Dutrillaux B, Praz F, Bellet D, Poupon MF. Establishment of human colon cancer cell lines from fresh tumors versus xenografts: comparison of success rate and cell line features. Cancer Res. 2007;67:398–407. doi: 10.1158/0008-5472.CAN-06-0594. PubMed DOI

Dangles V, Femenia F, Laine V, Berthelemy M, Le Rhun D, Poupon MF, Levy D, Schwartz-Cornil I. Two- and three-dimensional cell structures govern epidermal growth factor survival function in human bladder carcinoma cell lines. Cancer Res. 1997;57:3360–3364. PubMed

Vinci M, Gowan S, Boxall F, Patterson L, Zimmermann M, Court W, Lomas C, Mendiola M, Hardisson D, Eccles SA. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol. 2012;10:29. doi: 10.1186/1741-7007-10-29. PubMed DOI PMC

Del Duca D, Werbowetski T, Del Maestro RF. Spheroid preparation from hanging drops: characterization of a model of brain tumor invasion. J Neurooncol. 2004;67:295–303. doi: 10.1023/B:NEON.0000024220.07063.70. PubMed DOI

Sakai S, Inamoto K, Liu Y, Tanaka S, Arii S, Taya M. Multicellular tumor spheroid formation in duplex microcapsules for analysis of chemosensitivity. Cancer Sci. 2012;103:549–554. doi: 10.1111/j.1349-7006.2011.02187.x. PubMed DOI PMC

Zhang X, Wang W, Yu W, Xie Y, Zhang X, Zhang Y, Ma X. Development of an in vitro multicellular tumor spheroid model using microencapsulation and its application in anticancer drug screening and testing. Biotechnol Prog. 2005;21:1289–1296. doi: 10.1021/bp050003l. PubMed DOI

Fang Y, Eglen RM. Three-dimensional cell cultures in drug discovery and development. SLAS Discov. 2017;22:456–472. doi: 10.1177/1087057117696795. PubMed DOI PMC

Verghese ET, Drury R, Green CA, Holliday DL, Lu X, Nash C, Speirs V, Thorne JL, Thygesen HH, Zougman A, Hull MA, Hanby AM, Hughes TA. MiR-26b is down-regulated in carcinoma-associated fibroblasts from ER-positive breast cancers leading to enhanced cell migration and invasion. J Pathol. 2013;231:388–399. doi: 10.1002/path.4248. PubMed DOI PMC

Collins T, Pyne E, Christensen M, Iles A, Pamme N, Pires IM. Spheroid-on-chip microfluidic technology for the evaluation of the impact of continuous flow on metastatic potential in cancer models in vitro. Biomicrofluidics. 2021;15:044103. doi: 10.1063/5.0061373. PubMed DOI PMC

Choi JW, Lee SY, Lee DW. A cancer spheroid array chip for selecting effective drug. Micromachines (Basel) 2019 doi: 10.3390/mi10100688. PubMed DOI PMC

Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science. 2010;328:1662–1668. doi: 10.1126/science.1188302. PubMed DOI PMC

Xu Z, Li E, Guo Z, Yu R, Hao H, Xu Y, Sun Z, Li X, Lyu J, Wang Q. Design and construction of a multi-organ microfluidic chip mimicking the in vivo microenvironment of lung cancer metastasis. ACS Appl Mater Interfaces. 2016;8:25840–25847. doi: 10.1021/acsami.6b08746. PubMed DOI

Derda R, Laromaine A, Mammoto A, Tang SK, Mammoto T, Ingber DE, Whitesides GM. Paper-supported 3D cell culture for tissue-based bioassays. Proc Natl Acad Sci U S A. 2009;106:18457–18462. doi: 10.1073/pnas.0910666106. PubMed DOI PMC

Derda R, Tang SK, Laromaine A, Mosadegh B, Hong E, Mwangi M, Mammoto A, Ingber DE, Whitesides GM. Multizone paper platform for 3D cell cultures. PLoS ONE. 2011;6:e18940. doi: 10.1371/journal.pone.0018940. PubMed DOI PMC

Hu LF, Yang X, Lan HR, Fang XL, Chen XY, Jin KT. Preclinical tumor organoid models in personalized cancer therapy: not everyone fits the mold. Exp Cell Res. 2021;408:112858. doi: 10.1016/j.yexcr.2021.112858. PubMed DOI

Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T, Sato T. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med. 2015;21:256–262. doi: 10.1038/nm.3802. PubMed DOI

Gao D, Chen Y. Organoid development in cancer genome discovery. Curr Opin Genet Dev. 2015;30:42–48. doi: 10.1016/j.gde.2015.02.007. PubMed DOI PMC

Pauli C, Hopkins BD, Prandi D, Shaw R, Fedrizzi T, Sboner A, Sailer V, Augello M, Puca L, Rosati R, McNary TJ, Churakova Y, Cheung C, Triscott J, Pisapia D, Rao R, Mosquera JM, Robinson B, Faltas BM, Emerling BE, Gadi VK, Bernard B, Elemento O, Beltran H, Demichelis F, Kemp CJ, Grandori C, Cantley LC, Rubin MA. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 2017;7:462–477. doi: 10.1158/2159-8290.CD-16-1154. PubMed DOI PMC

van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, van Houdt W, van Gorp J, Taylor-Weiner A, Kester L, McLaren-Douglas A, Blokker J, Jaksani S, Bartfeld S, Volckman R, van Sluis P, Li VS, Seepo S, Sekhar Pedamallu C, Cibulskis K, Carter SL, McKenna A, Lawrence MS, Lichtenstein L, Stewart C, Koster J, Versteeg R, van Oudenaarden A, Saez-Rodriguez J, Vries RG, Getz G, Wessels L, Stratton MR, McDermott U, Meyerson M, Garnett MJ, Clevers H. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161:933–945. doi: 10.1016/j.cell.2015.03.053. PubMed DOI PMC

Weeber F, van de Wetering M, Hoogstraat M, Dijkstra KK, Krijgsman O, Kuilman T, Gadellaa-van Hooijdonk CG, van der Velden DL, Peeper DS, Cuppen EP, Vries RG, Clevers H, Voest EE. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc Natl Acad Sci U S A. 2015;112:13308–13311. doi: 10.1073/pnas.1516689112. PubMed DOI PMC

Fujii M, Matano M, Toshimitsu K, Takano A, Mikami Y, Nishikori S, Sugimoto S, Sato T. Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition. Cell Stem Cell. 2018;23(787–793):e6. PubMed

Yuki K, Cheng N, Nakano M, Kuo CJ. Organoid models of tumor immunology. Trends Immunol. 2020;41:652–664. doi: 10.1016/j.it.2020.06.010. PubMed DOI PMC

Gunti S, Hoke ATK, Vu KP, London NR. Organoid and spheroid tumor models: techniques and applications. Cancers (Basel) 2021 doi: 10.3390/cancers13040874. PubMed DOI PMC

Ootani A, Li X, Sangiorgi E, Ho QT, Ueno H, Toda S, Sugihara H, Fujimoto K, Weissman IL, Capecchi MR, Kuo CJ. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med. 2009;15:701–706. doi: 10.1038/nm.1951. PubMed DOI PMC

Brennan MD, Rexius-Hall ML, Elgass LJ, Eddington DT. Oxygen control with microfluidics. Lab Chip. 2014;14:4305–4318. doi: 10.1039/C4LC00853G. PubMed DOI

Verissimo CS, Overmeer RM, Ponsioen B, Drost J, Mertens S, Verlaan-Klink I, Gerwen BV, van der Ven M, Wetering MV, Egan DA, Bernards R, Clevers H, Bos JL, Snippert HJ. Targeting mutant RAS in patient-derived colorectal cancer organoids by combinatorial drug screening. Elife. 2016 doi: 10.7554/eLife.18489. PubMed DOI PMC

Roper J, Tammela T, Cetinbas NM, Akkad A, Roghanian A, Rickelt S, Almeqdadi M, Wu K, Oberli MA, Sanchez-Rivera FJ, Park YK, Liang X, Eng G, Taylor MS, Azimi R, Kedrin D, Neupane R, Beyaz S, Sicinska ET, Suarez Y, Yoo J, Chen L, Zukerberg L, Katajisto P, Deshpande V, Bass AJ, Tsichlis PN, Lees J, Langer R, Hynes RO, Chen J, Bhutkar A, Jacks T, Yilmaz OH. In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat Biotechnol. 2017;35:569–576. doi: 10.1038/nbt.3836. PubMed DOI PMC

Weeber F, Ooft SN, Dijkstra KK, Voest EE. Tumor organoids as a pre-clinical cancer model for drug discovery. Cell Chem Biol. 2017;24:1092–1100. doi: 10.1016/j.chembiol.2017.06.012. PubMed DOI

Astashkina A, Grainger DW. Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments. Adv Drug Deliv Rev. 2014;69–70:1–18. doi: 10.1016/j.addr.2014.02.008. PubMed DOI

Skardal A, Devarasetty M, Rodman C, Atala A, Soker S. Liver-tumor hybrid organoids for modeling tumor growth and drug response in vitro. Ann Biomed Eng. 2015;43:2361–2373. doi: 10.1007/s10439-015-1298-3. PubMed DOI PMC

Dhandayuthapani B, Sakthi Kumar D. Biomaterials for biomedical applications. In: Biomedical Applications of Polymeric Materials and Composites. 2016; pp. 1–20. 10.1002/9783527690916.ch1

Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev. 2007;59:207–233. doi: 10.1016/j.addr.2007.03.012. PubMed DOI

Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol. 1998;16:224–230. doi: 10.1016/S0167-7799(98)01191-3. PubMed DOI

Afewerki S, Sheikhi A, Kannan S, Ahadian S, Khademhosseini A. Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics. Bioeng Transl Med. 2019;4:96–115. doi: 10.1002/btm2.10124. PubMed DOI PMC

Liu W, Song J, Du X, Zhou Y, Li Y, Li R, Lyu L, He Y, Hao J, Ben J, Wang W, Shi H, Wang Q. AKR1B10 (Aldo-keto reductase family 1 B10) promotes brain metastasis of lung cancer cells in a multi-organ microfluidic chip model. Acta Biomater. 2019;91:195–208. doi: 10.1016/j.actbio.2019.04.053. PubMed DOI

Artemenko Y, Swaney KF, Devreotes PN. Assessment of development and chemotaxis in Dictyostelium discoideum mutants. Methods Mol Biol. 2011;769:287–309. doi: 10.1007/978-1-61779-207-6_20. PubMed DOI PMC

Wong MC, Martynovsky M, Schwarzbauer JE. Analysis of cell migration using Caenorhabditis elegans as a model system. Methods Mol Biol. 2011;769:233–247. doi: 10.1007/978-1-61779-207-6_16. PubMed DOI PMC

Stramer B, Wood W. Inflammation and wound healing in Drosophila. Methods Mol Biol. 2009;571:137–149. doi: 10.1007/978-1-60761-198-1_9. PubMed DOI

Xu T, Rubin GM. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development. 1993;117:1223–1237. doi: 10.1242/dev.117.4.1223. PubMed DOI

Elks PM, Loynes CA, Renshaw SA. Measuring inflammatory cell migration in the zebrafish. Methods Mol Biol. 2011;769:261–275. doi: 10.1007/978-1-61779-207-6_18. PubMed DOI

Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nat Rev Genet. 2007;8:353–367. doi: 10.1038/nrg2091. PubMed DOI

Box GM, Eccles SA. Simple experimental and spontaneous metastasis assays in mice. Methods Mol Biol. 2011;769:311–329. doi: 10.1007/978-1-61779-207-6_21. PubMed DOI

Lu J, Steeg PS, Price JE, Krishnamurthy S, Mani SA, Reuben J, Cristofanilli M, Dontu G, Bidaut L, Valero V, Hortobagyi GN, Yu D. Breast cancer metastasis: challenges and opportunities. Cancer Res. 2009;69:4951–4953. doi: 10.1158/0008-5472.CAN-09-0099. PubMed DOI

Talmadge JE. Models of metastasis in drug discovery. Methods Mol Biol. 2010;602:215–233. doi: 10.1007/978-1-60761-058-8_13. PubMed DOI

Roarty K, Echeverria GV. Laboratory models for investigating breast cancer therapy resistance and metastasis. Front Oncol. 2021;11:645698. doi: 10.3389/fonc.2021.645698. PubMed DOI PMC

Gomez-Cuadrado L, Tracey N, Ma R, Qian B, Brunton VG. Mouse models of metastasis: progress and prospects. Dis Model Mech. 2017;10:1061–1074. doi: 10.1242/dmm.030403. PubMed DOI PMC

Fidler IJ. Selection of successive tumour lines for metastasis. Nat New Biol. 1973;242:148–149. doi: 10.1038/newbio242148a0. PubMed DOI

Puchalapalli M, Zeng X, Mu L, Anderson A, Hix Glickman L, Zhang M, Sayyad MR, Mosticone Wangensteen S, Clevenger CV, Koblinski JE. NSG mice provide a better spontaneous model of breast cancer metastasis than athymic (Nude) mice. PLoS ONE. 2016;11:e0163521. doi: 10.1371/journal.pone.0163521. PubMed DOI PMC

Bankert RB, Balu-Iyer SV, Odunsi K, Shultz LD, Kelleher RJ, Jr, Barnas JL, Simpson-Abelson M, Parsons R, Yokota SJ. Humanized mouse model of ovarian cancer recapitulates patient solid tumor progression, ascites formation, and metastasis. PLoS ONE. 2011;6:e24420. doi: 10.1371/journal.pone.0024420. PubMed DOI PMC

Cassidy JW, Caldas C, Bruna A. Maintaining tumor heterogeneity in patient-derived tumor xenografts. Cancer Res. 2015;75:2963–2968. doi: 10.1158/0008-5472.CAN-15-0727. PubMed DOI PMC

Kuperwasser C, Dessain S, Bierbaum BE, Garnet D, Sperandio K, Gauvin GP, Naber SP, Weinberg RA, Rosenblatt M. A mouse model of human breast cancer metastasis to human bone. Cancer Res. 2005;65:6130–6138. doi: 10.1158/0008-5472.CAN-04-1408. PubMed DOI

Morton JJ, Bird G, Refaeli Y, Jimeno A. Humanized mouse xenograft models: narrowing the tumor-microenvironment gap. Cancer Res. 2016;76:6153–6158. doi: 10.1158/0008-5472.CAN-16-1260. PubMed DOI PMC

Day CP, Merlino G, Van Dyke T. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell. 2015;163:39–53. doi: 10.1016/j.cell.2015.08.068. PubMed DOI PMC

Giacobbe A, Abate-Shen C. Modeling metastasis in mice: a closer look. Trends Cancer. 2021;7:916–929. doi: 10.1016/j.trecan.2021.06.010. PubMed DOI PMC

Khanna C, Hunter K. Modeling metastasis in vivo. Carcinogenesis. 2005;26:513–523. doi: 10.1093/carcin/bgh261. PubMed DOI

Kersten K, de Visser KE, van Miltenburg MH, Jonkers J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med. 2017;9:137–153. doi: 10.15252/emmm.201606857. PubMed DOI PMC

Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS, Verstegen NJM, Ciampricotti M, Hawinkels L, Jonkers J, de Visser KE. IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature. 2015;522:345–348. doi: 10.1038/nature14282. PubMed DOI PMC

Doornebal CW, Klarenbeek S, Braumuller TM, Klijn CN, Ciampricotti M, Hau CS, Hollmann MW, Jonkers J, de Visser KE. A preclinical mouse model of invasive lobular breast cancer metastasis. Cancer Res. 2013;73:353–363. doi: 10.1158/0008-5472.CAN-11-4208. PubMed DOI

Kim HS, Kim HJ, Lee MR, Han I. EMMPRIN expression is associated with metastatic progression in osteosarcoma. BMC Cancer. 2021;21:1059. doi: 10.1186/s12885-021-08774-9. PubMed DOI PMC

Luo S, Wang H, Bai L, Chen Y, Chen S, Gao K, Wang H, Wu S, Song H, Ma K, Liu M, Yao F, Fang Y, Xiao Q. Activation of TMEM16A Ca(2+)-activated Cl(−) channels by ROCK1/moesin promotes breast cancer metastasis. J Adv Res. 2021;33:253–264. doi: 10.1016/j.jare.2021.03.005. PubMed DOI PMC

Lu ZH, Kaliberov S, Sohn RE, Kaliberova L, Du Y, Prior JL, Leib DJ, Chauchereau A, Sehn JK, Curiel DT, Arbeit JM. A new model of multi-visceral and bone metastatic prostate cancer with perivascular niche targeting by a novel endothelial specific adenoviral vector. Oncotarget. 2017;8:12272–12289. doi: 10.18632/oncotarget.14699. PubMed DOI PMC

Melo KP, Makela AV, Knier NN, Hamilton AM, Foster PJ. Magnetic microspheres can be used for magnetic particle imaging of cancer cells arrested in the mouse brain. Magn Reson Med. 2022;87:312–322. doi: 10.1002/mrm.28987. PubMed DOI

Tanaka M, Dykes SS, Siemann DW. Inhibition of the Axl pathway impairs breast and prostate cancer metastasis to the bones and bone remodeling. Clin Exp Metastasis. 2021;38:321–335. doi: 10.1007/s10585-021-10093-z. PubMed DOI PMC

Paschall AV, Liu K. An orthotopic mouse model of spontaneous breast cancer metastasis. J Vis Exp. 2016 doi: 10.3791/54040. PubMed DOI PMC

Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC, Li P, Li M, Wang X, Zhang C, Wang H, Ellis K, Cheerathodi M, McCarty JH, Palmieri D, Saunus J, Lakhani S, Huang S, Sahin AA, Aldape KD, Steeg PS, Yu D. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015;527:100–104. doi: 10.1038/nature15376. PubMed DOI PMC

Zhang W, Bado IL, Hu J, Wan YW, Wu L, Wang H, Gao Y, Jeong HH, Xu Z, Hao X, Lege BM, Al-Ouran R, Li L, Li J, Yu L, Singh S, Lo HC, Niu M, Liu J, Jiang W, Li Y, Wong STC, Cheng C, Liu Z, Zhang XH. The bone microenvironment invigorates metastatic seeds for further dissemination. Cell. 2021;184(2471–2486):e20. PubMed PMC

Fidler IJ, Hart IR. Biological diversity in metastatic neoplasms: origins and implications. Science. 1982;217:998–1003. doi: 10.1126/science.7112116. PubMed DOI

Murugaesu N, Iravani M, van Weverwijk A, Ivetic A, Johnson DA, Antonopoulos A, Fearns A, Jamal-Hanjani M, Sims D, Fenwick K, Mitsopoulos C, Gao Q, Orr N, Zvelebil M, Haslam SM, Dell A, Yarwood H, Lord CJ, Ashworth A, Isacke CM. An in vivo functional screen identifies ST6GalNAc2 sialyltransferase as a breast cancer metastasis suppressor. Cancer Discov. 2014;4:304–317. doi: 10.1158/2159-8290.CD-13-0287. PubMed DOI

van der Weyden L, Arends MJ, Campbell AD, Bald T, Wardle-Jones H, Griggs N, Velasco-Herrera MD, Tuting T, Sansom OJ, Karp NA, Clare S, Gleeson D, Ryder E, Galli A, Tuck E, Cambridge EL, Voet T, Macaulay IC, Wong K, Sanger Mouse Genetics P, Spiegel S, Speak AO, Adams DJ. Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature. 2017;541:233–236. doi: 10.1038/nature20792. PubMed DOI PMC

Borowsky AD, Namba R, Young LJ, Hunter KW, Hodgson JG, Tepper CG, McGoldrick ET, Muller WJ, Cardiff RD, Gregg JP. Syngeneic mouse mammary carcinoma cell lines: two closely related cell lines with divergent metastatic behavior. Clin Exp Metastasis. 2005;22:47–59. doi: 10.1007/s10585-005-2908-5. PubMed DOI

Jung J, Lee CH, Seol HS, Choi YS, Kim E, Lee EJ, Rhee JK, Singh SR, Jun ES, Han B, Hong SM, Kim SC, Chang S. Generation and molecular characterization of pancreatic cancer patient-derived xenografts reveals their heterologous nature. Oncotarget. 2016;7:62533–62546. doi: 10.18632/oncotarget.11530. PubMed DOI PMC

Jung J, Seol HS, Chang S. The generation and application of patient-derived xenograft model for cancer research. Cancer Res Treat. 2018;50:1–10. doi: 10.4143/crt.2017.307. PubMed DOI PMC

Sheth RA, Perkons N, Dondossola E, Subudhi SK, Gade TP, Tam AL. Patient-derived xenograft tumor models: overview and relevance to IR. J Vasc Interv Radiol. 2018;29(880–882):e1. PubMed

Lee YC, Lin SC, Yu G, Zhu M, Song JH, Rivera K, Pappin DJ, Logothetis CJ, Panaretakis T, Wang G, Yu-Lee LY, Lin SH. Prostate tumor-induced stromal reprogramming generates Tenascin C that promotes prostate cancer metastasis through YAP/TAZ inhibition. Oncogene. 2021;24:102388. PubMed PMC

DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, Factor R, Matsen C, Milash BA, Nelson E, Neumayer L, Randall RL, Stijleman IJ, Welm BE, Welm AL. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011;17:1514–1520. doi: 10.1038/nm.2454. PubMed DOI PMC

Gills J, Moret R, Zhang X, Nelson J, Maresh G, Hellmers L, Canter D, Hudson M, Halat S, Matrana M, Marino MP, Reiser J, Shuh M, Laborde E, Latsis M, Talwar S, Bardot S, Li L. A patient-derived orthotopic xenograft model enabling human high-grade urothelial cell carcinoma of the bladder tumor implantation, growth, angiogenesis, and metastasis. Oncotarget. 2018;9:32718–32729. doi: 10.18632/oncotarget.26024. PubMed DOI PMC

Criver. Patient-derived xenografts—PDX models. Charles River Laboratories International, Inc. 2021. https://www.criver.com/products-services/discovery-services/pharmacology-studies/oncology-immuno-oncology-studies/oncology-study-models/patient-derived-xenografts-pdx-models?region=3696. Accessed 15 Dec 2021.

JAX. Patient-derived xenograft (PDX) models. The Jackson Laboratory. 2021. https://www.jax.org/jax-mice-and-services/in-vivo-pharmacology/oncology-services/pdx-tumors#. Accessed 15 Dec 2021

Hoffman RM. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nat Rev Cancer. 2015;15:451–452. doi: 10.1038/nrc3972. PubMed DOI

Solaimuthu B, Hayashi A, Khatib A, Shaul YD. Monitoring breast cancer growth and metastatic colony formation in mice using bioluminescence. J Vis Exp. 2021 doi: 10.3791/63060. PubMed DOI

OncoLinkTeam. All About Metastatic Cancer. 2021. https://www.oncolink.org/cancers/metastatic/all-about-metastatic-cancer. Accessed 5 Oct 2022.

Burley TA, Hesketh A, Bucca G, Kennedy E, Ladikou EE, Towler BP, Mitchell S, Smith CP, Fegan C, Johnston R, Pepper A, Pepper C. Elucidation of focal adhesion kinase as a modulator of migration and invasion and as a potential therapeutic target in chronic lymphocytic leukemia. Cancers (Basel) 2022 doi: 10.3390/cancers14071600. PubMed DOI PMC

Fertal SA, Zaidi SK, Stein JL, Stein GS, Heath JL. CXCR4 mediates enhanced cell migration in CALM-AF10 leukemia. Front Oncol. 2021;11:708915. doi: 10.3389/fonc.2021.708915. PubMed DOI PMC

Luo H, Sun R, Zheng Y, Huang J, Wang F, Long D, Wu Y. PIM3 promotes the proliferation and migration of acute myeloid leukemia cells. Onco Targets Ther. 2020;13:6897–6905. doi: 10.2147/OTT.S245578. PubMed DOI PMC

Macanas-Pirard P, Quezada T, Navarrete L, Broekhuizen R, Leisewitz A, Nervi B, Ramirez PA. The CCL2/CCR2 axis affects transmigration and proliferation but not resistance to chemotherapy of acute myeloid leukemia cells. PLoS ONE. 2017;12:e0168888. doi: 10.1371/journal.pone.0168888. PubMed DOI PMC

Voermans C, van Heese WP, de Jong I, Gerritsen WR, van Der Schoot CE. Migratory behavior of leukemic cells from acute myeloid leukemia patients. Leukemia. 2002;16:650–657. doi: 10.1038/sj.leu.2402431. PubMed DOI

Feng S, Cen J, Huang Y, Shen H, Yao L, Wang Y, Chen Z. Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins. PLoS ONE. 2011;6:e20599. doi: 10.1371/journal.pone.0020599. PubMed DOI PMC

Zippel Sabrina RA, Lee-Thedieck C. Migration Assay for Leukemic Cells in a 3D Matrix Toward a Chemoattractant. Springer; 2019. 10.1007/978-1-4939-9574-5_8. PubMed

Walsby E, Buggins A, Devereux S, Jones C, Pratt G, Brennan P, Fegan C, Pepper C. Development and characterization of a physiologically relevant model of lymphocyte migration in chronic lymphocytic leukemia. Blood. 2014;123:3607–3617. doi: 10.1182/blood-2013-12-544569. PubMed DOI

Skroblyn T, Joedicke JJ, Pfau M, Kruger K, Bourquin JP, Izraeli S, Eckert C, Hopken UE. CXCR4 mediates leukemic cell migration and survival in the testicular microenvironment. J Pathol. 2022;258:12–25. doi: 10.1002/path.5924. PubMed DOI

Madrazo E, Gonzalez-Novo R, Ortiz-Placin C, Garcia de Lacoba M, Gonzalez-Murillo A, Ramirez M, Redondo-Munoz J. Fast H3K9 methylation promoted by CXCL12 contributes to nuclear changes and invasiveness of T-acute lymphoblastic leukemia cells. Oncogene. 2022;41:1324–1336. doi: 10.1038/s41388-021-02168-8. PubMed DOI

Antoni D, Burckel H, Josset E, Noel G. Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci. 2015;16:5517–5527. doi: 10.3390/ijms16035517. PubMed DOI PMC

Jensen C, Teng Y. Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci. 2020;7:33. doi: 10.3389/fmolb.2020.00033. PubMed DOI PMC

Sherman H, Gitschier HJ, Rossi AE. A novel three-dimensional immune oncology model for high-throughput testing of tumoricidal activity. Front Immunol. 2018;9:857. doi: 10.3389/fimmu.2018.00857. PubMed DOI PMC

Dish CC. A look towards the future of 3D cell culture—a panel discussion. cell culture dish. 2020. https://cellculturedish.com/a-look-towards-the-future-of-3d-cell-culture-a-panel-discussion/. Accessed 5 Oct 2022.

Lee MW, Miljanic M, Triplett T, Ramirez C, Aung KL, Eckhardt SG, Capasso A. Current methods in translational cancer research. Cancer Metastasis Rev. 2021;40:7–30. doi: 10.1007/s10555-020-09931-5. PubMed DOI PMC

ThermoFisherScientific. Corning™ Costar™ Transwell™-COL Collagen-Coated PTFE Membrane Insert. Thermo Fisher Scientific. 2022. https://www.fishersci.dk/shop/products/costar-transwell-col-collagen-treated-coated-membrane-insert-6/10042501. Accessed 11 Apr 2021.

SelectScience. CIM-Plate 16 by Agilent Technologies. Select Science. 2022. https://www.selectscience.net/products/cim-plate-16/?prodID=203763. Accessed 11 Apr 2022.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...