Novel 2-(5-Arylthiophen-2-yl)-benzoazole Cyclometalated Iridium(III) dppz Complexes Exhibit Selective Phototoxicity in Cancer Cells by Lysosomal Damage and Oncosis
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
38141031
PubMed Central
PMC10788912
DOI
10.1021/acs.jmedchem.3c01978
Knihovny.cz E-resources
- MeSH
- Benzothiazoles MeSH
- Photosensitizing Agents pharmacology therapeutic use MeSH
- Dermatitis, Phototoxic * drug therapy MeSH
- Iridium pharmacology MeSH
- Coordination Complexes * pharmacology MeSH
- Humans MeSH
- Lysosomes MeSH
- Cell Line, Tumor MeSH
- Neoplasms * drug therapy MeSH
- Antineoplastic Agents * pharmacology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Benzothiazoles MeSH
- Photosensitizing Agents MeSH
- Iridium MeSH
- Coordination Complexes * MeSH
- Antineoplastic Agents * MeSH
A second-generation series of biscyclometalated 2-(5-aryl-thienyl)-benzimidazole and -benzothiazole Ir(III) dppz complexes [Ir(C^N)2(dppz)]+, Ir1-Ir4, were rationally designed and synthesized, where the aryl group attached to the thienyl ring was p-CF3C6H4 or p-Me2NC6H4. These new Ir(III) complexes were assessed as photosensitizers to explore the structure-activity correlations for their potential use in biocompatible anticancer photodynamic therapy. When irradiated with blue light, the complexes exhibited high selective potency across several cancer cell lines predisposed to photodynamic therapy; the benzothiazole derivatives (Ir1 and Ir2) were the best performers, Ir2 being also activatable with green or red light. Notably, when irradiated, the complexes induced leakage of lysosomal content into the cytoplasm of HeLa cancer cells and induced oncosis-like cell death. The capability of the new Ir complexes to photoinduce cell death in 3D HeLa spheroids has also been demonstrated. The investigated Ir complexes can also catalytically photo-oxidate NADH and photogenerate 1O2 and/or •OH in cell-free media.
ACTI Universidad de Murcia Murcia E 30100 Spain
Czech Academy of Sciences Institute of Biophysics Kralovopolska 135 Brno CZ 61200 Czech Republic
See more in PubMed
Sung H.; Ferlay J.; Siegel R. L.; Laversanne M.; Soerjomataram I.; Jemal A.; Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 2021, 71, 209–249. 10.3322/caac.21660. PubMed DOI
Oun R.; Moussa Y. E.; Wheate N. J. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans. 2018, 47, 6645–6653. 10.1039/C8DT00838H. PubMed DOI
Thota S.; Rodrigues D. A.; Crans D. C.; Barreiro E. J. Ru(II) compounds: next-generation anticancer metallotherapeutics?. J. Med. Chem. 2018, 61, 5805–5821. 10.1021/acs.jmedchem.7b01689. PubMed DOI
Baier D.; Mendrina T.; Schoenhacker-Alte B.; Pirker C.; Mohr T.; Rusz M.; Regner B.; Schaier M.; Sgarioto N.; Raynal N. J.-M.; Nowikovsky K.; Schmidt W. M.; Heffeter P.; Meier-Menches S. M.; Koellensperger G.; Keppler B. K.; Berger W. The lipid metabolism as target and modulator of BOLD-100 anticancer activity: Crosstalk with histone acetylation. Adv. Sci. 2023, 10 (32), 230193910.1002/advs.202301939. PubMed DOI PMC
Zhou X. Q.; Wang P.; Ramu V.; Zhang L.; Jiang S.; Li X.; Abyar S.; Papadopoulou P.; Shao Y.; Bretin L.; Siegler M. A.; Buda F.; Kros A.; Fan J.; Peng X.; Sun W.; Bonnet S. In vivo metallophilic self-assembly of a light-activated anticancer drug. Nat. Chem. 2023, 15, 980–987. 10.1038/s41557-023-01199-w. PubMed DOI PMC
Deng Z.; Li H.; Chen S.; Wang N.; Liu G.; Liu D.; Ou W.; Xu F.; Wang X.; Lei D.; Lo P.-C.; Li Y. Y.; Lu J.; Yang M.; He M.-L.; Zhu G. Near-infrared-activated anticancer platinum(IV) complexes directly photooxidize biomolecules in an oxygen-independent manner. Nat. Chem. 2023, 15, 930–939. 10.1038/s41557-023-01242-w. PubMed DOI
Zhou H.; Tang D.; Yu Y.; Zhang L.; Wang B.; Karges J.; Xiao H. Theranostic imaging and multimodal photodynamic therapy and immunotherapy using the mTOR signaling pathway. Nat. Commun. 2023, 14, 5350.10.1038/s41467-023-40826-5. PubMed DOI PMC
Kuang S.; Wei F.; Karges J.; Ke L.; Xiong K.; Liao X.; Gasser G.; Ji L.; Chao H. Photodecaging of a mitochondria-localized iridium(III) endoperoxide complex for two-photon photoactivated therapy under hypoxia. J. Am. Chem. Soc. 2022, 144, 4091–4101. 10.1021/jacs.1c13137. PubMed DOI
Lee L. C.-C.; Lo K. K.-W. Luminescent and photofunctional transition metal complexes: From molecular design to diagnostic and therapeutic applications. J. Am. Chem. Soc. 2022, 144, 14420–14440. 10.1021/jacs.2c03437. PubMed DOI
Wei F.; Karges J.; Shen J.; Xie L.; Xiong K.; Zhang X.; Ji L.; Chao H. A mitochondria-localized oxygen self-sufficient two-photon nano-photosensitizer for ferroptosis-boosted photodynamic therapy under hypoxia. Nano Today 2022, 44, 10150910.1016/j.nantod.2022.101509. DOI
Wu Y.; Li S.; Chen Y.; He W.; Guo Z. Recent advances in noble metal complex based photodynamic therapy. Chem. Sci. 2022, 13, 5085–5106. 10.1039/D1SC05478C. PubMed DOI PMC
Su X.; Wang W.-J.; Cao Q.; Zhang H.; Liu B.; Ling Y.; Zhou X.; Mao Z.-W. A carbonic anhydrase IX (CAIX)-anchored rhenium(I) photosensitizer evokes pyroptosis for enhanced anti-tumor immunity. Angew. Chem., Int. Ed. 2022, 61, e20211580010.1002/anie.202115800. PubMed DOI
Imberti C.; Zhang P.; Huang H.; Sadler P. J. New designs for phototherapeutic transition metal complexes. Angew. Chem., Int. Ed. 2020, 59, 61–73. 10.1002/anie.201905171. PubMed DOI PMC
Echevarría I.; Zafon E.; Barrabés S.; Martínez M. Á.; Ramos-Gómez S.; Ortega N.; Manzano B. R.; Jalón F. A.; Quesada R.; Espino G.; Massaguer A. Rational design of mitochondria targeted thiabendazole-based Ir(III) biscyclometalated complexes for a multimodal photodynamic therapy of cancer. J. Inorg. Biochem. 2022, 231, 11179010.1016/j.jinorgbio.2022.111790. PubMed DOI
Mari C.; Pierroz V.; Ferrari S.; Gasser G. Combination of Ru(II) complexes and light: new frontiers in cancer therapy. Chem. Sci. 2015, 6, 2660–2686. 10.1039/C4SC03759F. PubMed DOI PMC
Roque J. A. III; Cole H. D.; Barrett P. C.; Lifshits L. M.; Hodges R. O.; Kim S.; Deep G.; Francés-Monerris A.; Alberto M. E.; Cameron C. G.; McFarland S. A. Intraligand excited states turn a ruthenium oligothiophene complex into a light-triggered ubertoxin with anticancer efects in extreme hypoxia. J. Am. Chem. Soc. 2022, 144, 8317–8336. 10.1021/jacs.2c02475. PubMed DOI PMC
Zhang Y.; Doan B.-T.; Gasser G. Metal-based photosensitizers as inducers of regulated cell death mechanisms. Chem. Rev. 2023, 123, 10135–10155. 10.1021/acs.chemrev.3c00161. PubMed DOI
Ortega-Forte E.; Rovira A.; López-Corrales M.; Hernández-García A.; Ballester F. J.; Izquierdo-García E.; Jordà-Redondo M.; Bosch M.; Nonell S.; Santana M. D.; Ruiz J.; Marchán V.; Gasser G. A near-infrared light-activatable Ru(ii)-coumarin photosensitizer active under hypoxic conditions. Chem. Sci. 2023, 14, 7170–7184. 10.1039/D3SC01844J. PubMed DOI PMC
Karges J.; Heinemann F.; Jakubaszek M.; Maschietto F.; Subecz C.; Dotou M.; Vinck R.; Blacque O.; Tharaud M.; Goud B.; Viñuelas Zahínos E.; Spingler B.; Ciofini I.; Gasser G. Rationally designed long-wavelength absorbing Ru(II) polypyridyl complexes as photosensitizers for photodynamic therapy. J. Am. Chem. Soc. 2020, 142, 6578–6587. 10.1021/jacs.9b13620. PubMed DOI
Monro S.; Colón K. L.; Yin H.; Roque J.; Konda P.; Gujar S.; Thummel R. P.; Lilge L.; Cameron C. G.; McFarland S. A. Transition metal complexes and photodynamic therapy from a tumor-centered approach: Challenges, opportunities, and highlights from the development of TLD1433. Chem. Rev. 2019, 119, 797–828. 10.1021/acs.chemrev.8b00211. PubMed DOI PMC
Shen J.; Rees T. W.; Ji L.; Chao H. Recent advances in ruthenium(II) and iridium(III) complexes containing nanosystems for cancer treatment and bioimaging. Coord. Chem. Rev. 2021, 443, 21401610.1016/j.ccr.2021.214016. DOI
Rovira A.; Ortega-Forte E.; Hally C.; Jordà-Redondo M.; Abad-Montero D.; Vigueras G.; Martínez J. I.; Bosch M.; Nonell S.; Ruiz J.; Marchán V. Exploring sructure–activity relationships in photodynamic therapy anticancer agents based on Ir(III)-COUPY conjugates. J. Med. Chem. 2023, 66, 7849–7867. 10.1021/acs.jmedchem.3c00189. PubMed DOI PMC
Tang S.-J.; Li Q.-F.; Wang M.-F.; Yang R.; Zeng L.-Z.; Li X.-L.; Wang R.-D.; Zhang H.; Ren X.; Zhang D.; Gao F. Bleeding the excited state energy to the utmost: Single-molecule iridium complexes for in vivo dual photodynamic and photothermal therapy by an infrared low-power laser. Adv. Healthcare Mater. 2023, 12 (28), 230122710.1002/adhm.202301227. PubMed DOI
Vigueras G.; Markova L.; Novohradsky V.; Marco A.; Cutillas N.; Kostrhunova H.; Kasparkova J.; Ruiz J.; Brabec V. A photoactivated Ir(III) complex targets cancer stem cells and induces secretion of damage-associated molecular patterns in melamoma cells characteristic of immunogenic cell death. Inorg. Chem. Front. 2021, 8, 4696–4711. 10.1039/D1QI00856K. DOI
Bevernaegie R.; Doix B.; Bastien E.; Diman A.; Decottignies A.; Feron O.; Elias B. Exploring the photo-toxicity of hypoxic active iridium(III)-based sensitizers in 3D tumor spheroids. J. Am. Chem. Soc. 2019, 141, 18486–18491. 10.1021/jacs.9b07723. PubMed DOI
Huang C.; Liang C.; Sadhukhan T.; Banerjee S.; Fan Z.; Li T.; Zhu Z.; Zhang P.; Raghavachari K.; Huang H. In-vitro and in-vivo photocatalytic cancer therapy with biocompatible iridium(III) photocatalysts. Angew. Chem., Int. Ed. 2021, 60, 9474–9479. 10.1002/anie.202015671. PubMed DOI
He L.; Li Y.; Tan C.-P.; Ye R.-R.; Chen M.-H.; Cao J.-J.; Ji L.-N.; Mao Z.-W. Cyclometalated iridium(III) complexes as lysosome-targeted photodynamic anticancer and real-time tracking agents. Chem. Sci. 2015, 6, 5409–5418. 10.1039/C5SC01955A. PubMed DOI PMC
Huang H.; Banerjee S.; Qiu K.; Zhang P.; Blacque O.; Malcomson T.; Paterson M. J.; Clarkson G. J.; Staniforth M.; Stavros V. G.; Gasser G.; Chao H.; Sadler P. J. Targeted photoredox catalysis in cancer cells. Nat. Chem. 2019, 11, 1041–1048. 10.1038/s41557-019-0328-4. PubMed DOI
Li M.; Xu Y.; Pu Z.; Xiong T.; Huang H.; Long S.; Son S.; Yu L.; Singh N.; Tong Y.; Sessler J. L.; Peng X.; Kim J. S. Photoredox catalysis may be a general mechanism in photodynamic therapy. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e221050411910.1073/pnas.2210504119. PubMed DOI PMC
Peng K.; Zheng Y.; Xia W.; Mao Z.-W. Organometallic anti-tumor agents: targeting from biomolecules to dynamic bioprocesses. Chem. Soc. Rev. 2023, 52, 2790–2832. 10.1039/D2CS00757F. PubMed DOI
Ortega-Forte E.; Hernández-García S.; Vigueras G.; Henarejos-Escudero P.; Cutillas N.; Ruiz J.; Gandía-Herrero F. Potent anticancer activity of a novel iridium metallodrug via oncosis. Cell. Mol. Life Sci. 2022, 79, 510.10.1007/s00018-022-04526-5. PubMed DOI PMC
Guan R.; Chen Y.; Zeng L.; Rees T. W.; Jin C.; Huang J.; Chen Z.-S.; Ji L.; Chao H. Oncosis-inducing cyclometalated iridium(III) complexes. Chem. Sci. 2018, 9, 5183–5190. 10.1039/C8SC01142G. PubMed DOI PMC
Novohradsky V.; Vigueras G.; Pracharova J.; Cutillas N.; Janiak C.; Kostrhunova H.; Brabec V.; Ruiz J.; Kasparkova J. Molecular superoxide radical photogeneration in cancer cells by dipyridophenazine iridium(III) complexes. Inorg. Chem. Front. 2019, 6, 2500–2513. 10.1039/C9QI00811J. DOI
Markova L.; Novohradsky V.; Kasparkova J.; Ruiz J.; Brabec V. Dipyridophenazine iridium(III) complex as a phototoxic cancer stem cell selective, mitochondria targeting agent. Chem. Biol. Interact. 2022, 360, 10995510.1016/j.cbi.2022.109955. PubMed DOI
Suárez-Moreno G. V.; Hernández-Romero D.; García-Barradas Ó.; Vázquez-Vera Ó.; Rosete-Luna S.; Cruz-Cruz C. A.; López-Monteon A.; Carrillo-Ahumada J.; Morales-Morales D.; Colorado-Peralta R. Second and third-row transition metal compounds containing benzimidazole ligands: An overview of their anticancer and antitumour activity. Coord. Chem. Rev. 2022, 472, 21479010.1016/j.ccr.2022.214790. DOI
Zajac M.; Hrobárik P.; Magdolen P.; Foltínová P.; Zahradník P. Donor−π-acceptor benzothiazole-derived dyes with an extended heteroaryl-containing conjugated system: synthesis, DFT study and antimicrobial activity. Tetrahedron 2008, 64, 10605–10618. 10.1016/j.tet.2008.08.064. DOI
Cao J. J.; Tan C. P.; Chen M. H.; Wu N.; Yao D. Y.; Liu X. G.; Ji L. N.; Mao Z. W. Targeting cancer cell metabolism with mitochondria-immobilized phosphorescent cyclometalated iridium(III) complexes. Chem. Sci. 2017, 8, 631–640. 10.1039/C6SC02901A. PubMed DOI PMC
Wang C.-t.; Chen J.; Xu J.; Wei F.; Yam C. Y.; Wong K. M.-C.; Sit P. H. L.; Teoh W. Y. Selective visible light reduction of carbon dioxide over iridium(III)-terpyridine photocatalysts. Materials Today Chem. 2021, 22, 10056310.1016/j.mtchem.2021.100563. DOI
Redrado M.; Miñana M.; Coogan M. P.; Gimeno M. C.; Fernández-Moreira V. Tunable emissive Ir(III) benzimidazole-quinoline hybrids as promising theranostic lead compounds. ChemMedChem 2022, 17, e20220024410.1002/cmdc.202200244. PubMed DOI PMC
Millán G.; Nieddu M.; López I. P.; Ezquerro C.; Berenguer J. R.; Larráyoz I. M.; Pichel J. G.; Lalinde E. A new family of luminescent iridium complexes: synthesis, optical, and cytotoxic studies. Dalton Trans. 2023, 52, 6360–6374. 10.1039/D3DT00028A. PubMed DOI
DiLuzio S.; Mdluli V.; Connell T. U.; Lewis J.; VanBenschoten V.; Bernhard S. High-throughput screening and automated data-driven analysis of the triplet photophysical properties of structurally diverse, heteroleptic iridium(III) complexes. J. Am. Chem. Soc. 2021, 143, 1179–1194. 10.1021/jacs.0c12290. PubMed DOI
Zhuang J.; Wang B.; Chen H.; Zhang K.; Li N.; Zhao N.; Tang B. Z. Efficient NIR-II type-I AIE photosensitizer for mitochondria-targeted photodynamic therapy through synergistic apoptosis–ferroptosis. ACS Nano 2023, 17, 9110–9125. 10.1021/acsnano.2c12319. PubMed DOI
Price M.; Reiners J. J.; Santiago A. M.; Kessel D. Monitoring singlet oxygen and hydroxyl radical formation with fluorescent probes during photodynamic therapy. Photochem. Photobiol. 2009, 85, 1177–1181. 10.1111/j.1751-1097.2009.00555.x. PubMed DOI PMC
Zhuang Z.; Dai J.; Yu M.; Li J.; Shen P.; Hu R.; Lou X.; Zhao Z.; Tang B. Z. Type I photosensitizers based on phosphindole oxide for photodynamic therapy: apoptosis and autophagy induced by endoplasmic reticulum stress. Chem. Sci. 2020, 11, 3405–3417. 10.1039/D0SC00785D. PubMed DOI PMC
Li Y.; Liu B.; Lu X.-R.; Li M.-F.; Ji L.-N.; Mao Z.-W. Cyclometalated iridium(III) N-heterocyclic carbene complexes as potential mitochondrial anticancer and photodynamic agents. Dalton Trans. 2017, 46, 11363–11371. 10.1039/C7DT01903C. PubMed DOI
Li Y.; Tan C.-P.; Zhang W.; He L.; Ji L.-N.; Mao Z.-W. Phosphorescent iridium(III)-bis-N-heterocyclic carbene complexes as mitochondria-targeted theranostic and photodynamic anticancer agents. Biomaterials 2015, 39, 95–104. 10.1016/j.biomaterials.2014.10.070. PubMed DOI
He L.; Zhang M.-F.; Pan Z.-Y.; Wang K.-N.; Zhao Z.-J.; Li Y.; Mao Z.-W. A mitochondria-targeted iridium(III)-based photoacid generator induces dual-mode photodynamic damage within cancer cells. Chem. Commun. 2019, 55, 10472–10475. 10.1039/C9CC04871E. PubMed DOI
van Engeland M.; Nieland L. J.; Ramaekers F. C.; Schutte B.; Reutelingsperger C. P. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 1998, 31, 1–9. 10.1002/(SICI)1097-0320(19980101)31:1<1::AID-CYTO1>3.0.CO;2-R. PubMed DOI
Lecoeur H.; Prévost M. C.; Gougeon M. L. Oncosis is associated with exposure of phosphatidylserine residues on the outside layer of the plasma membrane: a reconsideration of the specificity of the annexin V/propidium iodide assay. Cytometry 2001, 44, 65–72. 10.1002/1097-0320(20010501)44:1<65::AID-CYTO1083>3.0.CO;2-Q. PubMed DOI
Fink S. L.; Cookson B. T. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infection and immunity 2005, 73, 1907–1916. 10.1128/IAI.73.4.1907-1916.2005. PubMed DOI PMC
Trump B. F.; Berezesky I. K.; Chang S. H.; Phelps P. C. The pathways of cell death: oncosis, apoptosis, and necrosis. Toxicol. Pathol. 1997, 25, 82–88. 10.1177/019262339702500116. PubMed DOI
Weerasinghe P.; Buja L. M. Oncosis: An important non-apoptotic mode of cell death. Exp. Mol. Pathol. 2012, 93, 302–308. 10.1016/j.yexmp.2012.09.018. PubMed DOI
Majno G.; Joris I. Apoptosis, oncosis, and necrosis: An overview of cell death. Am. J. Pathol. 1995, 146, 3–15. PubMed PMC
Vossenkamper A.; Warnes G. Flow cytometry reveals the nature of oncotic cells. Int. J. Mol. Sci. 2019, 20, 4379.10.3390/ijms20184379. PubMed DOI PMC
Liu L. F.; Qian Z. H.; Qin Q.; Shi M.; Zhang H.; Tao X. M.; Zhu W. P. Effect of melatonin on oncosis of myocardial cells in the myocardial ischemia/reperfusion injury rat and the role of the mitochondrial permeability transition pore. Genet. Mol. Res. 2015, 14, 7481–7489. 10.4238/2015.July.3.24. PubMed DOI
Wang F.; Gómez-Sintes R.; Boya P. Lysosomal membrane permeabilization and cell death. Traffic (Copenhagen, Denmark) 2018, 19, 918–931. 10.1111/tra.12613. PubMed DOI
Jing Y.; Kobayashi M.; Vu H. T.; Kasahara A.; Chen X.; Pham L. T.; Kurayoshi K.; Tadokoro Y.; Ueno M.; Todo T.; Nakada M.; Hirao A. Therapeutic advantage of targeting lysosomal membrane integrity supported by lysophagy in malignant glioma. Cancer Sci. 2022, 113, 2716–2726. 10.1111/cas.15451. PubMed DOI PMC
Barral D. C.; Staiano L.; Guimas Almeida C.; Cutler D. F.; Eden E. R.; Futter C. E.; Galione A.; Marques A. R. A.; Medina D. L.; Napolitano G.; Settembre C.; Vieira O. V.; Aerts J. M. F. G.; Atakpa-Adaji P.; Bruno G.; Capuozzo A.; De Leonibus E.; Di Malta C.; Escrevente C.; Esposito A.; Grumati P.; Hall M. J.; Teodoro R. O.; Lopes S. S.; Luzio J. P.; Monfregola J.; Montefusco S.; Platt F. M.; Polishchuck R.; De Risi M.; Sambri I.; Soldati C.; Seabra M. C. Current methods to analyze lysosome morphology, positioning, motility and function. Traffic 2022, 23, 238–269. 10.1111/tra.12839. PubMed DOI PMC
Santos S. A. C. S.; Persechini P. M.; Henriques-Santos B. M.; Bello-Santos V. G.; Castro N. G.; Costa de Sousa J.; Genta F. A.; Santiago M. F.; Coutinho-Silva R.; Savio L. E. B.; Kurtenbach E. P2 × 7 receptor triggers lysosomal leakage through calcium mobilization in a mechanism dependent on pannexin-1 hemichannels. Front. Immunol. 2022, 13, 75210510.3389/fimmu.2022.752105. PubMed DOI PMC
Cao M.; Luo X.; Wu K.; He X. Targeting lysosomes in human disease: from basic research to clinical applications. Signal Transduction Targeted Ther. 2021, 6, 379.10.1038/s41392-021-00778-y. PubMed DOI PMC
Piao S.; Amaravadi R. K. Targeting the lysosome in cancer. Ann. N.Y. Acad. Sci. 2016, 1371, 45–54. 10.1111/nyas.12953. PubMed DOI PMC
Zhu S.-Y.; Yao R.-Q.; Li Y.-X.; Zhao P.-Y.; Ren C.; Du X.-H.; Yao Y.-M. Lysosomal quality control of cell fate: a novel therapeutic target for human diseases. Cell Death Dis. 2020, 11, 817.10.1038/s41419-020-03032-5. PubMed DOI PMC
Zanoni M.; Piccinini F.; Arienti C.; Zamagni A.; Santi S.; Polico R.; Bevilacqua A.; Tesei A. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci. Rep. 2016, 6, 19103.10.1038/srep19103. PubMed DOI PMC
Riedl A.; Schlederer M.; Pudelko K.; Stadler M.; Walter S.; Unterleuthner D.; Unger C.; Kramer N.; Hengstschläger M.; Kenner L.; Pfeiffer D.; Krupitza G.; Dolznig H. Comparison of cancer cells in 2D vs 3D culture reveals differences in AKT–mTOR–S6K signaling and drug responses. J. Cell Sci. 2017, 130, 203–218. 10.1242/jcs.188102. PubMed DOI
Wadman M. FDA no longer needs to require animal tests before human drug trials. Science 2023, 379, 127–128. 10.1126/science.adg6276. PubMed DOI
Wang H.; Xu T.; Yin D. Emerging trends in the methodology of environmental toxicology: 3D cell culture and its applications. Sci. Total Environ. 2023, 857, 15950110.1016/j.scitotenv.2022.159501. PubMed DOI
Kessel S.; Cribbes S.; Déry O.; Kuksin D.; Sincoff E.; Qiu J.; Chan L. L. High-throughput 3D tumor spheroid screening method for cancer drug discovery using celigo image iytometry. SLAS Technol. 2017, 22, 454–465. 10.1177/2211068216652846. PubMed DOI
Sirenko O.; Mitlo T.; Hesley J.; Luke S.; Owens W.; Cromwell E. F. High-content assays for characterizing the viability and morphology of 3D cancer spheroid cultures. Assay Drug Dev. Technol. 2015, 13, 402–414. 10.1089/adt.2015.655. PubMed DOI PMC
Costa S. P. G.; Ferreira J. A.; Kirsch G.; Oliveira-Campos A. M. F. New fluorescent 1,3-benzothiazoles by the reaction of heterocyclic aldehydes with ortho-aminobenzenethiol. J. Chem. Res. (S) 1997, 314–315. 10.1039/a702605f. DOI
Betti M.; Genesio E.; Marconi G.; Sanna Coccone S.; Wiedenau P. A scalable route to the SMO receptor antagonist SEN826: Benzimidazole synthesis via enhanced in situ formation of the bisulfite–aldehyde complex. Org. Process Res. Dev. 2014, 18, 699–708. 10.1021/op4002092. DOI
Skolia E.; Apostolopoulou M. K.; Nikitas N. F.; Kokotos C. G. Photochemical synthesis of benzimidazoles from damines and aldehydes. Eur. J. Org. Chem. 2021, 2021, 422–428. 10.1002/ejoc.202001357. DOI
Bruker . Bruker AXS Inc.: Madison, Wisconsin, USA, 2001.
Sheldrick G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3–8. 10.1107/S2053229614024218. PubMed DOI PMC
Spek A. L. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. C Struct. Chem. 2015, 71, 9–18. 10.1107/S2053229614024929. PubMed DOI
Novohradsky V.; Markova L.; Kostrhunova H.; Kasparkova J.; Ruiz J.; Marchán V.; Brabec V. A cyclometalated IrIII complex conjugated to a coumarin derivative is a potent photodynamic agent against prostate differentiated and tumorigenic cancer stem cells. Chem. - Eur. J. 2021, 27, 8547–8556. 10.1002/chem.202100568. PubMed DOI
Pracharova J.; Vigueras G.; Novohradsky V.; Cutillas N.; Janiak C.; Kostrhunova H.; Kasparkova J.; Ruiz J.; Brabec V. Exploring the effect of polypyridyl ligands on the anticancer activity of phosphorescent iridium(III) complexes: From proteosynthesis inhibitors to photodynamic therapy agents. Chem. - Eur. J. 2018, 24, 4607–4619. 10.1002/chem.201705362. PubMed DOI