• This record comes from PubMed

Photoactivatable Cyclometalated Ir(III) Compound Penetrates the Blood-Brain Barrier in 3D Spheroidal and Advanced 3D Organoid Models of Inherently Resistant and Aggressive Brain Tumors

. 2025 Jul 11 ; 8 (7) : 2033-2047. [epub] 20250630

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

The blood-brain barrier represents a significant challenge in delivering anticancer drugs for glioblastoma treatment. The study investigates the potential of a series of octahedral photoactivatable cyclometalated iridium complexes (Ir1-Ir10) with the general formula [Ir-(ttpy)-(C∧N)-Cl]-PF6 as photoactivated therapy candidates for the treatment of this aggressive tumor. These complexes, which include the terdentate ligand 4'-(p-tolyl)-2,2':6',2″-terpyridine (ttpy), and a C∧N ligand based on the deprotonated 2-arylbenzimidazole backbone, were tested on human glioblastoma using 2D cell cultures and 3D spheroidal models, including a fusion system comprising cerebral organoids from nonmalignant human-induced pluripotent stem cells and spheroids derived from malignant brain cells. The iridium complexes catalyze NADH photooxidation and photogenerate 1O2 and/or •OH under blue light irradiation. Blood-brain barrier penetration was assessed using various in vitro models. The complex Ir4, containing deprotonated methyl 1-butyl-2-phenylbenzimidazolecarboxylate, shows promise for targeted therapy of resistant brain tumors when photoactivated with blue light. Ir4 induces rapid and sustained ROS-mediated cytotoxicity and selectively accumulates in tumor tissue. This suggests its potential for fluorescently guided-PDT cooperative resection of glioblastoma. Notably, Ir4 significantly reduces glioblastoma growth even under dark conditions compared to conventional Temozolomide treatment without affecting healthy brain tissue.

See more in PubMed

Li S., Wang C., Chen J., Lan Y., Zhang W., Kang Z., Zheng Y., Zhang R., Yu J., Li W.. Signaling pathways in brain tumors and therapeutic interventions. Signal Transduction Targeted Ther. 2023;8:8. doi: 10.1038/s41392-022-01260-z. PubMed DOI PMC

Achrol A. S., Rennert R. C., Anders C., Soffietti R., Ahluwalia M. S., Nayak L., Peters S., Arvold N. D., Harsh G. R., Steeg P. S., Chang S. D.. Brain metastases. Nat. Rev. Dis. Primers. 2019;5:5. doi: 10.1038/s41572-018-0055-y. PubMed DOI

Jones D. T. W., Banito A., Grünewald T. G. P., Haber M., Jäger N., Kool M., Milde T., Molenaar J. J., Nabbi A., Pugh T. J., Schleiermacher G., Smith M. A., Westermann F., Pfister S. M.. Molecular characteristics and therapeutic vulnerabilities across paediatric solid tumours. Nat. Rev. Cancer. 2019;19:420–438. doi: 10.1038/s41568-019-0169-x. PubMed DOI

Lapointe S., Perry A., Butowski N. A.. Primary brain tumours in adults. Lancet. 2018;392:432–446. doi: 10.1016/S0140-6736(18)30990-5. PubMed DOI

Wu D., Chen Q., Chen X., Han F., Chen Z., Wang Y.. The blood–brain barrier: structure, regulation, and drug delivery. Signal Transduction Targeted Ther. 2023;8:217. doi: 10.1038/s41392-023-01481-w. PubMed DOI PMC

Zhang L., Zhao G., Dalrymple T., Husiev Y., Bronkhorst H., Forn-Cuní G., Lopes-Bastos B., Snaar-Jagalska E., Bonnet S.. Cyclic ruthenium-peptide prodrugs penetrate the blood–brain barrier and attack glioblastoma upon light activation in orthotopic zebrafish tumor models. ACS Cent. Sci. 2024;10:2294–2311. doi: 10.1021/acscentsci.4c01173. PubMed DOI PMC

Kasparkova J., Novohradsky V., Ruiz J., Brabec V.. Photoactivatable, mitochondria targeting dppz iridium­(III) complex selectively interacts and damages mitochondrial DNA in cancer cells. Chem. Biol. Interact. 2024;392:110921. doi: 10.1016/j.cbi.2024.110921. PubMed DOI

Kasparkova J., Hernández-García A., Kostrhunova H., Goicuría M., Novohradsky V., Bautista D., Markova L., Santana M. D., Brabec V., Ruiz J.. Novel 2-(5-arylthiophen-2-yl)-benzoazole cyclometalated iridium­(III) dppz complexes exhibit selective phototoxicity in cancer cells by lysosomal damage and oncosis. J. Med. Chem. 2024;67:691–708. doi: 10.1021/acs.jmedchem.3c01978. PubMed DOI PMC

Markova L., Novohradsky V., Kasparkova J., Ruiz J., Brabec V.. Dipyridophenazine iridium­(III) complex as a phototoxic cancer stem cell selective, mitochondria targeting agent. Chem. Biol. Interact. 2022;360:109955. doi: 10.1016/j.cbi.2022.109955. PubMed DOI

Vigueras G., Markova L., Novohradsky V., Marco A., Cutillas N., Kostrhunova H., Kasparkova J., Ruiz J., Brabec V.. A photoactivated Ir­(III) complex targets cancer stem cells and induces secretion of damage-associated molecular patterns in melanoma cells characteristic of immunogenic cell death. Inorg. Chem. Front. 2021;8:4696–4711. doi: 10.1039/D1QI00856K. DOI

Novohradsky V., Markova L., Kostrhunova H., Kasparkova J., Ruiz J., Marchán V., Brabec V.. A cyclometalated IrIII complex conjugated to a coumarin derivative is a potent photodynamic agent against prostate differentiated and tumorigenic cancer stem cells. Chem.Eur. J. 2021;27:8547–8556. doi: 10.1002/chem.202100568. PubMed DOI

Novohradsky V., Vigueras G., Pracharova J., Cutillas N., Janiak C., Kostrhunova H., Brabec V., Ruiz J., Kasparkova J.. Molecular superoxide radical photogeneration in cancer cells by dipyridophenazine iridium­(III) complexes. Inorg. Chem. Front. 2019;6:2500–2513. doi: 10.1039/C9QI00811J. DOI

Novohradsky V., Rovira A., Hally C., Galindo A., Vigueras G., Gandioso A., Svitelova M., Bresolí-Obach R., Kostrhunova H., Markova L., Kasparkova J., Nonell S., Ruiz J., Brabec V., Marchán V.. Towards novel photodynamic anticancer agents generating superoxide anion radicals: A cyclometalated IrIII complex conjugated to a far-red emitting coumarin. Angew. Chem., Int. Ed. 2019;58:6311–6315. doi: 10.1002/anie.201901268. PubMed DOI

Novohradsky V., Marco A., Markova L., Cutillas N., Ruiz J., Brabec V.. Ir­(III) compounds containing a terdentate ligand are potent inhibitors of proliferation and effective antimetastatic agents in aggressive triple-negative breast cancer cells. J. Med. Chem. 2023;66:9766–9783. doi: 10.1021/acs.jmedchem.3c00586. PubMed DOI PMC

Huang H., Banerjee S., Qiu K., Zhang P., Blacque O., Malcomson T., Paterson M. J., Clarkson G. J., Staniforth M., Stavros V. G., Gasser G., Chao H., Sadler P. J.. Targeted photoredox catalysis in cancer cells. Nat. Chem. 2019;11:1041–1048. doi: 10.1038/s41557-019-0328-4. PubMed DOI

Fan Z., Rong Y., Sadhukhan T., Liang S., Li W., Yuan Z., Zhu Z., Guo S., Ji S., Wang J., Kushwaha R., Banerjee S., Raghavachari K., Huang H.. Single-cell quantification of a highly biocompatible dinuclear iridium­(III) complex for photocatalytic cancer therapy. Angew. Chem., Int. Ed. 2022;61:e202202098. doi: 10.1002/anie.202202098. PubMed DOI

Titov D. V., Cracan V., Goodman R. P., Peng J., Grabarek Z., Mootha V. K.. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio. Science. 2016;352:231–235. doi: 10.1126/science.aad4017. PubMed DOI PMC

Li M., Gebremedhin K. H., Ma D., Pu Z., Xiong T., Xu Y., Kim J. S., Peng X.. Conditionally activatable photoredox catalysis in living systems. J. Am. Chem. Soc. 2022;144:163–173. doi: 10.1021/jacs.1c07372. PubMed DOI

Yadav A. K., Upadhyay A., Bera A., Kushwaha R., Mandal A. A., Acharjee S., Kunwar A., Banerjee S.. Anticancer profile of coumarin 6-based Ir­(III) photocatalysts under normoxia and hypoxia by ROS generation and NADH oxidation. Inorg. Chem. Front. 2024;11:5435–5448. doi: 10.1039/D4QI01601G. DOI

Zhuang Z., Dai J., Yu M., Li J., Shen P., Hu R., Lou X., Zhao Z., Tang B. Z.. Type I photosensitizers based on phosphindole oxide for photodynamic therapy: apoptosis and autophagy induced by endoplasmic reticulum stress. Chem. Sci. 2020;11:3405–3417. doi: 10.1039/D0SC00785D. PubMed DOI PMC

Allen M., Bjerke M., Edlund H., Nelander S., Westermark B.. Origin of the U87MG glioma cell line: Good news and bad news. Sci. Transl. Med. 2016;8:354re353. doi: 10.1126/scitranslmed.aaf6853. PubMed DOI

Wadman M.. FDA no longer needs to require animal tests before human drug trials. Science. 2023;379:127–128. doi: 10.1126/science.adg6276. PubMed DOI

Granada A. E., Jiménez A., Stewart-Ornstein J., Blüthgen N., Reber S., Jambhekar A., Lahav G.. The effects of proliferation status and cell cycle phase on the responses of single cells to chemotherapy. Mol. Biol. Cell. 2020;31:845–857. doi: 10.1091/mbc.E19-09-0515. PubMed DOI PMC

Perazzoli G., Prados J., Ortiz R., Caba O., Cabeza L., Berdasco M., Gónzalez B., Melguizo C.. Temozolomide resistance in glioblastoma cell lines: Implication of MGMT, MMR, p-glycoprotein and CD133 expression. PLoS One. 2015;10:e0140131. doi: 10.1371/journal.pone.0140131. PubMed DOI PMC

Lee S. Y.. Temozolomide resistance in glioblastoma multiforme. Genes Dis. 2016;3:198–210. doi: 10.1016/j.gendis.2016.04.007. PubMed DOI PMC

Jung E., Osswald M., Ratliff M., Dogan H., Xie R., Weil S., Hoffmann D. C., Kurz F. T., Kessler T., Heiland S., von Deimling A., Sahm F., Wick W., Winkler F.. Tumor cell plasticity, heterogeneity, and resistance in crucial microenvironmental niches in glioma. Nat. Commun. 2021;12:1014. doi: 10.1038/s41467-021-21117-3. PubMed DOI PMC

Achilli T.-M., McCalla S., Meyer J., Tripathi A., Morgan J. R.. Multilayer spheroids to quantify drug uptake and diffusion in 3D. Mol. Pharmaceutics. 2014;11:2071–2081. doi: 10.1021/mp500002y. PubMed DOI PMC

Patel N. R., Aryasomayajula B., Abouzeid A. H., Torchilin V. P.. Cancer cell spheroids for screening of chemotherapeutics and drug-delivery systems. Ther. Delivery. 2015;6:509–520. doi: 10.4155/tde.15.1. PubMed DOI

Popova A. A., Tronser T., Demir K., Haitz P., Kuodyte K., Starkuviene V., Wajda P., Levkin P. A.. Facile one step formation and screening of tumor spheroids using droplet-microarray platform. Small. 2019;15:1901299. doi: 10.1002/smll.201901299. PubMed DOI

Huang J., Zhang L., Wan D., Zhou L., Zheng S., Lin S., Qiao Y.. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduction Targeted Ther. 2021;6:153. doi: 10.1038/s41392-021-00544-0. PubMed DOI PMC

Zhou Z., Song J., Nie L., Chen X.. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev. 2016;45:6597–6626. doi: 10.1039/C6CS00271D. PubMed DOI PMC

Yue C., Zhang C., Alfranca G., Yang Y., Jiang X., Yang Y., Pan F., Fuente J. M. d. l., Cui D.. Near-infrared light triggered ROS-activated theranostic platform based on Ce6-CPT-UCNPs for simultaneous fluorescence imaging and chemo-photodynamic combined therapy. Theranostics. 2016;6:456–469. doi: 10.7150/thno.14101. PubMed DOI PMC

Raut, S. ; Bhalerao, A. ; Noorani, B. ; Cucullo, L. . In Vitro Models of the Blood–Brain Barrier. In The Blood-Brain Barrier: Methods and Protocols; Stone, N. , Ed.; Springer US, 2022; pp 25–49 10.1007/978-1-0716-2289-6_2. PubMed DOI

Pérez-López A., Torres-Suárez A. I., Martín-Sabroso C., Aparicio-Blanco J.. An overview of in vitro 3D models of the blood-brain barrier as a tool to predict the in vivo permeability of nanomedicines. Adv. Drug Delivery Rev. 2023;196:114816. doi: 10.1016/j.addr.2023.114816. PubMed DOI

Hinkel S., Mattern K., Dietzel A., Reichl S., Müller-Goymann C. C.. Parametric investigation of static and dynamic cell culture conditions and their impact on hCMEC/D3 barrier properties. Int. J. Pharm. 2019;566:434–444. doi: 10.1016/j.ijpharm.2019.05.074. PubMed DOI

Qi D., Lin H., Hu B., Wei Y.. A review on in vitro model of the blood-brain barrier (BBB) based on hCMEC/D3 cells. J. Controlled Release. 2023;358:78–97. doi: 10.1016/j.jconrel.2023.04.020. PubMed DOI

Jagtiani E., Yeolekar M., Naik S., Patravale V.. In vitro blood brain barrier models: An overview. J. Controlled Release. 2022;343:13–30. doi: 10.1016/j.jconrel.2022.01.011. PubMed DOI

Vu K., Weksler B., Romero I., Couraud P.-O., Gelli A.. Immortalized human brain endothelial cell line HCMEC/D3 as a model of the blood-brain barrier facilitates in vitro studies of central nervous system infection by Cryptococcus neoformans . Eukaryotic Cell. 2009;8:1803–1807. doi: 10.1128/EC.00240-09. PubMed DOI PMC

Helms H. C., Abbott N. J., Burek M., Cecchelli R., Couraud P.-O., Deli M. A., Förster C., Galla H. J., Romero I. A., Shusta E. V.. et al. In vitro models of the blood–brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J. Cereb. Blood Flow Metab. 2016;36:862–890. doi: 10.1177/0271678X16630991. PubMed DOI PMC

Brown T. D., Habibi N., Wu D., Lahann J., Mitragotri S.. Effect of nanoparticle composition, size, shape, and stiffness on penetration across the blood–brain barrier. ACS Biomater. Sci. Eng. 2020;6:4916–4928. doi: 10.1021/acsbiomaterials.0c00743. PubMed DOI

Janjua T. I., Cao Y., Ahmed-Cox A., Raza A., Moniruzzaman M., Akhter D. T., Fletcher N. L., Kavallaris M., Thurecht K. J., Popat A.. Efficient delivery of Temozolomide using ultrasmall large-pore silica nanoparticles for glioblastoma. J. Controlled Release. 2023;357:161–174. doi: 10.1016/j.jconrel.2023.03.040. PubMed DOI

Dewhirst M. W., Secomb T. W.. Transport of drugs from blood vessels to tumour tissue. Nat. Rev. Cancer. 2017;17:738–750. doi: 10.1038/nrc.2017.93. PubMed DOI PMC

Sawai T., Sakaguchi H., Thomas E., Takahashi J., Fujita M.. The ethics of cerebral organoid research: Being conscious of consciousness. Stem Cell Rep. 2019;13:440–447. doi: 10.1016/j.stemcr.2019.08.003. PubMed DOI PMC

Di Lullo E., Kriegstein A. R.. The use of brain organoids to investigate neural development and disease. Nat. Rev. Neurosci. 2017;18:573–584. doi: 10.1038/nrn.2017.107. PubMed DOI PMC

Xu C., Yuan X., Hou P., Li Z., Wang C., Fang C., Tan Y.. Development of glioblastoma organoids and their applications in personalized therapy. Cancer Biol. Med. 2023;20:353–368. doi: 10.20892/j.issn.2095-3941.2023.0061. PubMed DOI PMC

Stummer W., Novotny A., Stepp H., Goetz C., Bise K., Reulen H. J.. Fluorescence-guided resection of glioblastoma multiforme utilizing 5-ALA-induced porphyrins: a prospective study in 52 consecutive patients. J. Neurosurg. 2000;93:1003–1013. doi: 10.3171/jns.2000.93.6.1003. PubMed DOI

Eatz T. A., Eichberg D. G., Lu V. M., Di L., Komotar R. J., Ivan M. E.. Intraoperative 5-ALA fluorescence-guided resection of high-grade glioma leads to greater extent of resection with better outcomes: a systematic review. J. Neuro-Oncol. 2022;156:233–256. doi: 10.1007/s11060-021-03901-9. PubMed DOI

Akter F., Simon B., de Boer N. L., Redjal N., Wakimoto H., Shah K.. Pre-clinical tumor models of primary brain tumors: Challenges and opportunities. Biochim. Biophys. Acta, Rev. Cancer. 2021;1875:188458. doi: 10.1016/j.bbcan.2020.188458. PubMed DOI PMC

Pasupuleti V., Vora L., Prasad R., Nandakumar D. N., Khatri D. K.. Glioblastoma preclinical models: Strengths and weaknesses. Biochim. Biophys. Acta, Rev. Cancer. 2024;1879:189059. doi: 10.1016/j.bbcan.2023.189059. PubMed DOI

Bednarski P. J., Mackay F. S., Sadler P.. Photoactivatable platinum complexes. Anti-Cancer Agents Med. Chem. 2007;7:75–93. doi: 10.2174/187152007779314053. PubMed DOI

Monro S., Colón K. L., Yin H., Roque J., Konda P., Gujar S., Thummel R. P., Lilge L., Cameron C. G., McFarland S. A.. Transition metal complexes and photodynamic therapy from a tumor-centered approach: Challenges, opportunities, and highlights from the development of TLD1433. Chem. Rev. 2019;119:797–828. doi: 10.1021/acs.chemrev.8b00211. PubMed DOI PMC

Merlino G., Flaherty K., Acquavella N., Day C. P., Aplin A., Holmen S., Topalian S., Van Dyke T., Herlyn M.. Meeting report: The future of preclinical mouse models in melanoma treatment is now. Pigm. Cell Melanoma Res. 2013;26:E8–e14. doi: 10.1111/pcmr.12099. PubMed DOI PMC

Rangarajan A., Hong S. J., Gifford A., Weinberg R. A.. Species- and cell type-specific requirements for cellular transformation. Cancer Cell. 2004;6:171–183. doi: 10.1016/j.ccr.2004.07.009. PubMed DOI

Lentz C. S., Halls V., Hannam J. S., Niebel B., Strübing U., Mayer G., Hoerauf A., Famulok M., Pfarr K. M.. A selective inhibitor of heme biosynthesis in endosymbiotic bacteria elicits antifilarial activity in vitro. Chem. Biol. 2013;20:177–187. doi: 10.1016/j.chembiol.2012.11.009. PubMed DOI

Yellol J., Perez S. A., Buceta A., Yellol G., Donaire A., Szumlas P., Bednarski P. J., Makhloufi G., Janiak C., Espinosa A., Ruiz J.. Novel C,N-cyclometalated benzimidazole ruthenium­(II) and iridium­(III) complexes as antitumor and antiangiogenic agents: A structure-activity relationship study. J. Med. Chem. 2015;58:7310–7327. doi: 10.1021/acs.jmedchem.5b01194. PubMed DOI

Betti M., Genesio E., Marconi G., Sanna Coccone S., Wiedenau P.. A scalable route to the SMO receptor antagonist SEN826: Benzimidazole synthesis via enhanced in situ formation of the bisulfite–aldehyde complex. Org. Process Res. Dev. 2014;18:699–708. doi: 10.1021/op4002092. DOI

Eigenmann D. E., Xue G., Kim K. S., Moses A. V., Hamburger M., Oufir M.. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies. Fluids Barriers CNS. 2013;10:33. doi: 10.1186/2045-8118-10-33. PubMed DOI PMC

Lancaster M. A., Knoblich J. A.. Generation of cerebral organoids from human pluripotent stem cells. Nat. Protoc. 2014;9:2329–2340. doi: 10.1038/nprot.2014.158. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...