Trop2: Jack of All Trades, Master of None
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Support Grant P30 CA008748
Memorial Sloan-Kettering Cancer Center
MUNI/A/1127/2019
Grant Agency of the Masaryk University
CETOCOEN PLUS (CZ.02.1.01/0.0/0.0/15_003/0000469)
Ministerstvo Školství, Mládeže a Tělovýchovy
P30 CA008748
NCI NIH HHS - United States
CETOCOEN EXCELLENCE Teaming 2 (02.1.01/0.0/0.0/18_046/0015975)
Horizon2020 (857560) a Ministerstvo Školství, Mládeže a Tělovýchovy
National Program of Sustainability II LQ1605
Ministerstvo Školství, Mládeže a Tělovýchovy
NV18-07-00073, 17-28518A, and 18-08-00245
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
33187148
PubMed Central
PMC7696911
DOI
10.3390/cancers12113328
PII: cancers12113328
Knihovny.cz E-zdroje
- Klíčová slova
- TACSTD2, Trop2, cancer, epithelial-to-mesenchymal transition, metastases, proliferation, therapy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Trophoblast cell surface antigen 2 (Trop2) is a widely expressed glycoprotein and an epithelial cell adhesion molecule (EpCAM) family member. Although initially identified as a transmembrane protein, other subcellular localizations and processed forms were described. Its congenital mutations cause a gelatinous drop-like corneal dystrophy, a disease characterized by loss of barrier function in corneal epithelial cells. Trop2 is considered a stem cell marker and its expression associates with regenerative capacity in various tissues. Trop2 overexpression was described in tumors of different origins; however, functional studies revealed both oncogenic and tumor suppressor roles. Nevertheless, therapeutic potential of Trop2 was recognized and clinical studies with drug-antibody conjugates have been initiated in various cancer types. One of these agents, sacituzumab govitecan, has been recently granted an accelerated approval for therapy of metastatic triple-negative breast cancer. In this article, we review the current knowledge about the yet controversial function of Trop2 in homeostasis and pathology.
Department of Experimental Biology Faculty of Science Masaryk University 625 00 Brno Czech Republic
Human Oncology and Pathogenesis Program Memorial Sloan Kettering Cancer Center New York NY 10065 USA
Zobrazit více v PubMed
Lipinski M., Parks D.R., Rouse R.V., Herzenberg L.A. Human trophoblast cell-surface antigens defined by monoclonal antibodies. Proc. Natl. Acad. Sci. USA. 1981;78:5147–5150. doi: 10.1073/pnas.78.8.5147. PubMed DOI PMC
Cubas R., Li M., Chen C., Yao Q. Trop2: A possible therapeutic target for late stage epithelial carcinomas. Biochim. Biophys. Acta. 2009;1796:309–314. doi: 10.1016/j.bbcan.2009.08.001. PubMed DOI
Calabrese G., Crescenzi C., Morizio E., Palka G., Guerra E., Alberti S. Assignment of TACSTD1 (alias TROP1, M4S1) to human chromosome 2p21 and refinement of mapping of TACSTD2 (alias TROP2, M1S1) to human chromosome 1p32 by in situ hybridization. Cytogenet. Cell Genet. 2001;92:164–165. doi: 10.1159/000056891. PubMed DOI
Linnenbach A.J., Wojcierowski J., Wu S.A., Pyrc J.J., Ross A.H., Dietzschold B., Speicher D., Koprowski H. Sequence investigation of the major gastrointestinal tumor-associated antigen gene family, GA733. Proc. Natl. Acad. Sci. USA. 1989;86:27–31. doi: 10.1073/pnas.86.1.27. PubMed DOI PMC
McDougall A.R.A., Tolcos M., Hooper S.B., Cole T.J., Wallace M.J. Trop2: From development to disease. Dev. Dyn. 2015;244:99–109. doi: 10.1002/dvdy.24242. PubMed DOI
Szala S., Froehlich M., Scollon M., Kasai Y., Steplewski Z., Koprowski H., Linnenbach A.J. Molecular cloning of cDNA for the carcinoma-associated antigen GA733-2. Proc. Natl. Acad. Sci. USA. 1990;87:3542–3546. doi: 10.1073/pnas.87.9.3542. PubMed DOI PMC
Linnenbach A.J., Seng B.A., Wu S., Robbins S., Scollon M., Pyrc J.J., Druck T., Huebner K. Retroposition in a family of carcinoma-associated antigen genes. Mol. Cell. Biol. 1993;13:1507–1515. doi: 10.1128/MCB.13.3.1507. PubMed DOI PMC
El Sewedy T., Fornaro M., Alberti S. Cloning of the murine TROP2 gene: Conservation of a PIP2-binding sequence in the cytoplasmic domain of TROP-2. Int. J. Cancer. 1998;75:324–330. doi: 10.1002/(SICI)1097-0215(19980119)75:2<324::AID-IJC24>3.0.CO;2-B. PubMed DOI
UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506–D515. doi: 10.1093/nar/gky1049. PubMed DOI PMC
Basu A., Goldenberg D.M., Stein R. The epithelial/carcinoma antigen EGP-1, recognized by monoclonal antibody RS7-3G11, is phosphorylated on serine 303. Int. J. Cancer. 1995;62:472–479. doi: 10.1002/ijc.2910620419. PubMed DOI
Pavšič M., Ilc G., Vidmar T., Plavec J., Lenarčič B. The cytosolic tail of the tumor marker protein Trop2—A structural switch triggered by phosphorylation. Sci. Rep. 2015;5:10324. doi: 10.1038/srep10324. PubMed DOI PMC
Vidmar T., Pavšič M., Lenarčič B. Biochemical and preliminary X-ray characterization of the tumor-associated calcium signal transducer 2 (Trop2) ectodomain. Protein Expr. Purif. 2013;91:69–76. doi: 10.1016/j.pep.2013.07.006. PubMed DOI
Mori Y., Akita K., Ojima K., Iwamoto S., Yamashita T., Morii E., Nakada H. Trophoblast cell surface antigen 2 (Trop-2) phosphorylation by protein kinase C α/δ (PKCα/δ) enhances cell motility. J. Biol. Chem. 2019;294:11513–11524. doi: 10.1074/jbc.RA119.008084. PubMed DOI PMC
Olsen J.V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P., Mann M. Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks. Cell. 2006;127:635–648. doi: 10.1016/j.cell.2006.09.026. PubMed DOI
Stepan L.P., Trueblood E.S., Hale K., Babcook J., Borges L., Sutherland C.L. Expression of Trop2 cell surface glycoprotein in normal and tumor tissues: Potential implications as a cancer therapeutic target. J. Histochem. Cytochem. 2011;59:701–710. doi: 10.1369/0022155411410430. PubMed DOI PMC
Trerotola M., Cantanelli P., Guerra E., Tripaldi R., Aloisi A.L., Bonasera V., Lattanzio R., de Lange R., Weidle U.H., Piantelli M., et al. Upregulation of Trop-2 quantitatively stimulates human cancer growth. Oncogene. 2013;32:222–233. doi: 10.1038/onc.2012.36. PubMed DOI
McDougall A.R.A., Hooper S.B., Zahra V.A., Sozo F., Lo C.Y., Cole T.J., Doran T., Wallace M.J. The oncogene Trop2 regulates fetal lung cell proliferation. Am. J. Physiol. Lung Cell. Mol. Physiol. 2011;301:L478–L489. doi: 10.1152/ajplung.00063.2011. PubMed DOI
Sozo F., Wallace M.J., Zahra V.A., Filby C.E., Hooper S.B. Gene expression profiling during increased fetal lung expansion identifies genes likely to regulate development of the distal airways. Physiol. Genomics. 2006;24:105–113. doi: 10.1152/physiolgenomics.00148.2005. PubMed DOI
Mustata R.C., Vasile G., Fernandez-Vallone V., Strollo S., Lefort A., Libert F., Monteyne D., Pérez-Morga D., Vassart G., Garcia M.-I. Identification of Lgr5-independent spheroid-generating progenitors of the mouse fetal intestinal epithelium. Cell Rep. 2013;5:421–432. doi: 10.1016/j.celrep.2013.09.005. PubMed DOI
Vallone V.F., Leprovots M., Strollo S., Vasile G., Lefort A., Libert F., Vassart G., Garcia M.-I. Trop2 marks transient gastric fetal epithelium and adult regenerating cells after epithelial damage. Development. 2016;143:1452–1463. doi: 10.1242/dev.131490. PubMed DOI PMC
Sun W., Wilhelmina Aalders T., Oosterwijk E. Identification of potential bladder progenitor cells in the trigone. Dev. Biol. 2014;393:84–92. doi: 10.1016/j.ydbio.2014.06.018. PubMed DOI
Tsukahara Y., Tanaka M., Miyajima A. TROP2 expressed in the trunk of the ureteric duct regulates branching morphogenesis during kidney development. PLoS ONE. 2011;6:e28607. doi: 10.1371/journal.pone.0028607. PubMed DOI PMC
McDougall A.R.A., Wiradjaja V., Azhan A., Li A., Hale N., Wlodek M.E., Hooper S.B., Wallace M.J., Tolcos M. Intrauterine Growth Restriction Alters the Postnatal Development of the Rat Cerebellum. Dev. Neurosci. 2017;39:215–227. doi: 10.1159/000470902. PubMed DOI
Memarzadeh S., Zong Y., Janzen D.M., Goldstein A.S., Cheng D., Kurita T., Schafenacker A.M., Huang J., Witte O.N. Cell-autonomous activation of the PI3-kinase pathway initiates endometrial cancer from adult uterine epithelium. Proc. Natl. Acad. Sci. USA. 2010;107:17298–17303. doi: 10.1073/pnas.1012548107. PubMed DOI PMC
Li T., Su Y., Yu X., Mouniir D.S.A., Masau J.F., Wei X., Yang J. Trop2 Guarantees Cardioprotective Effects of Cortical Bone-Derived Stem Cells on Myocardial Ischemia/Reperfusion Injury. Cell Transplant. 2018;27:1256–1268. doi: 10.1177/0963689718786882. PubMed DOI PMC
Yang J., Zhu Z., Wang H., Li F., Du X., Ma R.Z. Trop2 regulates the proliferation and differentiation of murine compact-bone derived MSCs. Int. J. Oncol. 2013;43:859–867. doi: 10.3892/ijo.2013.1987. PubMed DOI
Grünherz L., Prein C., Winkler T., Kirsch M., Hopfner U., Streichert T., Clausen-Schaumann H., Zustin J., Kirchhof K., Morlock M.M., et al. Osteoidosis leads to altered differentiation and function of osteoclasts. J. Cell. Mol. Med. 2020;24:5665–5674. doi: 10.1111/jcmm.15227. PubMed DOI PMC
Goldstein A.S., Lawson D.A., Cheng D., Sun W., Garraway I.P., Witte O.N. Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proc. Natl. Acad. Sci. USA. 2008;105:20882–20887. doi: 10.1073/pnas.0811411106. PubMed DOI PMC
Kahounová Z., Remšík J., Fedr R., Bouchal J., Mičková A., Slabáková E., Binó L., Hampl A., Souček K. Slug-expressing mouse prostate epithelial cells have increased stem cell potential. Stem Cell Res. 2020;46:101844. doi: 10.1016/j.scr.2020.101844. PubMed DOI
Crowell P.D., Fox J.J., Hashimoto T., Diaz J.A., Navarro H.I., Henry G.H., Feldmar B.A., Lowe M.G., Garcia A.J., Wu Y.E., et al. Expansion of Luminal Progenitor Cells in the Aging Mouse and Human Prostate. Cell Rep. 2019;28:1499–1510. doi: 10.1016/j.celrep.2019.07.007. PubMed DOI PMC
Okabe M., Tsukahara Y., Tanaka M., Suzuki K., Saito S., Kamiya Y., Tsujimura T., Nakamura K., Miyajima A. Potential hepatic stem cells reside in EpCAM+ cells of normal and injured mouse liver. Dev. Camb. Engl. 2009;136:1951–1960. doi: 10.1242/dev.031369. PubMed DOI
Liu Q., Li H., Wang Q., Zhang Y., Wang W., Dou S., Xiao W. Increased expression of TROP2 in airway basal cells potentially contributes to airway remodeling in chronic obstructive pulmonary disease. Respir. Res. 2016;17:159. doi: 10.1186/s12931-016-0463-z. PubMed DOI PMC
McDougall A.R.A., Hooper S.B., Zahra V.A., Cole T.J., Lo C.Y., Doran T., Wallace M.J. Trop2 regulates motility and lamellipodia formation in cultured fetal lung fibroblasts. Am. J. Physiol. Lung Cell. Mol. Physiol. 2013;305:L508–L521. doi: 10.1152/ajplung.00160.2012. PubMed DOI
Aizarani N., Saviano A., Sagar, Mailly L., Durand S., Herman J.S., Pessaux P., Baumert T.F., Grün D. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature. 2019;572:199–204. doi: 10.1038/s41586-019-1373-2. PubMed DOI PMC
Wang J., Zhang K., Grabowska D., Li A., Dong Y., Day R., Humphrey P., Lewis J., Kladney R.D., Arbeit J.M., et al. Loss of Trop2 promotes carcinogenesis and features of epithelial to mesenchymal transition in squamous cell carcinoma. Mol. Cancer Res. MCR. 2011;9:1686–1695. doi: 10.1158/1541-7786.MCR-11-0241. PubMed DOI PMC
Lei Z., Maeda T., Tamura A., Nakamura T., Yamazaki Y., Shiratori H., Yashiro K., Tsukita S., Hamada H. EpCAM contributes to formation of functional tight junction in the intestinal epithelium by recruiting claudin proteins. Dev. Biol. 2012;371:136–145. doi: 10.1016/j.ydbio.2012.07.005. PubMed DOI
Guerra E., Lattanzio R., La Sorda R., Dini F., Tiboni G.M., Piantelli M., Alberti S. mTrop1/Epcam Knockout Mice Develop Congenital Tufting Enteropathy through Dysregulation of Intestinal E-cadherin/β-catenin. PLoS ONE. 2012;7:e49302. doi: 10.1371/journal.pone.0049302. PubMed DOI PMC
Mueller J.L., McGeough M.D., Peña C.A., Sivagnanam M. Functional consequences of EpCam mutation in mice and men. Am. J. Physiol. Gastrointest. Liver Physiol. 2014;306:G278–G288. doi: 10.1152/ajpgi.00286.2013. PubMed DOI PMC
Sivagnanam M., Mueller J.L., Lee H., Chen Z., Nelson S.F., Turner D., Zlotkin S.H., Pencharz P.B., Ngan B.-Y., Libiger O., et al. Identification of EpCAM as the Gene for Congenital Tufting Enteropathy. Gastroenterology. 2008;135:429–437. doi: 10.1053/j.gastro.2008.05.036. PubMed DOI PMC
Balzar M., Winter M.J., de Boer C.J., Litvinov S.V. The biology of the 17–1A antigen (Ep-CAM) J. Mol. Med. 1999;77:699–712. doi: 10.1007/s001099900038. PubMed DOI
Nakato G., Morimura S., Lu M., Feng X., Wu C., Udey M.C. Amelioration of Congenital Tufting Enteropathy in EpCAM (TROP1)-Deficient Mice via Heterotopic Expression of TROP2 in Intestinal Epithelial Cells. Cells. 2020;9:1847. doi: 10.3390/cells9081847. PubMed DOI PMC
Tsujikawa M., Kurahashi H., Tanaka T., Nishida K., Shimomura Y., Tano Y., Nakamura Y. Identification of the gene responsible for gelatinous drop-like corneal dystrophy. Nat. Genet. 1999;21:420–423. doi: 10.1038/7759. PubMed DOI
Nagahara Y., Tsujikawa M., Takigawa T., Xu P., Kai C., Kawasaki S., Nakatsukasa M., Inatomi T., Kinoshita S., Nishida K. A novel mutation in gelatinous drop-like corneal dystrophy and functional analysis. Hum. Genome Var. 2019;6:33. doi: 10.1038/s41439-019-0060-z. PubMed DOI PMC
Ide T., Nishida K., Maeda N., Tsujikawa M., Yamamoto S., Watanabe H., Tano Y. A spectrum of clinical manifestations of gelatinous drop-like corneal dystrophy in japan. Am. J. Ophthalmol. 2004;137:1081–1084. doi: 10.1016/j.ajo.2004.01.048. PubMed DOI
Takaoka M., Nakamura T., Ban Y., Kinoshita S. Phenotypic investigation of cell junction-related proteins in gelatinous drop-like corneal dystrophy. Investig. Ophthalmol. Vis. Sci. 2007;48:1095–1101. doi: 10.1167/iovs.06-0740. PubMed DOI
Nakatsukasa M., Kawasaki S., Yamasaki K., Fukuoka H., Matsuda A., Tsujikawa M., Tanioka H., Nagata-Takaoka M., Hamuro J., Kinoshita S. Tumor-associated calcium signal transducer 2 is required for the proper subcellular localization of claudin 1 and 7: Implications in the pathogenesis of gelatinous drop-like corneal dystrophy. Am. J. Pathol. 2010;177:1344–1355. doi: 10.2353/ajpath.2010.100149. PubMed DOI PMC
Xu P., Kai C., Kawasaki S., Kobayashi Y., Yamamoto K., Tsujikawa M., Hayashi R., Nishida K. A New in Vitro Model of GDLD by Knocking Out TACSTD2 and Its Paralogous Gene EpCAM in Human Corneal Epithelial Cells. Transl. Vis. Sci. Technol. 2018;7:30. doi: 10.1167/tvst.7.6.30. PubMed DOI PMC
Nübel T., Preobraschenski J., Tuncay H., Weiss T., Kuhn S., Ladwein M., Langbein L., Zöller M. Claudin-7 regulates EpCAM-mediated functions in tumor progression. Mol. Cancer Res. MCR. 2009;7:285–299. doi: 10.1158/1541-7786.MCR-08-0200. PubMed DOI
Sekhar V., Pollicino T., Diaz G., Engle R.E., Alayli F., Melis M., Kabat J., Tice A., Pomerenke A., Altan-Bonnet N., et al. Infection with hepatitis C virus depends on TACSTD2, a regulator of claudin-1 and occludin highly downregulated in hepatocellular carcinoma. PLoS Pathog. 2018;14:e1006916. doi: 10.1371/journal.ppat.1006916. PubMed DOI PMC
Wu C.-J., Lu M., Feng X., Nakato G., Udey M.C. Matriptase Cleaves EpCAM and TROP2 in Keratinocytes, Destabilizing Both Proteins and Associated Claudins. Cells. 2020;9:1027. doi: 10.3390/cells9041027. PubMed DOI PMC
Wu C.-J., Feng X., Lu M., Morimura S., Udey M.C. Matriptase-mediated cleavage of EpCAM destabilizes claudins and dysregulates intestinal epithelial homeostasis. J. Clin. Investig. 2017;127:623–634. doi: 10.1172/JCI88428. PubMed DOI PMC
Kamble P.R., Rane S., Breed A.A., Joseph S., Mahale S.D., Pathak B.R. Proteolytic cleavage of Trop2 at Arg87 is mediated by matriptase and regulated by Val194. FEBS Lett. 2020;594:3156–3169. doi: 10.1002/1873-3468.13899. PubMed DOI
Ripani E., Sacchetti A., Corda D., Alberti S. Human Trop-2 is a tumor-associated calcium signal transducer. Int. J. Cancer. 1998;76:671–676. doi: 10.1002/(SICI)1097-0215(19980529)76:5<671::AID-IJC10>3.0.CO;2-7. PubMed DOI
Cheng N., Li H., Luo J. Trop2 promotes proliferation, invasion and EMT of nasopharyngeal carcinoma cells through the NF-κB pathway. RSC Adv. 2017;7:53087–53096. doi: 10.1039/C7RA09915K. PubMed DOI PMC
Gu Q.-Z., Nijiati A., Gao X., Tao K.-L., Li C.-D., Fan X.-P., Tian Z. TROP2 promotes cell proliferation and migration in osteosarcoma through PI3K/AKT signaling. Mol. Med. Rep. 2018;18:1782–1788. doi: 10.3892/mmr.2018.9083. PubMed DOI
Li X., Teng S., Zhang Y., Zhang W., Zhang X., Xu K., Yao H., Yao J., Wang H., Liang X., et al. TROP2 promotes proliferation, migration and metastasis of gallbladder cancer cells by regulating PI3K/AKT pathway and inducing EMT. Oncotarget. 2017;8:47052–47063. doi: 10.18632/oncotarget.16789. PubMed DOI PMC
Sun X., Xing G., Zhang C., Lu K., Wang Y., He X. Knockdown of Trop2 inhibits proliferation and migration and induces apoptosis of endometrial cancer cells via AKT/β-catenin pathway. Cell Biochem. Funct. 2020 doi: 10.1002/cbf.3450. PubMed DOI
Tang G., Tang Q., Jia L., Chen Y., Lin L., Kuai X., Gong A., Feng Z. TROP2 increases growth and metastasis of human oral squamous cell carcinoma through activation of the PI3K/Akt signaling pathway. Int. J. Mol. Med. 2019;44:2161–2170. doi: 10.3892/ijmm.2019.4378. PubMed DOI PMC
Guerra E., Trerotola M., Tripaldi R., Aloisi A.L., Simeone P., Sacchetti A., Relli V., D’Amore A., La Sorda R., Lattanzio R., et al. Trop-2 Induces Tumor Growth Through AKT and Determines Sensitivity to AKT Inhibitors. Clin. Cancer Res. 2016;22:4197–4205. doi: 10.1158/1078-0432.CCR-15-1701. PubMed DOI
Cubas R., Zhang S., Li M., Chen C., Yao Q. Trop2 expression contributes to tumor pathogenesis by activating the ERK MAPK pathway. Mol. Cancer. 2010;9:253. doi: 10.1186/1476-4598-9-253. PubMed DOI PMC
Guan H., Guo Z., Liang W., Li H., Wei G., Xu L., Xiao H., Li Y. Trop2 enhances invasion of thyroid cancer by inducing MMP2 through ERK and JNK pathways. BMC Cancer. 2017;17:486. doi: 10.1186/s12885-017-3475-2. PubMed DOI PMC
Liu T., Liu Y., Bao X., Tian J., Liu Y., Yang X. Overexpression of TROP2 predicts poor prognosis of patients with cervical cancer and promotes the proliferation and invasion of cervical cancer cells by regulating ERK signaling pathway. PLoS ONE. 2013;8:e75864. doi: 10.1371/journal.pone.0075864. PubMed DOI PMC
Redlich N., Robinson A.M., Nickel K.P., Stein A.P., Wheeler D.L., Adkins D.R., Uppaluri R., Kimple R.J., Van Tine B.A., Michel L.S. Anti-Trop2 blockade enhances the therapeutic efficacy of ErbB3 inhibition in head and neck squamous cell carcinoma. Cell Death Dis. 2018;9:5. doi: 10.1038/s41419-017-0029-0. PubMed DOI PMC
Wang F., Liu X., Yang P., Guo L., Liu C., Li H., Long S., Shen Y., Wan H. Loss of TACSTD2 contributed to squamous cell carcinoma progression through attenuating TAp63-dependent apoptosis. Cell Death Dis. 2014;5:e1133. doi: 10.1038/cddis.2014.96. PubMed DOI PMC
Zhang K., Jones L., Lim S., Maher C.A., Adkins D., Lewis J., Kimple R.J., Fertig E.J., Chung C.H., Van Tine B.A., et al. Loss of Trop2 causes ErbB3 activation through a neuregulin-1-dependent mechanism in the mesenchymal subtype of HNSCC. Oncotarget. 2014;5:9281–9294. doi: 10.18632/oncotarget.2423. PubMed DOI PMC
Zhao W., Jia L., Kuai X., Tang Q., Huang X., Yang T., Qiu Z., Zhu J., Huang J., Huang W., et al. The role and molecular mechanism of Trop2 induced epithelial-mesenchymal transition through mediated β-catenin in gastric cancer. Cancer Med. 2019;8:1135–1147. doi: 10.1002/cam4.1934. PubMed DOI PMC
Stoyanova T., Goldstein A.S., Cai H., Drake J.M., Huang J., Witte O.N. Regulated proteolysis of Trop2 drives epithelial hyperplasia and stem cell self-renewal via β-catenin signaling. Genes Dev. 2012;26:2271–2285. doi: 10.1101/gad.196451.112. PubMed DOI PMC
Hou J., Lv A., Deng Q., Zhang G., Hu X., Cui H. TROP2 promotes the proliferation and metastasis of glioblastoma cells by activating the JAK2/STAT3 signaling pathway. Oncol. Rep. 2019;41:753–764. doi: 10.3892/or.2018.6859. PubMed DOI PMC
Trerotola M., Ganguly K.K., Fazli L., Fedele C., Lu H., Dutta A., Liu Q., De Angelis T., Riddell L.W., Riobo N.A., et al. Trop-2 is up-regulated in invasive prostate cancer and displaces FAK from focal contacts. Oncotarget. 2015;6:14318–14328. doi: 10.18632/oncotarget.3960. PubMed DOI PMC
Trerotola M., Jernigan D.L., Liu Q., Siddiqui J., Fatatis A., Languino L.R. Trop-2 promotes prostate cancer metastasis by modulating β(1) integrin functions. Cancer Res. 2013;73:3155–3167. doi: 10.1158/0008-5472.CAN-12-3266. PubMed DOI PMC
Trerotola M., Li J., Alberti S., Languino L.R. Trop-2 inhibits prostate cancer cell adhesion to fibronectin through the β1 integrin-RACK1 axis. J. Cell. Physiol. 2012;227:3670–3677. doi: 10.1002/jcp.24074. PubMed DOI PMC
Webb D.J., Donais K., Whitmore L.A., Thomas S.M., Turner C.E., Parsons J.T., Horwitz A.F. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat. Cell Biol. 2004;6:154–161. doi: 10.1038/ncb1094. PubMed DOI
Lin J.-C., Wu Y.-Y., Wu J.-Y., Lin T.-C., Wu C.-T., Chang Y.-L., Jou Y.-S., Hong T.-M., Yang P.-C. TROP2 is epigenetically inactivated and modulates IGF-1R signalling in lung adenocarcinoma. EMBO Mol. Med. 2012;4:472–485. doi: 10.1002/emmm.201200222. PubMed DOI PMC
Pak M.G., Shin D.H., Lee C.H., Lee M.K. Significance of EpCAM and TROP2 expression in non-small cell lung cancer. World J. Surg. Oncol. 2012;10:53. doi: 10.1186/1477-7819-10-53. PubMed DOI PMC
Sawanyawisuth K., Tantapotinan N., Wongkham C., Riggins G.J., Kraiklang R., Wongkham S., Puapairoj A. Suppression of trophoblast cell surface antigen 2 enhances proliferation and migration in liver fluke-associated cholangiocarcinoma. Ann. Hepatol. 2016;15:71–81. doi: 10.5604/16652681.1184223. PubMed DOI
Kobayashi H., Minami Y., Anami Y., Kondou Y., Iijima T., Kano J., Morishita Y., Tsuta K., Hayashi S., Noguchi M. Expression of the GA733 gene family and its relationship to prognosis in pulmonary adenocarcinoma. Virchows Arch. Int. J. Pathol. 2010;457:69–76. doi: 10.1007/s00428-010-0930-8. PubMed DOI
Sin S.T.K., Li Y., Liu M., Ma S., Guan X.-Y. TROP-2 exhibits tumor suppressive functions in cervical cancer by dual inhibition of IGF-1R and ALK signaling. Gynecol. Oncol. 2018;152:185–193. doi: 10.1016/j.ygyno.2018.10.039. PubMed DOI
Eyvazi S., Farajnia S., Dastmalchi S., Kanipour F., Zarredar H., Bandehpour M. Antibody Based EpCAM Targeted Therapy of Cancer, Review and Update. Curr. Cancer Drug Targets. 2018;18:857–868. doi: 10.2174/1568009618666180102102311. PubMed DOI
Keller L., Werner S., Pantel K. Biology and clinical relevance of EpCAM. Cell Stress. 2019;3:165–180. doi: 10.15698/cst2019.06.188. PubMed DOI PMC
Martowicz A., Seeber A., Untergasser G. The role of EpCAM in physiology and pathology of the epithelium. Histol. Histopathol. 2016;31:349–355. doi: 10.14670/HH-11-678. PubMed DOI
Herreros-Pomares A., Aguilar-Gallardo C., Calabuig-Fariñas S., Sirera R., Jantus-Lewintre E., Camps C. EpCAM duality becomes this molecule in a new Dr. Jekyll and Mr. Hyde tale. Crit. Rev. Oncol. Hematol. 2018;126:52–63. doi: 10.1016/j.critrevonc.2018.03.006. PubMed DOI
Fong D., Moser P., Krammel C., Gostner J.M., Margreiter R., Mitterer M., Gastl G., Spizzo G. High expression of TROP2 correlates with poor prognosis in pancreatic cancer. Br. J. Cancer. 2008;99:1290–1295. doi: 10.1038/sj.bjc.6604677. PubMed DOI PMC
Fong D., Spizzo G., Gostner J.M., Gastl G., Moser P., Krammel C., Gerhard S., Rasse M., Laimer K. TROP2: A novel prognostic marker in squamous cell carcinoma of the oral cavity. Mod. Pathol. 2008;21:186–191. doi: 10.1038/modpathol.3801001. PubMed DOI
Hsu E.-C., Rice M.A., Bermudez A., Marques F.J.G., Aslan M., Liu S., Ghoochani A., Zhang C.A., Chen Y.-S., Zlitni A., et al. Trop2 is a driver of metastatic prostate cancer with neuroendocrine phenotype via PARP1. Proc. Natl. Acad. Sci. USA. 2020;117:2032–2042. doi: 10.1073/pnas.1905384117. PubMed DOI PMC
Mühlmann G., Spizzo G., Gostner J., Zitt M., Maier H., Moser P., Gastl G., Zitt M., Müller H.M., Margreiter R., et al. TROP2 expression as prognostic marker for gastric carcinoma. J. Clin. Pathol. 2009;62:152–158. doi: 10.1136/jcp.2008.060590. PubMed DOI
Ning S., Guo S., Xie J., Xu Y., Lu X., Chen Y. TROP2 correlates with microvessel density and poor prognosis in hilar cholangiocarcinoma. J. Gastrointest. Surg. 2013;17:360–368. doi: 10.1007/s11605-012-2105-1. PubMed DOI
Zhao W., Kuai X., Zhou X., Jia L., Wang J., Yang X., Tian Z., Wang X., Lv Q., Wang B., et al. Trop2 is a potential biomarker for the promotion of EMT in human breast cancer. Oncol. Rep. 2018;40:759–766. doi: 10.3892/or.2018.6496. PubMed DOI
Sin S.T.K., Li Y., Liu M., Yuan Y.-F., Ma S., Guan X.-Y. Down-regulation of TROP-2 Predicts Poor Prognosis of Hepatocellular Carcinoma Patients. Hepatol. Commun. 2018;2:1408–1414. doi: 10.1002/hep4.1242. PubMed DOI PMC
Ambrogi F., Fornili M., Boracchi P., Trerotola M., Relli V., Simeone P., La Sorda R., Lattanzio R., Querzoli P., Pedriali M., et al. Trop-2 is a determinant of breast cancer survival. PLoS ONE. 2014;9:e96993. doi: 10.1371/journal.pone.0096993. PubMed DOI PMC
Zhao W., Zhu H., Zhang S., Yong H., Wang W., Zhou Y., Wang B., Wen J., Qiu Z., Ding G., et al. Trop2 is overexpressed in gastric cancer and predicts poor prognosis. Oncotarget. 2016;7:6136–6145. doi: 10.18632/oncotarget.6733. PubMed DOI PMC
Riera K.M., Jang B., Min J., Roland J.T., Yang Q., Fesmire W.T., Camilleri-Broet S., Ferri L., Kim W.H., Choi E., et al. Trop2 is upregulated in the transition to dysplasia in the metaplastic gastric mucosa. J. Pathol. 2020;251:336–347. doi: 10.1002/path.5469. PubMed DOI PMC
Addati T., Achille G., Centrone M., Petroni S., Popescu O., Russo S., Grammatica L., Simone G. TROP-2 expression in papillary thyroid cancer: A preliminary cyto-histological study. Cytopathology. 2015;26:303–311. doi: 10.1111/cyt.12196. PubMed DOI
Bychkov A., Sampatanukul P., Shuangshoti S., Keelawat S. TROP-2 immunohistochemistry: A highly accurate method in the differential diagnosis of papillary thyroid carcinoma. Pathology. 2016;48:425–433. doi: 10.1016/j.pathol.2016.04.002. PubMed DOI
Simms A., Jacob R.P., Cohen C., Siddiqui M.T. TROP-2 expression in papillary thyroid carcinoma: Potential Diagnostic Utility. Diagn. Cytopathol. 2016;44:26–31. doi: 10.1002/dc.23382. PubMed DOI
Fang Y.J., Lu Z.H., Wang G.Q., Pan Z.Z., Zhou Z.W., Yun J.P., Zhang M.F., Wan D.S. Elevated expressions of MMP7, TROP2, and survivin are associated with survival, disease recurrence, and liver metastasis of colon cancer. Int. J. Colorectal Dis. 2009;24:875–884. doi: 10.1007/s00384-009-0725-z. PubMed DOI
Ohmachi T., Tanaka F., Mimori K., Inoue H., Yanaga K., Mori M. Clinical Significance of TROP2 Expression in Colorectal Cancer. Clin. Cancer Res. 2006;12:3057–3063. doi: 10.1158/1078-0432.CCR-05-1961. PubMed DOI
Jiang A., Gao X., Zhang D., Zhang L., Lu H. Expression and clinical significance of the Trop-2 gene in advanced non-small cell lung carcinoma. Oncol. Lett. 2013;6:375–380. doi: 10.3892/ol.2013.1368. PubMed DOI PMC
Mito R., Matsubara E., Komohara Y., Shinchi Y., Sato K., Yoshii D., Ohnishi K., Fujiwara Y., Tomita Y., Ikeda K., et al. Clinical impact of TROP2 in non-small lung cancers and its correlation with abnormal p53 nuclear accumulation. Pathol. Int. 2020;70:187–294. doi: 10.1111/pin.12911. PubMed DOI
Li Z., Jiang X., Zhang W. TROP2 overexpression promotes proliferation and invasion of lung adenocarcinoma cells. Biochem. Biophys. Res. Commun. 2016;470:197–204. doi: 10.1016/j.bbrc.2016.01.032. PubMed DOI
Lin H., Huang J.-F., Qiu J.-R., Zhang H.-L., Tang X.-J., Li H., Wang C.-J., Wang Z.-C., Feng Z.-Q., Zhu J. Significantly upregulated TACSTD2 and Cyclin D1 correlate with poor prognosis of invasive ductal breast cancer. Exp. Mol. Pathol. 2013;94:73–78. doi: 10.1016/j.yexmp.2012.08.004. PubMed DOI
Bignotti E., Todeschini P., Calza S., Falchetti M., Ravanini M., Tassi R.A., Ravaggi A., Bandiera E., Romani C., Zanotti L., et al. Trop-2 overexpression as an independent marker for poor overall survival in ovarian carcinoma patients. Eur. J. Cancer. 2010;46:944–953. doi: 10.1016/j.ejca.2009.12.019. PubMed DOI
Varughese J., Cocco E., Bellone S., Bellone M., Todeschini P., Carrara L., Schwartz P.E., Rutherford T.J., Pecorelli S., Santin A.D. High-grade, chemotherapy-resistant primary ovarian carcinoma cell lines overexpress human trophoblast cell-surface marker (Trop-2) and are highly sensitive to immunotherapy with hRS7, a humanized monoclonal anti-Trop-2 antibody. Gynecol. Oncol. 2011;122:171–177. doi: 10.1016/j.ygyno.2011.03.002. PubMed DOI PMC
Perrone E., Lopez S., Zeybek B., Bellone S., Bonazzoli E., Pelligra S., Zammataro L., Manzano A., Manara P., Bianchi A., et al. Preclinical Activity of Sacituzumab Govitecan, an Antibody-Drug Conjugate Targeting Trophoblast Cell-Surface Antigen 2 (Trop-2) Linked to the Active Metabolite of Irinotecan (SN-38), in Ovarian Cancer. Front. Oncol. 2020;10 doi: 10.3389/fonc.2020.00118. PubMed DOI PMC
Avellini C., Licini C., Lazzarini R., Procopio A.D., Muzzonigro G., Tossetta G., Mazzucchelli R., Gesuita R., Castellucci M., Olivieri F., et al. Expression of Trop2 in bladder cancer is modulated by miR125b: In vivo and in vitro analyses. Ital. J. Anat. Embryol. 2015;120:46. doi: 10.13128/IJAE-16888. DOI
Chen M.-B., Wu H.-F., Zhan Y., Fu X.-L., Wang A.-K., Wang L.-S., Lei H.-M. Prognostic value of TROP2 expression in patients with gallbladder cancer. Tumor Biol. 2014;35:11565–11569. doi: 10.1007/s13277-014-2469-9. PubMed DOI
Varughese J., Cocco E., Bellone S., Ratner E., Silasi D.-A., Azodi M., Schwartz P.E., Rutherford T.J., Buza N., Pecorelli S., et al. Cervical carcinomas overexpress human trophoblast cell-surface marker (Trop-2) and are highly sensitive to immunotherapy with hRS7, a humanized monoclonal anti-Trop-2 antibody. Am. J. Obstet. Gynecol. 2011;205:567.e1–567.e7. doi: 10.1016/j.ajog.2011.06.093. PubMed DOI PMC
Zeybek B., Manzano A., Bianchi A., Bonazzoli E., Bellone S., Buza N., Hui P., Lopez S., Perrone E., Manara P., et al. Cervical carcinomas that overexpress human trophoblast cell-surface marker (Trop-2) are highly sensitive to the antibody-drug conjugate sacituzumab govitecan. Sci. Rep. 2020;10:973. doi: 10.1038/s41598-020-58009-3. PubMed DOI PMC
Varughese J., Cocco E., Bellone S., de Leon M., Bellone M., Todeschini P., Schwartz P.E., Rutherford T.J., Pecorelli S., Santin A.D. Uterine serous papillary carcinomas overexpress human trophoblast-cell-surface marker (Trop-2) and are highly sensitive to immunotherapy with hRS7, a humanized anti-Trop-2 monoclonal antibody. Cancer. 2011;117:3163–3172. doi: 10.1002/cncr.25891. PubMed DOI PMC
Han C., Perrone E., Zeybek B., Bellone S., Tymon-Rosario J., Altwerger G., Menderes G., Feinberg J., Haines K., Muller Karger M.E., et al. In vitro and in vivo activity of sacituzumab govitecan, an antibody-drug conjugate targeting trophoblast cell-surface antigen 2 (Trop-2) in uterine serous carcinoma. Gynecol. Oncol. 2020;156:430–438. doi: 10.1016/j.ygyno.2019.11.018. PubMed DOI
Lopez S., Perrone E., Bellone S., Bonazzoli E., Zeybek B., Han C., Tymon-Rosario J., Altwerger G., Menderes G., Bianchi A., et al. Preclinical activity of sacituzumab govitecan (IMMU-132) in uterine and ovarian carcinosarcomas. Oncotarget. 2020;11:560–570. doi: 10.18632/oncotarget.27342. PubMed DOI PMC
Bignotti E., Ravaggi A., Romani C., Falchetti M., Lonardi S., Facchetti F., Pecorelli S., Varughese J., Cocco E., Bellone S., et al. Trop-2 overexpression in poorly differentiated endometrial endometrioid carcinoma: Implications for immunotherapy with hRS7, a humanized anti-trop-2 monoclonal antibody. Int. J. Gynecol. Cancer. 2011;21:1613–1621. doi: 10.1097/IGC.0b013e318228f6da. PubMed DOI PMC
Bignotti E., Zanotti L., Calza S., Falchetti M., Lonardi S., Ravaggi A., Romani C., Todeschini P., Bandiera E., Tassi R.A., et al. Trop-2 protein overexpression is an independent marker for predicting disease recurrence in endometrioid endometrial carcinoma. BMC Clin. Pathol. 2012;12:22. doi: 10.1186/1472-6890-12-22. PubMed DOI PMC
Guan G.-F., Zhang D.-J., Wen L.-J., Yu D.-J., Zhao Y., Zhu L., Guo Y.-Y., Zheng Y. Prognostic value of TROP2 in human nasopharyngeal carcinoma. Int. J. Clin. Exp. Pathol. 2015;8:10995–11004. PubMed PMC
Tang G., Tang Q., Jia L., Xia S., Li J., Chen Y., Li H., Ding X., Wang F., Hou D., et al. High expression of TROP2 is correlated with poor prognosis of oral squamous cell carcinoma. Pathol. Res. Pract. 2018;214:1606–1612. doi: 10.1016/j.prp.2018.07.017. PubMed DOI
Jia L., Wang T., Ding G., Kuai X., Wang X., Wang B., Zhao W., Zhao Y. Trop2 inhibition of P16 expression and the cell cycle promotes intracellular calcium release in OSCC. Int. J. Biol. Macromol. 2020;164:2409–2417. doi: 10.1016/j.ijbiomac.2020.07.234. PubMed DOI
Zhang B., Gao S., Li R., Li Y., Cao R., Cheng J., Guo Y., Wang E., Huang Y., Zhang K. Tissue mechanics and expression of TROP2 in oral squamous cell carcinoma with varying differentiation. BMC Cancer. 2020;20:815. doi: 10.1186/s12885-020-07257-7. PubMed DOI PMC
Nakashima K., Shimada H., Ochiai T., Kuboshima M., Kuroiwa N., Okazumi S., Matsubara H., Nomura F., Takiguchi M., Hiwasa T. Serological identification of TROP2 by recombinant cDNA expression cloning using sera of patients with esophageal squamous cell carcinoma. Int. J. Cancer. 2004;112:1029–1035. doi: 10.1002/ijc.20517. PubMed DOI
Hao Y., Zhang D., Guo Y., Fu Z., Yu D., Guan G. miR-488-3p sponged by circ-0000495 and mediated upregulation of TROP2 in head and neck squamous cell carcinoma development. J. Cancer. 2020;11:3375–3386. doi: 10.7150/jca.40339. PubMed DOI PMC
Wu H., Xu H., Zhang S., Wang X., Zhu H., Zhang H., Zhu J., Huang J. Potential therapeutic target and independent prognostic marker of TROP2 in laryngeal squamous cell carcinoma. Head Neck. 2013;35:1373–1378. doi: 10.1002/hed.23138. PubMed DOI
Salerno E.P., Bedognetti D., Mauldin I.S., Deacon D.H., Shea S.M., Pinczewski J., Obeid J.M., Coukos G., Wang E., Gajewski T.F., et al. Human melanomas and ovarian cancers overexpressing mechanical barrier molecule genes lack immune signatures and have increased patient mortality risk. Oncoimmunology. 2016;5:e1240857. doi: 10.1080/2162402X.2016.1240857. PubMed DOI PMC
Chen R., Lu M., Wang J., Zhang D., Lin H., Zhu H., Zhang W., Xiong L., Ma J., Mao Y., et al. Increased expression of Trop2 correlates with poor survival in extranodal NK/T cell lymphoma, nasal type. Virchows Arch. Int. J. Pathol. 2013;463:713–719. doi: 10.1007/s00428-013-1475-4. PubMed DOI
Ning S., Liang N., Liu B., Chen X., Pang Q., Xin T. TROP2 expression and its correlation with tumor proliferation and angiogenesis in human gliomas. Neurol. Sci. 2013;34:1745–1750. doi: 10.1007/s10072-013-1326-8. PubMed DOI
Chen X., Pang B., Liang Y., Xu S.-C., Xin T., Fan H.-T., Yu Y.-B., Pang Q. Overexpression of EpCAM and Trop2 in pituitary adenomas. Int. J. Clin. Exp. Pathol. 2014;7:7907–7914. PubMed PMC
Tate J.G., Bamford S., Jubb H.C., Sondka Z., Beare D.M., Bindal N., Boutselakis H., Cole C.G., Creatore C., Dawson E., et al. COSMIC: The Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2019;47:D941–D947. doi: 10.1093/nar/gky1015. PubMed DOI PMC
Guerra E., Trerotola M., Aloisi A.L., Tripaldi R., Vacca G., La Sorda R., Lattanzio R., Piantelli M., Alberti S. The Trop-2 signalling network in cancer growth. Oncogene. 2013;32:1594–1600. doi: 10.1038/onc.2012.151. PubMed DOI
Wu M., Liu L., Hijazi H., Chan C. A multi-layer inference approach to reconstruct condition-specific genes and their regulation. Bioinformatics. 2013;29:1541–1552. doi: 10.1093/bioinformatics/btt186. PubMed DOI PMC
Hidalgo-Estévez A.M., Stamatakis K., Jiménez-Martínez M., López-Pérez R., Fresno M. Cyclooxygenase 2-Regulated Genes an Alternative Avenue to the Development of New Therapeutic Drugs for Colorectal Cancer. Front. Pharmacol. 2020;11 doi: 10.3389/fphar.2020.00533. PubMed DOI PMC
Zhao P., Zhang Z. TNF-α promotes colon cancer cell migration and invasion by upregulating TROP-2. Oncol. Lett. 2018;15:3820–3827. doi: 10.3892/ol.2018.7735. PubMed DOI PMC
Lokody I.B., Francis J.C., Gardiner J.R., Erler J.T., Swain A. Pten Regulates Epithelial Cytodifferentiation during Prostate Development. PLoS ONE. 2015;10:e0129470. doi: 10.1371/journal.pone.0129470. PubMed DOI PMC
Suraneni M.V., Schneider-Broussard R., Moore J.R., Davis T.C., Maldonado C.J., Li H., Newman R.A., Kusewitt D., Hu J., Yang P., et al. Transgenic expression of 15-lipoxygenase 2 (15-LOX2) in mouse prostate leads to hyperplasia and cell senescence. Oncogene. 2010;29:4261–4275. doi: 10.1038/onc.2010.197. PubMed DOI PMC
Eisenwort G., Jurkin J., Yasmin N., Bauer T., Gesslbauer B., Strobl H. Identification of TROP2 (TACSTD2), an EpCAM-Like Molecule, as a Specific Marker for TGF-β1-Dependent Human Epidermal Langerhans Cells. J. Investig. Dermatol. 2011;131:2049–2057. doi: 10.1038/jid.2011.164. PubMed DOI
Lü J., Izvolsky K.I., Qian J., Cardoso W.V. Identification of FGF10 Targets in the Embryonic Lung Epithelium during Bud Morphogenesis. J. Biol. Chem. 2005;280:4834–4841. doi: 10.1074/jbc.M410714200. PubMed DOI
Liu Q., Luo Q., Ju Y., Song G. Role of the mechanical microenvironment in cancer development and progression. Cancer Biol. Med. 2020;17:282–292. doi: 10.20892/j.issn.2095-3941.2019.0437. PubMed DOI PMC
Nakanishi H., Taccioli C., Palatini J., Fernandez-Cymering C., Cui R., Kim T., Volinia S., Croce C. Loss of miR-125b-1 contributes to head and neck cancer development by dysregulating TACSTD2 and MAPK pathway. Oncogene. 2014;33:702–712. doi: 10.1038/onc.2013.13. PubMed DOI PMC
Avellini C., Licini C., Lazzarini R., Gesuita R., Guerra E., Tossetta G., Castellucci C., Giannubilo S.R., Procopio A., Alberti S., et al. The trophoblast cell surface antigen 2 and miR-125b axis in urothelial bladder cancer. Oncotarget. 2017;8:58642–58653. doi: 10.18632/oncotarget.17407. PubMed DOI PMC
Ibragimova I., de Cáceres I.I., Hoffman A.M., Potapova A., Dulaimi E., Al-Saleem T., Hudes G.R., Ochs M.F., Cairns P. Global Reactivation of Epigenetically Silenced Genes in Prostate Cancer. Cancer Prev. Res. 2010;3:1084–1092. doi: 10.1158/1940-6207.CAPR-10-0039. PubMed DOI PMC
Remšík J., Binó L., Kahounová Z., Kharaishvili G., Šimecková Š., Fedr R., Kucírková T., Lenárt S., Muresan X.M., Slabáková E., et al. Trop-2 plasticity is controlled by epithelial-to-mesenchymal transition. Carcinogenesis. 2018;39:1411–1418. doi: 10.1093/carcin/bgy095. PubMed DOI
Kalluri R., Weinberg R.A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 2009;119:1420–1428. doi: 10.1172/JCI39104. PubMed DOI PMC
Tsai J.H., Yang J. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 2013;27:2192–2206. doi: 10.1101/gad.225334.113. PubMed DOI PMC
Xu W., Yang Z., Lu N. A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adhes. Migr. 2015;9:317–324. doi: 10.1080/19336918.2015.1016686. PubMed DOI PMC
Zhang L., Yang G., Zhang R., Dong L., Chen H., Bo J., Xue W., Huang Y. Curcumin inhibits cell proliferation and motility via suppression of TROP2 in bladder cancer cells. Int. J. Oncol. 2018;53:515–526. doi: 10.3892/ijo.2018.4423. PubMed DOI PMC
Wang J., Day R., Dong Y., Weintraub S.J., Michel L. Identification of Trop-2 as an oncogene and an attractive therapeutic target in colon cancers. Mol. Cancer Ther. 2008;7:280–285. doi: 10.1158/1535-7163.MCT-07-2003. PubMed DOI
Zimmers S.M., Browne E.P., Williams K.E., Jawale R.M., Otis C.N., Schneider S.S., Arcaro K.F. TROP2 methylation and expression in tamoxifen-resistant breast cancer. Cancer Cell Int. 2018;18:94. doi: 10.1186/s12935-018-0589-9. PubMed DOI PMC
Wu B., Yu C., Zhou B., Huang T., Gao L., Liu T., Yang X. Overexpression of TROP2 promotes proliferation and invasion of ovarian cancer cells. Exp. Ther. Med. 2017;14:1947–1952. doi: 10.3892/etm.2017.4788. PubMed DOI PMC
Xie J., Mølck C., Paquet-Fifield S., Butler L., Australian Prostate Cancer Bioresource E.S., Ventura S., Hollande F. High expression of TROP2 characterizes different cell subpopulations in androgen-sensitive and androgen-independent prostate cancer cells. Oncotarget. 2016;7:44492–44504. doi: 10.18632/oncotarget.9876. PubMed DOI PMC
Kuai X., Jia L., Yang T., Huang X., Zhao W., Zhang M., Chen Y., Zhu J., Feng Z., Tang Q. Trop2 Promotes Multidrug Resistance by Regulating Notch1 Signaling Pathway in Gastric Cancer Cells. Med. Sci. Monit. 2020;26:e919566-1–e919566-9. doi: 10.12659/MSM.919566. PubMed DOI PMC
Wang X., Long M., Dong K., Lin F., Weng Y., Ouyang Y., Liu L., Wei J., Chen X., He T., et al. Chemotherapy agents-induced immunoresistance in lung cancer cells could be reversed by trop-2 inhibition in vitro and in vivo by interaction with MAPK signaling pathway. Cancer Biol. Ther. 2013;14:1123–1132. doi: 10.4161/cbt.26341. PubMed DOI PMC
Frederick B.A., Helfrich B.A., Coldren C.D., Zheng D., Chan D., Bunn P.A., Raben D. Epithelial to mesenchymal transition predicts gefitinib resistance in cell lines of head and neck squamous cell carcinoma and non–small cell lung carcinoma. Mol. Cancer Ther. 2007;6:1683–1691. doi: 10.1158/1535-7163.MCT-07-0138. PubMed DOI
Ray Chaudhuri A., Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 2017;18:610–621. doi: 10.1038/nrm.2017.53. PubMed DOI PMC
Stein R., Chen S., Sharkey R.M., Goldenberg D.M. Murine monoclonal antibodies raised against human non-small cell carcinoma of the lung: Specificity and tumor targeting. Cancer Res. 1990;50:1330–1336. PubMed
Stein R., Basu A., Chen S., Shih L.B., Goldenberg D.M. Specificity and properties of MAb RS7-3G11 and the antigen defined by this pancarcinoma monoclonal antibody. Int. J. Cancer. 1993;55:938–946. doi: 10.1002/ijc.2910550611. PubMed DOI
Stein R., Govindan S.V., Chen S., Reed L., Spiegelman H., Griffiths G.L., Hansen H.J., Goldenberg D.M. Successful therapy of a human lung cancer xenograft using MAb RS7 labeled with residualizing radioiodine. Crit. Rev. Oncol. Hematol. 2001;39:173–180. doi: 10.1016/S1040-8428(01)00106-8. PubMed DOI
Stein R., Chen S., Haim S., Goldenberg D.M. Advantage of yttrium-90-labeled over iodine-131-labeled monoclonal antibodies in the treatment of a human lung carcinoma xenograft. Cancer. 1997;80:2636–2641. doi: 10.1002/(SICI)1097-0142(19971215)80:12+<2636::AID-CNCR39>3.0.CO;2-B. PubMed DOI
Stein R., Goldenberg D.M., Thorpe S.R., Mattes M.J. Advantage of a residualizing iodine radiolabel for radioimmunotherapy of xenografts of human non-small-cell carcinoma of the lung. J. Nucl. Med. 1997;38:391–395. PubMed
Shih L.B., Xuan H., Aninipot R., Stein R., Goldenberg D.M. In Vitro and in Vivo Reactivity of an Internalizing Antibody, RS7, with Human Breast Cancer. Cancer Res. 1995;55:5857s–5863s. PubMed
Chang C.-H., Gupta P., Michel R., Loo M., Wang Y., Cardillo T.M., Goldenberg D.M. Ranpirnase (Frog RNase) Targeted with a Humanized, Internalizing, Anti–Trop-2 Antibody Has Potent Cytotoxicity against Diverse Epithelial Cancer Cells. Mol. Cancer Ther. 2010;9:2276–2286. doi: 10.1158/1535-7163.MCT-10-0338. PubMed DOI
Liu D., Cardillo T.M., Wang Y., Rossi E.A., Goldenberg D.M., Chang C.-H. Trop-2-targeting tetrakis-ranpirnase has potent antitumor activity against triple-negative breast cancer. Mol. Cancer. 2014;13:53. doi: 10.1186/1476-4598-13-53. PubMed DOI PMC
Goldenberg D.M., Cardillo T.M., Govindan S.V., Rossi E.A., Sharkey R.M. Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC) Oncotarget. 2015;6:22496–22512. doi: 10.18632/oncotarget.4318. PubMed DOI PMC
Fujita K., Kubota Y., Ishida H., Sasaki Y. Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer. World J. Gastroenterol. 2015;21:12234–12248. doi: 10.3748/wjg.v21.i43.12234. PubMed DOI PMC
Goldenberg D.M., Stein R., Sharkey R.M. The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target. Oncotarget. 2018;9:28989–29006. doi: 10.18632/oncotarget.25615. PubMed DOI PMC
Goldenberg D.M., Sharkey R.M. Sacituzumab govitecan, a novel, third-generation, antibody-drug conjugate (ADC) for cancer therapy. Expert Opin. Biol. Ther. 2020:1–15. doi: 10.1080/14712598.2020.1757067. PubMed DOI
Starodub A.N., Ocean A.J., Shah M.A., Guarino M.J., Picozzi V.J., Jr., Vahdat L.T., Thomas S.S., Govindan S.V., Maliakal P.P., Wegener W.A., et al. First-in-Human Trial of a Novel Anti-Trop-2 Antibody-SN-38 Conjugate, Sacituzumab Govitecan, for the Treatment of Diverse Metastatic Solid Tumors. Clin. Cancer Res. 2015;21:3870–3878. doi: 10.1158/1078-0432.CCR-14-3321. PubMed DOI PMC
Ocean A.J., Starodub A.N., Bardia A., Vahdat L.T., Isakoff S.J., Guarino M., Messersmith W.A., Picozzi V.J., Mayer I.A., Wegener W.A., et al. Sacituzumab govitecan (IMMU-132), an anti-Trop-2-SN-38 antibody-drug conjugate for the treatment of diverse epithelial cancers: Safety and pharmacokinetics. Cancer. 2017;123:3843–3854. doi: 10.1002/cncr.30789. PubMed DOI
Faltas B., Goldenberg D.M., Ocean A.J., Govindan S.V., Wilhelm F., Sharkey R.M., Hajdenberg J., Hodes G., Nanus D.M., Tagawa S.T. Sacituzumab Govitecan, a Novel Antibody--Drug Conjugate, in Patients With Metastatic Platinum-Resistant Urothelial Carcinoma. Clin. Genitourin. Cancer. 2016;14:e75–e79. doi: 10.1016/j.clgc.2015.10.002. PubMed DOI
Tagawa S.T., Petrylak D.P., Grivas P., Agarwal N., Sternberg C.N., Hernandez C., Siemon-Hryczyk P., Goswami T., Loriot Y. TROPHY-U-01: A phase II open-label study of sacituzumab govitecan (IMMU-132) in patients with advanced urothelial cancer after progression on platinum-based chemotherapy and/or anti-PD-1/PD-L1 checkpoint inhibitor therapy. J. Clin. Oncol. 2019;37:TPS3153. doi: 10.1200/JCO.2019.37.15_suppl.TPS3153. DOI
Tagawa S.T., Faltas B., Lam E., Saylor P., Bardia A., Hajdenberg J., Morgans A.K., Lim E., Kalinsky K., Petrylak D.P., et al. Sacituzumab govitecan (IMMU-132) for patients with pretreated metastatic urothelial uancer (UC): Interim results. Ann. Oncol. 2017;28:v301–v302. doi: 10.1093/annonc/mdx371.012. DOI
Gray J.E., Heist R.S., Starodub A.N., Camidge D.R., Kio E.A., Masters G.A., Purcell W.T., Guarino M.J., Misleh J., Schneider C.J., et al. Therapy of Small Cell Lung Cancer (SCLC) with a Topoisomerase-I-inhibiting Antibody-Drug Conjugate (ADC) Targeting Trop-2, Sacituzumab Govitecan. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017;23:5711–5719. doi: 10.1158/1078-0432.CCR-17-0933. PubMed DOI
Heist R.S., Guarino M.J., Masters G., Purcell W.T., Starodub A.N., Horn L., Scheff R.J., Bardia A., Messersmith W.A., Berlin J., et al. Therapy of Advanced Non–Small-Cell Lung Cancer With an SN-38-Anti-Trop-2 Drug Conjugate, Sacituzumab Govitecan. J. Clin. Oncol. 2017;35:2790–2797. doi: 10.1200/JCO.2016.72.1894. PubMed DOI
Bardia A., Mayer I.A., Diamond J.R., Moroose R.L., Isakoff S.J., Starodub A.N., Shah N.C., O’Shaughnessy J., Kalinsky K., Guarino M., et al. Efficacy and Safety of Anti-Trop-2 Antibody Drug Conjugate Sacituzumab Govitecan (IMMU-132) in Heavily Pretreated Patients With Metastatic Triple-Negative Breast Cancer. J. Clin. Oncol. 2017;35:2141–2148. doi: 10.1200/JCO.2016.70.8297. PubMed DOI PMC
Bardia A., Mayer I.A., Vahdat L.T., Tolaney S.M., Isakoff S.J., Diamond J.R., O’Shaughnessy J., Moroose R.L., Santin A.D., Abramson V.G., et al. Sacituzumab Govitecan-hziy in Refractory Metastatic Triple-Negative Breast Cancer. N. Engl. J. Med. 2019;380:741–751. doi: 10.1056/NEJMoa1814213. PubMed DOI
Bardia A., Diamond J.R., Vahdat L.T., Tolaney S.M., O’Shaughnessy J., Moroose R.L., Mayer I.A., Abramson V.G., Juric D., Sharkey R.M., et al. Efficacy of sacituzumab govitecan (anti-Trop-2-SN-38 antibody-drug conjugate) for treatment-refractory hormone-receptor positive (HR+)/HER2- metastatic breast cancer (mBC) J. Clin. Oncol. 2018;36:1004. doi: 10.1200/JCO.2018.36.15_suppl.1004. DOI
Goldenberg D.M., Sharkey R.M. Antibody-drug conjugates targeting TROP-2 and incorporating SN-38: A case study of anti-TROP-2 sacituzumab govitecan. MAbs. 2019;11:987–995. doi: 10.1080/19420862.2019.1632115. PubMed DOI PMC
Syed Y.Y. Sacituzumab Govitecan: First Approval. Drugs. 2020;80:1019–1025. doi: 10.1007/s40265-020-01337-5. PubMed DOI PMC
King G.T., Eaton K.D., Beagle B.R., Zopf C.J., Wong G.Y., Krupka H.I., Hua S.Y., Messersmith W.A., El-Khoueiry A.B. A phase 1, dose-escalation study of PF-06664178, an anti-Trop-2/Aur0101 antibody-drug conjugate in patients with advanced or metastatic solid tumors. Investig. New Drugs. 2018;36:836–847. doi: 10.1007/s10637-018-0560-6. PubMed DOI PMC
Strop P., Tran T.-T., Dorywalska M., Delaria K., Dushin R., Wong O.K., Ho W.-H., Zhou D., Wu A., Kraynov E., et al. RN927C, a Site-Specific Trop-2 Antibody–Drug Conjugate (ADC) with Enhanced Stability, Is Highly Efficacious in Preclinical Solid Tumor Models. Mol. Cancer Ther. 2016;15:2698–2708. doi: 10.1158/1535-7163.MCT-16-0431. PubMed DOI
Lin H., Zhang H., Wang J., Lu M., Zheng F., Wang C., Tang X., Xu N., Chen R., Zhang D., et al. A novel human Fab antibody for Trop2 inhibits breast cancer growth in vitro and in vivo. Int. J. Cancer. 2014;134:1239–1249. doi: 10.1002/ijc.28451. PubMed DOI
Mao Y., Wang X., Zheng F., Wang C., Tang Q., Tang X., Xu N., Zhang H., Zhang D., Xiong L., et al. The tumor-inhibitory effectiveness of a novel anti-Trop2 Fab conjugate in pancreatic cancer. Oncotarget. 2016;7:24810–24823. doi: 10.18632/oncotarget.8529. PubMed DOI PMC
Son S., Shin S., Rao N.V., Um W., Jeon J., Ko H., Deepagan V.G., Kwon S., Lee J.Y., Park J.H. Anti-Trop2 antibody-conjugated bioreducible nanoparticles for targeted triple negative breast cancer therapy. Int. J. Biol. Macromol. 2018;110:406–415. doi: 10.1016/j.ijbiomac.2017.10.113. PubMed DOI
Chang C.-H., Goldenberg D.M. Enhancing the antitumor potency of T cells redirected by bispecific antibodies. Oncoscience. 2017;4:120–121. doi: 10.18632/oncoscience.366. PubMed DOI PMC
Cubas R., Zhang S., Li M., Chen C., Yao Q. Chimeric Trop2 Virus-like Particles: A Potential Immunotherapeutic Approach Against Pancreatic Cancer. J. Immunother. 2011;34:251–263. doi: 10.1097/CJI.0b013e318209ee72. PubMed DOI
Xi W., Ke D., Min L., Lin W., Jiahui Z., Fang L., Zhaowei G., Zhe Z., Xi C., Huizhong Z. Incorporation of CD40 ligand enhances the immunogenicity of tumor-associated calcium signal transducer 2 virus-like particles against lung cancer. Int. J. Mol. Med. 2018;41:3671–3679. doi: 10.3892/ijmm.2018.3570. PubMed DOI
Liu T., Tian J., Chen Z., Liang Y., Liu J., Liu S., Li H., Zhan J., Yang X. Anti-TROP2 conjugated hollow gold nanospheres as a novel nanostructure for targeted photothermal destruction of cervical cancer cells. Nanotechnology. 2014;25:345103. doi: 10.1088/0957-4484/25/34/345103. PubMed DOI