TROP2 Represents a Negative Prognostic Factor in Colorectal Adenocarcinoma and Its Expression Is Associated with Features of Epithelial-Mesenchymal Transition and Invasiveness
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-26324S
Czech Science Foundation
EXCELES - LX22NPO5102
European Union
RVO 68378050
Czech Academy of Sciences
L200522051
Czech Academy of Sciences
CZ.02.1.01/0.0/0.0/16_019/0000785
Ministry of Education Youth and Sports
LM2018129 Czech-BioImaging
Ministry of Education Youth and Sports
Cooperatio Medical Diagnostics
Charles University
PubMed
36077674
PubMed Central
PMC9454662
DOI
10.3390/cancers14174137
PII: cancers14174137
Knihovny.cz E-zdroje
- Klíčová slova
- APC, EMT, TACSTD2, WNT/β-catenin signaling, colorectal cancer, expression profiling, organoids,
- Publikační typ
- časopisecké články MeSH
Trophoblastic cell surface antigen 2 (TROP2) is a membrane glycoprotein overexpressed in many solid tumors with a poor prognosis, including intestinal neoplasms. In our study, we show that TROP2 is expressed in preneoplastic lesions, and its expression is maintained in most colorectal cancers (CRC). High TROP2 positivity correlated with lymph node metastases and poor tumor differentiation and was a negative prognostic factor. To investigate the role of TROP2 in intestinal tumors, we analyzed two mouse models with conditional disruption of the adenomatous polyposis coli (Apc) tumor-suppressor gene, human adenocarcinoma samples, patient-derived organoids, and TROP2-deficient tumor cells. We found that Trop2 is produced early after Apc inactivation and its expression is associated with the transcription of genes involved in epithelial-mesenchymal transition, the regulation of migration, invasiveness, and extracellular matrix remodeling. A functionally similar group of genes was also enriched in TROP2-positive cells from human CRC samples. To decipher the driving mechanism of TROP2 expression, we analyzed its promoter. In human cells, this promoter was activated by β-catenin and additionally by the Yes1-associated transcriptional regulator (YAP). The regulation of TROP2 expression by active YAP was verified by YAP knockdown in CRC cells. Our results suggest a possible link between aberrantly activated Wnt/β-catenin signaling, YAP, and TROP2 expression.
Zobrazit více v PubMed
Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI
Pehalova L., Krejci D., Snajdrova L., Dusek L. Cancer incidence trends in the Czech Republic. Cancer Epidemiol. 2021;74:101975. doi: 10.1016/j.canep.2021.101975. PubMed DOI
Lipinski M., Parks D.R., Rouse R.V., Herzenberg L.A. Human trophoblast cell-surface antigens defined by monoclonal antibodies. Proc. Natl. Acad. Sci. USA. 1981;78:5147–5150. doi: 10.1073/pnas.78.8.5147. PubMed DOI PMC
Szala S., Froehlich M., Scollon M., Kasai Y., Steplewski Z., Koprowski H., Linnenbach A.J. Molecular cloning of cDNA for the carcinoma-associated antigen GA733-2. Proc. Natl. Acad. Sci. USA. 1990;87:3542–3546. doi: 10.1073/pnas.87.9.3542. PubMed DOI PMC
Linnenbach A.J., Wojcierowski J., Wu S.A., Pyrc J.J., Ross A.H., Dietzschold B., Speicher D., Koprowski H. Sequence investigation of the major gastrointestinal tumor-associated antigen gene family, GA733. Proc. Natl. Acad. Sci. USA. 1989;86:27–31. doi: 10.1073/pnas.86.1.27. PubMed DOI PMC
Fornaro M., Dell’Arciprete R., Stella M., Bucci C., Nutini M., Capri M.G., Alberti S. Cloning of the gene encoding Trop-2, a cell-surface glycoprotein expressed by human carcinomas. Int. J. Cancer. 1995;62:610–618. doi: 10.1002/ijc.2910620520. PubMed DOI
Basu A., Goldenberg D.M., Stein R. The epithelial/carcinoma antigen EGP-1, recognized by monoclonal antibody RS7-3G11, is phosphorylated on serine 303. Int. J. Cancer. 1995;62:472–479. doi: 10.1002/ijc.2910620419. PubMed DOI
Pavsic M., Ilc G., Vidmar T., Plavec J., Lenarcic B. The cytosolic tail of the tumor marker protein Trop2—A structural switch triggered by phosphorylation. Sci. Rep. 2015;5:10324. doi: 10.1038/srep10324. PubMed DOI PMC
Pavsic M. Trop2 Forms a Stable Dimer with Significant Structural Differences within the Membrane-Distal Region as Compared to EpCAM. Int. J. Mol. Sci. 2021;22:10640. doi: 10.3390/ijms221910640. PubMed DOI PMC
Stepan L.P., Trueblood E.S., Hale K., Babcook J., Borges L., Sutherland C.L. Expression of Trop2 cell surface glycoprotein in normal and tumor tissues: Potential implications as a cancer therapeutic target. J. Histochem. Cytochem. 2011;59:701–710. doi: 10.1369/0022155411410430. PubMed DOI PMC
Guerra E., Trerotola M., Aloisi A.L., Tripaldi R., Vacca G., La Sorda R., Lattanzio R., Piantelli M., Alberti S. The Trop-2 signalling network in cancer growth. Oncogene. 2013;32:1594–1600. doi: 10.1038/onc.2012.151. PubMed DOI
Nakatsukasa M., Kawasaki S., Yamasaki K., Fukuoka H., Matsuda A., Tsujikawa M., Tanioka H., Nagata-Takaoka M., Hamuro J., Kinoshita S. Tumor-associated calcium signal transducer 2 is required for the proper subcellular localization of claudin 1 and 7: Implications in the pathogenesis of gelatinous drop-like corneal dystrophy. Am. J. Pathol. 2010;177:1344–1355. doi: 10.2353/ajpath.2010.100149. PubMed DOI PMC
Goldstein A.S., Lawson D.A., Cheng D., Sun W., Garraway I.P., Witte O.N. Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proc. Natl. Acad. Sci. USA. 2008;105:20882–20887. doi: 10.1073/pnas.0811411106. PubMed DOI PMC
Stoyanova T., Goldstein A.S., Cai H., Drake J.M., Huang J., Witte O.N. Regulated proteolysis of Trop2 drives epithelial hyperplasia and stem cell self-renewal via beta-catenin signaling. Genes Dev. 2012;26:2271–2285. doi: 10.1101/gad.196451.112. PubMed DOI PMC
Kahounova Z., Remsik J., Fedr R., Bouchal J., Mickova A., Slabakova E., Bino L., Hampl A., Soucek K. Slug-expressing mouse prostate epithelial cells have increased stem cell potential. Stem Cell Res. 2020;46:101844. doi: 10.1016/j.scr.2020.101844. PubMed DOI
Crowell P.D., Fox J.J., Hashimoto T., Diaz J.A., Navarro H.I., Henry G.H., Feldmar B.A., Lowe M.G., Garcia A.J., Wu Y.E., et al. Expansion of Luminal Progenitor Cells in the Aging Mouse and Human Prostate. Cell Rep. 2019;28:1499–1510.e1496. doi: 10.1016/j.celrep.2019.07.007. PubMed DOI PMC
Trerotola M., Rathore S., Goel H.L., Li J., Alberti S., Piantelli M., Adams D., Jiang Z., Languino L.R. CD133, Trop-2 and alpha2beta1 integrin surface receptors as markers of putative human prostate cancer stem cells. Am. J. Transl. Res. 2010;2:135–144. PubMed PMC
Sun W., Wilhelmina Aalders T., Oosterwijk E. Identification of potential bladder progenitor cells in the trigone. Dev. Biol. 2014;393:84–92. doi: 10.1016/j.ydbio.2014.06.018. PubMed DOI
Liu Q., Li H., Wang Q., Zhang Y., Wang W., Dou S., Xiao W. Increased expression of TROP2 in airway basal cells potentially contributes to airway remodeling in chronic obstructive pulmonary disease. Respir. Res. 2016;17:159. doi: 10.1186/s12931-016-0463-z. PubMed DOI PMC
Aizarani N., Saviano A., Sagar, Mailly L., Durand S., Herman J.S., Pessaux P., Baumert T.F., Grun D. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature. 2019;572:199–204. doi: 10.1038/s41586-019-1373-2. PubMed DOI PMC
Wang Y., Chiang I.L., Ohara T.E., Fujii S., Cheng J., Muegge B.D., Ver Heul A., Han N.D., Lu Q., Xiong S., et al. Long-Term Culture Captures Injury-Repair Cycles of Colonic Stem Cells. Cell. 2019;179:1144–1159.e1115. doi: 10.1016/j.cell.2019.10.015. PubMed DOI PMC
Mustata R.C., Vasile G., Fernandez-Vallone V., Strollo S., Lefort A., Libert F., Monteyne D., Perez-Morga D., Vassart G., Garcia M.I. Identification of Lgr5-Independent Spheroid-Generating Progenitors of the Mouse Fetal Intestinal Epithelium. Cell Rep. 2013;5:421–432. doi: 10.1016/j.celrep.2013.09.005. PubMed DOI
McDougall A.R., Tolcos M., Hooper S.B., Cole T.J., Wallace M.J. Trop2: From development to disease. Dev. Dyn. 2015;244:99–109. doi: 10.1002/dvdy.24242. PubMed DOI
Goldenberg D.M., Stein R., Sharkey R.M. The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target. Oncotarget. 2018;9:28989–29006. doi: 10.18632/oncotarget.25615. PubMed DOI PMC
Trerotola M., Guerra E., Ali Z., Aloisi A.L., Ceci M., Simeone P., Acciarito A., Zanna P., Vacca G., D’Amore A., et al. Trop-2 cleavage by ADAM10 is an activator switch for cancer growth and metastasis. Neoplasia. 2021;23:415–428. doi: 10.1016/j.neo.2021.03.006. PubMed DOI PMC
Kamble P.R., Rane S., Breed A.A., Joseph S., Mahale S.D., Pathak B.R. Proteolytic cleavage of Trop2 at Arg87 is mediated by matriptase and regulated by Val194. FEBS Lett. 2020;594:3156–3169. doi: 10.1002/1873-3468.13899. PubMed DOI
Wu C.J., Lu M., Feng X., Nakato G., Udey M.C. Matriptase Cleaves EpCAM and TROP2 in Keratinocytes, Destabilizing Both Proteins and Associated Claudins. Cells. 2020;9:1027. doi: 10.3390/cells9041027. PubMed DOI PMC
Zhao W., Jia L., Kuai X., Tang Q., Huang X., Yang T., Qiu Z., Zhu J., Huang J., Huang W., et al. The role and molecular mechanism of Trop2 induced epithelial-mesenchymal transition through mediated beta-catenin in gastric cancer. Cancer Med. 2019;8:1135–1147. doi: 10.1002/cam4.1934. PubMed DOI PMC
Guerra E., Relli V., Ceci M., Tripaldi R., Simeone P., Aloisi A.L., Pantalone L., La Sorda R., Lattanzio R., Sacchetti A., et al. Trop-2, Na+/K+ ATPase, CD9, PKC alpha, cofilin assemble a membrane signaling super-complex that drives colorectal cancer growth and invasion. Oncogene. 2022;41:1795–1808. doi: 10.1038/s41388-022-02220-1. PubMed DOI
Bardia A., Mayer I.A., Vahdat L.T., Tolaney S.M., Isakoff S.J., Diamond J.R., O’Shaughnessy J., Moroose R.L., Santin A.D., Abramson V.G., et al. Sacituzumab Govitecan-hziy in Refractory Metastatic Triple-Negative Breast Cancer. N. Engl. J. Med. 2019;380:741–751. doi: 10.1056/NEJMoa1814213. PubMed DOI
Tagawa S.T., Balar A.V., Petrylak D.P., Kalebasty A.R., Loriot Y., Flechon A., Jain R.K., Agarwal N., Bupathi M., Barthelemy P., et al. TROPHY-U-01: A Phase II Open-Label Study of Sacituzumab Govitecan in Patients With Metastatic Urothelial Carcinoma Progressing After Platinum-Based Chemotherapy and Checkpoint Inhibitors. J. Clin. Oncol. 2021;39:2474–2485. doi: 10.1200/JCO.20.03489. PubMed DOI PMC
Kuai X., Jia L., Yang T., Huang X., Zhao W., Zhang M., Chen Y., Zhu J., Feng Z., Tang Q. Trop2 Promotes Multidrug Resistance by Regulating Notch1 Signaling Pathway in Gastric Cancer Cells. Med. Sci. Monit. 2020;26:e919566. doi: 10.12659/MSM.919566. PubMed DOI PMC
Wang X., Long M., Dong K., Lin F., Weng Y., Ouyang Y., Liu L., Wei J., Chen X., He T., et al. Chemotherapy agents-induced immunoresistance in lung cancer cells could be reversed by trop-2 inhibition in vitro and in vivo by interaction with MAPK signaling pathway. Cancer Biol. 2013;14:1123–1132. doi: 10.4161/cbt.26341. PubMed DOI PMC
Sun X., Jia L., Wang T., Zhang Y., Zhao W., Wang X., Chen H. Trop2 binding IGF2R induces gefitinib resistance in NSCLC by remodeling the tumor microenvironment. J. Cancer. 2021;12:5310–5319. doi: 10.7150/jca.57711. PubMed DOI PMC
Guerra E., Trerotola M., Tripaldi R., Aloisi A.L., Simeone P., Sacchetti A., Relli V., D’Amore A., La Sorda R., Lattanzio R., et al. Trop-2 Induces Tumor Growth Through AKT and Determines Sensitivity to AKT Inhibitors. Clin. Cancer Res. 2016;22:4197–4205. doi: 10.1158/1078-0432.CCR-15-1701. PubMed DOI
Sanchez-Diez M., Alegria-Aravena N., Lopez-Montes M., Quiroz-Troncoso J., Gonzalez-Martos R., Menendez-Rey A., Sanchez-Sanchez J.L., Pastor J.M., Ramirez-Castillejo C. Implication of Different Tumor Biomarkers in Drug Resistance and Invasiveness in Primary and Metastatic Colorectal Cancer Cell Lines. Biomedicines. 2022;10:1083. doi: 10.3390/biomedicines10051083. PubMed DOI PMC
Janeckova L., Kolar M., Svec J., Lanikova L., Pospichalova V., Baloghova N., Vojtechova M., Sloncova E., Strnad H., Korinek V. HIC1 Expression Distinguishes Intestinal Carcinomas Sensitive to Chemotherapy. Transl. Oncol. 2016;9:99–107. doi: 10.1016/j.tranon.2016.01.005. PubMed DOI PMC
Hrudka J., Fiserova H., Jelinkova K., Matej R., Waldauf P. Cytokeratin 7 expression as a predictor of an unfavorable prognosis in colorectal carcinoma. Sci. Rep. 2021;11:17863. doi: 10.1038/s41598-021-97480-4. PubMed DOI PMC
Kasparek P., Krausova M., Haneckova R., Kriz V., Zbodakova O., Korinek V., Sedlacek R. Efficient gene targeting of the Rosa26 locus in mouse zygotes using TALE nucleases. FEBS Lett. 2014;588:3982–3988. doi: 10.1016/j.febslet.2014.09.014. PubMed DOI
Rueden C.T., Schindelin J., Hiner M.C., DeZonia B.E., Walter A.E., Arena E.T., Eliceiri K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017;18:529. doi: 10.1186/s12859-017-1934-z. PubMed DOI PMC
Kuraguchi M., Wang X.P., Bronson R.T., Rothenberg R., Ohene-Baah N.Y., Lund J.J., Kucherlapati M., Maas R.L., Kucherlapati R. Adenomatous polyposis coli (APC) is required for normal development of skin and thymus. PLoS Genet. 2006;2:e146. doi: 10.1371/journal.pgen.0020146. PubMed DOI PMC
El Marjou F., Janssen K.P., Chang B.H.J., Li M., Hindie V., Chan L., Louvard D., Chambon P., Metzger D., Robine S. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis. 2004;39:186–193. doi: 10.1002/gene.20042. PubMed DOI
Su L.K., Kinzler K.W., Vogelstein B., Preisinger A.C., Moser A.R., Luongo C., Gould K.A., Dove W.F. Multiple Intestinal Neoplasia Caused by a Mutation in the Murine Homolog of the Apc Gene. Science. 1992;256:668–670. doi: 10.1126/science.1350108. PubMed DOI
Basak O., van de Born M., Korving J., Beumer J., van der Elst S., van Es J.H., Clevers H. Mapping early fate determination in Lgr5+ crypt stem cells using a novel Ki67-RFP allele. EMBO J. 2014;33:2057–2068. doi: 10.15252/embj.201488017. PubMed DOI PMC
Barker N., van Es J.H., Kuipers J., Kujala P., van den Born M., Cozijnsen M., Haegebarth A., Korving J., Begthel H., Peters P.J., et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–1007. doi: 10.1038/nature06196. PubMed DOI
Madisen L., Zwingman T.A., Sunkin S.M., Oh S.W., Zariwala H.A., Gu H., Ng L.L., Palmiter R.D., Hawrylycz M.J., Jones A.R., et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 2010;13:133–140. doi: 10.1038/nn.2467. PubMed DOI PMC
Horazna M., Janeckova L., Svec J., Babosova O., Hrckulak D., Vojtechova M., Galuskova K., Sloncova E., Kolar M., Strnad H., et al. Msx1 loss suppresses formation of the ectopic crypts developed in the Apc-deficient small intestinal epithelium (vol 9, 1629, 2019) Sci. Rep. 2019;9:20188. doi: 10.1038/s41598-019-55963-5. PubMed DOI PMC
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Lukas J., Mazna P., Valenta T., Doubravska L., Pospichalova V., Vojtechova M., Fafilek B., Ivanek R., Plachy J., Novak J., et al. Dazap2 modulates transcription driven by the Wnt effector TCF-4. Nucleic Acids Res. 2009;37:3007–3020. doi: 10.1093/nar/gkp179. PubMed DOI PMC
Sato T., van Es J.H., Snippert H.J., Stange D.E., Vries R.G., van den Born M., Barker N., Shroyer N.F., van de Wetering M., Clevers H. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature. 2011;469:415–418. doi: 10.1038/nature09637. PubMed DOI PMC
de Lau W., Barker N., Low T.Y., Koo B.K., Li V.S.W., Teunissen H., Kujala P., Haegebarth A., Peters P.J., van de Wetering M., et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature. 2011;476:293–297. doi: 10.1038/nature10337. PubMed DOI
Ootani A., Li X.N., Sangiorgi E., Ho Q.T., Ueno H., Toda S., Sugihara H., Fujimoto K., Weissman I.L., Capecchi M.R., et al. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat. Med. 2009;15:701–706. doi: 10.1038/nm.1951. PubMed DOI PMC
Ewels P.A., Peltzer A., Fillinger S., Patel H., Alneberg J., Wilm A., Garcia M.U., Di Tommaso P., Nahnsen S. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 2020;38:276–278. doi: 10.1038/s41587-020-0439-x. PubMed DOI
Kim D., Landmead B., Salzberg S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods. 2015;12:357–360. doi: 10.1038/nmeth.3317. PubMed DOI PMC
Liao Y., Smyth G.K., Shi W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI
Patro R., Duggal G., Love M.I., Irizarry R.A., Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods. 2017;14:417–419. doi: 10.1038/nmeth.4197. PubMed DOI PMC
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Gearing L.J., Cumming H.E., Chapman R., Finkel A.M., Woodhouse I.B., Luu K., Gould J.A., Forster S.C., Hertzog P.J. CiiiDER: A tool for predicting and analysing transcription factor binding sites. PLoS ONE. 2019;14:e0215495. doi: 10.1371/journal.pone.0215495. PubMed DOI PMC
Jolma A., Kivioja T., Toivonen J., Cheng L., Wei G.H., Enge M., Taipale M., Vaquerizas J.M., Yan J., Sillanpaa M.J., et al. Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. Genome Res. 2010;20:861–873. doi: 10.1101/gr.100552.109. PubMed DOI PMC
Veeman M.T., Slusarski D.C., Kaykas A., Louie S.H., Moon R.T. Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr. Biol. 2003;13:680–685. doi: 10.1016/S0960-9822(03)00240-9. PubMed DOI
Dupont S., Morsut L., Aragona M., Enzo E., Giulitti S., Cordenonsi M., Zanconato F., Le Digabel J., Forcato M., Bicciato S., et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474:179–183. doi: 10.1038/nature10137. PubMed DOI
Zhao B., Wei X., Li W., Udan R.S., Yang Q., Kim J., Xie J., Ikenoue T., Yu J., Li L., et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21:2747–2761. doi: 10.1101/gad.1602907. PubMed DOI PMC
Tumova L., Pombinho A.R., Vojtechova M., Stancikova J., Gradl D., Krausova M., Sloncova E., Horazna M., Kriz V., Machonova O., et al. Monensin Inhibits Canonical Wnt Signaling in Human Colorectal Cancer Cells and Suppresses Tumor Growth in Multiple Intestinal Neoplasia Mice. Mol. Cancer Ther. 2014;13:812–822. doi: 10.1158/1535-7163.MCT-13-0625. PubMed DOI
Xie Y.H., Chen Y.X., Fang J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther. 2020;5:22. doi: 10.1038/s41392-020-0116-z. PubMed DOI PMC
Pavone G., Motta L., Martorana F., Motta G., Vigneri P. A New Kid on the Block: Sacituzumab Govitecan for the Treatment of Breast Cancer and Other Solid Tumors. Molecules. 2021;26:7294. doi: 10.3390/molecules26237294. PubMed DOI PMC
Li Z.B., Rock J.B., Roth R., Lehman A., Marsh W.L., Suarez A., Frankel W.L. Dual Stain With SATB2 and CK20/Villin Is Useful to Distinguish Colorectal Carcinomas From Other Tumors. Am. J. Clin. Pathol. 2018;149:241–246. doi: 10.1093/ajcp/aqx160. PubMed DOI PMC
Schmitt M., Silva M., Konukiewitz B., Lang C.R.N., Steiger K., Halfter K., Engel J., Jank P., Pfarr N., Wilhelm D., et al. Loss of SATB2 Occurs More Frequently Than CDX2 Loss in Colorectal Carcinoma and Identifies Particularly Aggressive Cancers in High-Risk Subgroups. Cancers. 2021;13:6177. doi: 10.3390/cancers13246177. PubMed DOI PMC
Xie Z., Bailey A., Kuleshov M.V., Clarke D.J.B., Evangelista J.E., Jenkins S.L., Lachmann A., Wojciechowicz M.L., Kropiwnicki E., Jagodnik K.M., et al. Gene Set Knowledge Discovery with Enrichr. Curr. Protoc. 2021;1:e90. doi: 10.1002/cpz1.90. PubMed DOI PMC
Liberzon A., Birger C., Thorvaldsdottir H., Ghandi M., Mesirov J.P., Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417–425. doi: 10.1016/j.cels.2015.12.004. PubMed DOI PMC
Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M., Davis A.P., Dolinski K., Dwight S.S., Eppig J.T., et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000;25:25–29. doi: 10.1038/75556. PubMed DOI PMC
Gene Ontology Consortium The Gene Ontology resource: Enriching a GOld mine. Nucleic Acids Res. 2021;49:D325–D334. doi: 10.1093/nar/gkaa1113. PubMed DOI PMC
Stastna M., Janeckova L., Hrckulak D., Kriz V., Korinek V. Human Colorectal Cancer from the Perspective of Mouse Models. Genes. 2019;10:788. doi: 10.3390/genes10100788. PubMed DOI PMC
Hlubek F., Brabletz T., Budczies J., Pfeiffer S., Jung A., Kirchner T. Heterogeneous expression of Wnt/beta-catenin target genes within colorectal cancer. Int. J. Cancer. 2007;121:1941–1948. doi: 10.1002/ijc.22916. PubMed DOI
Fafilek B., Krausova M., Vojtechova M., Pospichalova V., Tumova L., Sloncova E., Huranova M., Stancikova J., Hlavata A., Svec J., et al. Troy, a tumor necrosis factor receptor family member, interacts with lgr5 to inhibit wnt signaling in intestinal stem cells. Gastroenterology. 2013;144:381–391. doi: 10.1053/j.gastro.2012.10.048. PubMed DOI
de Lau W., Peng W.C., Gros P., Clevers H. The R-spondin/Lgr5/Rnf43 module: Regulator of Wnt signal strength. Genes Dev. 2014;28:305–316. doi: 10.1101/gad.235473.113. PubMed DOI PMC
Stancikova J., Krausova M., Kolar M., Fafilek B., Svec J., Sedlacek R., Neroldova M., Dobes J., Horazna M., Janeckova L., et al. NKD1 marks intestinal and liver tumors linked to aberrant Wnt signaling. Cell. Signal. 2015;27:245–256. doi: 10.1016/j.cellsig.2014.11.008. PubMed DOI
Strouhalova K., Prechova M., Gandalovicova A., Brabek J., Gregor M., Rosel D. Vimentin Intermediate Filaments as Potential Target for Cancer Treatment. Cancers. 2020;12:184. doi: 10.3390/cancers12010184. PubMed DOI PMC
Sato T., Stange D.E., Ferrante M., Vries R.G., Van Es J.H., Van den Brink S., Van Houdt W.J., Pronk A., Van Gorp J., Siersema P.D., et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141:1762–1772. doi: 10.1053/j.gastro.2011.07.050. PubMed DOI
Vallone V.F., Leprovots M., Strollo S., Vasile G., Lefort A., Libert F., Vassart G., Garcia M.I. Trop2 marks transient gastric fetal epithelium and adult regenerating cells after epithelial damage. Development. 2016;143:1452–1463. doi: 10.1242/dev.131490. PubMed DOI PMC
Goswami S., Balasubramanian I., D’Agostino L., Bandyopadhyay S., Patel R., Avasthi S., Yu S.Y., Goldenring J.R., Bonder E.M., Gao N. RAB11A-mediated YAP localization to adherens and tight junctions is essential for colonic epithelial integrity. J. Biol. Chem. 2021;297:100848. doi: 10.1016/j.jbc.2021.100848. PubMed DOI PMC
Guillermin O., Angelis N., Sidor C.M., Ridgway R., Baulies A., Kucharska A., Antas P., Rose M.R., Cordero J., Sansom O., et al. Wnt and Src signals converge on YAP-TEAD to drive intestinal regeneration. EMBO J. 2021;40:e105770. doi: 10.15252/embj.2020105770. PubMed DOI PMC
Pan D. The hippo signaling pathway in development and cancer. Dev. Cell. 2010;19:491–505. doi: 10.1016/j.devcel.2010.09.011. PubMed DOI PMC
Harvey K.F., Hariharan I.K. The Hippo Pathway. Cold Spring Harb. Perspect. Biol. 2012;4:a011288. doi: 10.1101/cshperspect.a011288. PubMed DOI PMC
Kriz V., Korinek V. Wnt, RSPO and Hippo Signalling in the Intestine and Intestinal Stem Cells. Genes. 2018;9:20. doi: 10.3390/genes9010020. PubMed DOI PMC
Vassilev A., Kaneko K.J., Shu H., Zhao Y., DePamphilis M.L. TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev. 2001;15:1229–1241. doi: 10.1101/gad.888601. PubMed DOI PMC
Cai D., Feliciano D., Dong P., Flores E., Gruebele M., Porat-Shliom N., Sukenik S., Liu Z., Lippincott-Schwartz J. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat. Cell Biol. 2019;21:1578–1589. doi: 10.1038/s41556-019-0433-z. PubMed DOI PMC
Lenart S., Lenart P., Smarda J., Remsik J., Soucek K., Benes P. Trop2: Jack of All Trades, Master of None. Cancers. 2020;12:3328. doi: 10.3390/cancers12113328. PubMed DOI PMC
Trerotola M., Cantanelli P., Guerra E., Tripaldi R., Aloisi A.L., Bonasera V., Lattanzio R., de Lange R., Weidle U.H., Piantelli M., et al. Upregulation of Trop-2 quantitatively stimulates human cancer growth. Oncogene. 2013;32:222–233. doi: 10.1038/onc.2012.36. PubMed DOI
Sukhthankar M., Alberti S., Baek S.J. (-)-Epigallocatechin-3-gallate (EGCG) post-transcriptionally and post-translationally suppresses the cell proliferative protein TROP2 in human colorectal cancer cells. Anticancer Res. 2010;30:2497–2503. PubMed
Riera K.M., Jang B., Min J., Roland J.T., Yang Q., Fesmire W.T., Camilleri-Broet S., Ferri L., Kim W.H., Choi E., et al. Trop2 is upregulated in the transition to dysplasia in the metaplastic gastric mucosa. J. Pathol. 2020;251:336–347. doi: 10.1002/path.5469. PubMed DOI PMC
Ohmachi T., Tanaka F., Mimori K., Inoue H., Yanaga K., Mori M. Clinical significance of TROP2 expression in colorectal cancer. Clin. Cancer Res. 2006;12:3057–3063. doi: 10.1158/1078-0432.CCR-05-1961. PubMed DOI
Fang Y.J., Lu Z.H., Wang G.Q., Pan Z.Z., Zhou Z.W., Yun J.P., Zhang M.F., Wan D.S. Elevated expressions of MMP7, TROP2, and survivin are associated with survival, disease recurrence, and liver metastasis of colon cancer. Int. J. Colorectal Dis. 2009;24:875–884. doi: 10.1007/s00384-009-0725-z. PubMed DOI
Guerra E., Trerotola M., Relli V., Lattanzio R., Tripaldi R., Vacca G., Ceci M., Boujnah K., Garbo V., Moschella A., et al. Trop-2 induces ADAM10-mediated cleavage of E-cadherin and drives EMT-less metastasis in colon cancer. Neoplasia. 2021;23:898–911. doi: 10.1016/j.neo.2021.07.002. PubMed DOI PMC
Fei F., Li C., Cao Y., Liu K., Du J., Gu Y., Wang X., Li Y., Zhang S. CK7 expression associates with the location, differentiation, lymph node metastasis, and the Dukes’ stage of primary colorectal cancers. J. Cancer. 2019;10:2510–2519. doi: 10.7150/jca.29397. PubMed DOI PMC
Enkhbat T., Nishi M., Takasu C., Yoshikawa K., Jun H., Tokunaga T., Kashihara H., Ishikawa D., Shimada M. Programmed Cell Death Ligand 1 Expression Is an Independent Prognostic Factor in Colorectal Cancer. Anticancer Res. 2018;38:3367–3373. doi: 10.21873/anticanres.12603. PubMed DOI
Li P., Huang T.T., Zou Q., Liu D., Wang Y.H., Tan X.M., Wei Y., Qiu H. FGFR2 Promotes Expression of PD-L1 in Colorectal Cancer via the JAK/STAT3 Signaling Pathway. J. Immunol. 2019;202:3065–3075. doi: 10.4049/jimmunol.1801199. PubMed DOI
Olsen J., Kirkeby L.T., Brorsson M.M., Dabelsteen S., Troelsen J.T., Bordoy R., Fenger K., Larsson L.I., Simon-Assmann P. Converging signals synergistically activate the LAMC2 promoter and lead to accumulation of the laminin gamma 2 chain in human colon carcinoma cells. Biochem. J. 2003;371:211–221. doi: 10.1042/bj20021454. PubMed DOI PMC
Shiomi A., Kusuhara M., Sugino T., Sugiura T., Ohshima K., Nagashima T., Urakami K., Serizawa M., Saya H., Yamaguchi K. Comprehensive genomic analysis contrasting primary colorectal cancer and matched liver metastases. Oncol. Lett. 2021;21:466. doi: 10.3892/ol.2021.12727. PubMed DOI PMC
Wei R., Wong J.P.C., Lyu P., Xi X.P., Tong O., Zhang S.D., Yuen H.F., Shirasawa S., Kwok H.F. In vitro and clinical data analysis of Osteopontin as a prognostic indicator in colorectal cancer. J. Cell. Mol. Med. 2018;22:4097–4105. doi: 10.1111/jcmm.13686. PubMed DOI PMC
Li D.W., Wei P., Peng Z.H., Huang C., Tang H.M., Jia Z.L., Cui J.J., Le X.D., Huang S.Y., Xie K.P. The Critical Role of Dysregulated FOXM1-PLAUR Signaling in Human Colon Cancer Progression and Metastasis. Clin. Cancer Res. 2013;19:62–72. doi: 10.1158/1078-0432.CCR-12-1588. PubMed DOI PMC
Remy L., Trespeuch C., Bachy S., Scoazec J.Y., Rousselle P. Matrilysin 1 influences colon carcinoma cell migration by cleavage of the laminin-5 beta3 chain. Cancer Res. 2006;66:11228–11237. doi: 10.1158/0008-5472.CAN-06-1187. PubMed DOI
Araujo T.G., Mota S.T.S., Ferreira H.S.V., Ribeiro M.A., Goulart L.R., Vecchi L. Annexin A1 as a Regulator of Immune Response in Cancer. Cells. 2021;10:2245. doi: 10.3390/cells10092245. PubMed DOI PMC
de Graauw M., van Miltenburg M.H., Schmidt M.K., Pont C., Lalai R., Kartopawiro J., Pardali E., Le Devedec S.E., Smit V.T., van der Wal A., et al. Annexin A1 regulates TGF-beta signaling and promotes metastasis formation of basal-like breast cancer cells. Proc. Natl. Acad. Sci. USA. 2010;107:6340–6345. doi: 10.1073/pnas.0913360107. PubMed DOI PMC
Zhao X., Ma W.G., Li X.Y., Li H.J., Li J., Li H.L., He F.C. ANXA1 enhances tumor proliferation and migration by regulating epithelial-mesenchymal transition and IL-6/JAK2/STAT3 pathway in papillary thyroid carcinoma. J. Cancer. 2021;12:1295–1306. doi: 10.7150/jca.52171. PubMed DOI PMC
Sato Y., Kumamoto K., Saito K., Okayama H., Hayase S., Kofunato Y., Miyamoto K., Nakamura I., Ohki S., Koyama Y., et al. Up-regulated Annexin A1 expression in gastrointestinal cancer is associated with cancer invasion and lymph node metastasis. Exp. Ther. Med. 2011;2:239–243. doi: 10.3892/etm.2011.210. PubMed DOI PMC
Gelman I.H. Suppression of tumor and metastasis progression through the scaffolding functions of SSeCKS/Gravin/AKAP12. Cancer Metastasis Rev. 2012;31:493–500. doi: 10.1007/s10555-012-9360-1. PubMed DOI PMC
Finger E.C., Castellini L., Rankin E.B., Vilalta M., Krieg A.J., Jiang D., Banh A., Zundel W., Powell M.B., Giaccia A.J. Hypoxic induction of AKAP12 variant 2 shifts PKA-mediated protein phosphorylation to enhance migration and metastasis of melanoma cells. Proc. Natl. Acad. Sci. USA. 2015;112:4441–4446. doi: 10.1073/pnas.1418164112. PubMed DOI PMC
Li X.X., Teng S.F., Zhang Y.Y., Zhang W.G., Zhang X.W., Xu K., Yao H.S., Yao J., Wang H.L., Liang X.W., et al. TROP2 promotes proliferation, migration and metastasis of gallbladder cancer cells by regulating PI3K/AKT pathway and inducing EMT. Oncotarget. 2017;8:47052–47063. doi: 10.18632/oncotarget.16789. PubMed DOI PMC
Zhao W., Kuai X.W., Zhou X.Y., Jia L.Z., Wang J.S., Yang X.B., Tian Z.D., Wang X.L., Lv Q., Wang B., et al. Trop2 is a potential biomarker for the promotion of EMT in human breast cancer. Oncol. Rep. 2018;40:759–766. doi: 10.3892/or.2018.6496. PubMed DOI
Sun X.T., Xing G.Y., Zhang C., Lu K., Wang Y.Q., He X.Y. Knockdown of Trop2 inhibits proliferation and migration and induces apoptosis of endometrial cancer cells via AKT/beta-catenin pathway. Cell Biochem. Funct. 2020;38:141–148. doi: 10.1002/cbf.3450. PubMed DOI
Zheng W.P., Huang F.Y., Dai S.Z., Wang J.Y., Lin Y.Y., Sun Y., Tan G.H., Huang Y.H. Toxicarioside O Inhibits Cell Proliferation and Epithelial-Mesenchymal Transition by Downregulation of Trop2 in Lung Cancer Cells. Front. Oncol. 2021;10:609275. doi: 10.3389/fonc.2020.609275. PubMed DOI PMC
Wang J.B., Zhang K.H., Grabowska D., Li A.M., Dong Y.Y., Day R., Humphrey P., Lewis J., Kladney R.D., Arbeit J.M., et al. Loss of Trop2 Promotes Carcinogenesis and Features of Epithelial to Mesenchymal Transition in Squamous Cell Carcinoma. Mol. Cancer Res. 2011;9:1686–1695. doi: 10.1158/1541-7786.MCR-11-0241. PubMed DOI PMC
Li N.S., Lu N.H., Xie C. The Hippo and Wnt signalling pathways: Crosstalk during neoplastic progression in gastrointestinal tissue. FEBS J. 2019;286:3745–3756. doi: 10.1111/febs.15017. PubMed DOI
Konsavage W.M., Jr., Kyler S.L., Rennoll S.A., Jin G., Yochum G.S. Wnt/beta-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J. Biol. Chem. 2012;287:11730–11739. doi: 10.1074/jbc.M111.327767. PubMed DOI PMC
Rosenbluh J., Nijhawan D., Cox A.G., Li X.N., Neal J.T., Schafer E.J., Zack T.I., Wang X.X., Tsherniak A., Schinzel A.C., et al. beta-Catenin-Driven Cancers Require a YAP1 Transcriptional Complex for Survival and Tumorigenesis. Cell. 2012;151:1457–1473. doi: 10.1016/j.cell.2012.11.026. PubMed DOI PMC
Gregorieff A., Liu Y., Inanlou M.R., Khomchuk Y., Wrana J.L. Yap-dependent reprogramming of Lgr5(+) stem cells drives intestinal regeneration and cancer. Nature. 2015;526:715–718. doi: 10.1038/nature15382. PubMed DOI
Glorevski N., Sachs N., Manfrin A., Giger S., Bragina M.E., Ordonez-Moran P., Clevers H., Lutolf M.P. Designer matrices for intestinal stem cell and organoid culture. Nature. 2016;539:560–564. doi: 10.1038/nature20168. PubMed DOI
Yui S., Azzolin L., Maimets M., Pedersen M.T., Fordham R.P., Hansen S.L., Larsen H.L., Guiu J., Alves M.R.P., Rundsten C.F., et al. YAP/TAZ-Dependent Reprogramming of Colonic Epithelium Links ECM Remodeling to Tissue Regeneration. Cell Stem Cell. 2018;22:35–49.e7. doi: 10.1016/j.stem.2017.11.001. PubMed DOI PMC
Kroger C., Afeyan A., Mraz J., Eaton E.N., Reinhardt F., Khodor Y.L., Thiru P., Bierie B., Ye X., Burge C.B., et al. Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. Proc. Natl. Acad. Sci. USA. 2019;116:7353–7362. doi: 10.1073/pnas.1812876116. PubMed DOI PMC
Mizukoshi K., Okazawa Y., Haeno H., Koyama Y., Sulidan K., Komiyama H., Saeki H., Ohtsuji N., Ito Y., Kojima Y., et al. Metastatic seeding of human colon cancer cell clusters expressing the hybrid epithelial/mesenchymal state. Int. J. Cancer. 2020;146:2547–2562. doi: 10.1002/ijc.32672. PubMed DOI
Bardia A., Messersmith W.A., Kio E.A., Berlin J.D., Vahdat L., Masters G.A., Moroose R., Santin A.D., Kalinsky K., Picozzi V., et al. Sacituzumab govitecan, a Trop-2-directed antibody-drug conjugate, for patients with epithelial cancer: Final safety and efficacy results from the phase I/II IMMU-132-01 basket trial. Ann. Oncol. 2021;32:746–756. doi: 10.1016/j.annonc.2021.03.005. PubMed DOI