Aryl hydrocarbon receptor as a drug target in advanced prostate cancer therapy - obstacles and perspectives

. 2025 Feb ; 16 (1) : 47-66. [epub] 20240328

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38547312

Aryl hydrocarbon receptor (AhR) is a transcription factor that is primarily known as an intracellular sensor of environmental pollution. After five decades, the list of synthetic and toxic chemicals that activate AhR signaling has been extended to include a number of endogenous compounds produced by various types of cells via their metabolic activity. AhR signaling is active from the very beginning of embryonal development throughout the life cycle and participates in numerous biological processes such as control of cell proliferation and differentiation, metabolism of aromatic compounds of endogenous and exogenous origin, tissue regeneration and stratification, immune system development and polarization, control of stemness potential, and homeostasis maintenance. AhR signaling can be affected by various pharmaceuticals that may help modulate abnormal AhR signaling and drive pathological states. Given their role in immune system development and regulation, AhR antagonistic ligands are attractive candidates for immunotherapy of disease states such as advanced prostate cancer, where an aberrant immune microenvironment contributes to cancer progression and needs to be reeducated. Advanced stages of prostate cancer are therapeutically challenging and characterized by decreased overall survival (OS) due to the metastatic burden. Therefore, this review addresses the role of AhR signaling in the development and progression of prostate cancer and discusses the potential of AhR as a drug target for the treatment of advanced prostate cancer upon entering the phase of drug resistance and failure of first-line androgen deprivation therapy.Abbreviation: ADC: antibody-drug conjugate; ADT: androgen deprivation therapy; AhR: aryl hydrocarbon receptor; AR: androgen receptor; ARE: androgen response element; ARPI: androgen receptor pathway inhibitor; mCRPC: metastatic castration-resistant prostate cancer; DHT: 5a-dihydrotestosterone; FICZ: 6-formylindolo[3,2-b]carbazole; 3-MC: 3-methylcholanthrene; 6-MCDF: 6-methyl-1,3,8-trichlorodibenzofuran; MDSCs: myeloid-derived suppressor cells; PAHs: polycyclic aromatic hydrocarbons; PCa: prostate cancer; TAMs: tumor-associated macrophages; TF: transcription factor; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; TME: tumor microenvironment; TRAMP: transgenic adenocarcinoma of the mouse prostate; TROP2: tumor associated calcium signal transducer 2.

Zobrazit více v PubMed

Poland A, Glover E, Kende AS.. Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. J Biol Chem. 1976;251(16):4936–4946. doi: 10.1016/S0021-9258(17)33205-2 PubMed DOI

Poland A, Kende A. 2,3,7,8-Tetrachlorodibenzo-p-dioxin: environmental contaminant and molecular probe. Fed Proc. 1976;35(12):2404–2411. PubMed

Guenthner TM, Nebert DW. Cytosolic receptor for aryl hydrocarbon hydroxylase induction by polycyclic aromatic compounds. Evidence for structural and regulatory variants among established cell cultured lines. J Biol Chem. 1977;252(24):8981–8989. doi: 10.1016/S0021-9258(17)38335-7 PubMed DOI

Nebert DW. Aryl hydrocarbon receptor (AHR): “pioneer member” of the basic-helix/loop/helix per-arnt-sim (bHLH/PAS) family of “sensors” of foreign and endogenous signals. Prog Lipid Res. 2017;67:38–57. doi: 10.1016/j.plipres.2017.06.001 PubMed DOI PMC

Riddick DS. Fifty years of aryl hydrocarbon receptor research as reflected in the pages of drug metabolism and disposition. Drug Metab Dispos. 2023;51(6):657–671. doi: 10.1124/dmd.122.001009 PubMed DOI

Enan E, Matsumura F. Identification of c-Src as the integral component of the cytosolic Ah receptor complex, transducing the signal of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) through the protein phosphorylation pathway. Biochem Pharmacol. 1996;52(52):1599–1612. doi: 10.1016/S0006-2952(96)00566-7 PubMed DOI

Xie G, Peng Z, Raufman JP. Src-mediated aryl hydrocarbon and epidermal growth factor receptor cross talk stimulates colon cancer cell proliferation. Am J Physiol Gastrointest Liver Physiol. 2012;302(9):G1006–15. doi: 10.1152/ajpgi.00427.2011 PubMed DOI PMC

Meyer BK, Petrulis JR, Perdew GH. Aryl hydrocarbon (ah) receptor levels are selectively modulated by hsp90-associated immunophilin homolog XAP2. Cell Stress Chaperones. 2000;5(3):243–254. doi: 10.1379/1466-1268(2000)005<0243:AHARLA>2.0.CO;2 PubMed DOI PMC

Komura K, Hayashi S, Makino I, et al. Aryl hydrocarbon receptor/dioxin receptor in human monocytes and macrophages. Mol Cell Biochem. 2001;226(1/2):107–118. doi: 10.1023/A:1012762519424 PubMed DOI

Davarinos NA, Pollenz RS. Aryl hydrocarbon receptor imported into the nucleus following ligand binding is rapidly degraded via the cytosplasmic proteasome following nuclear export. J Biol Chem. 1999;274(40):28708–28715. doi: 10.1074/jbc.274.40.28708 PubMed DOI

Flaveny CA, Perdew GH. Transgenic humanized AHR mouse reveals differences between human and mouse AHR ligand selectivity. Mol Cell Pharmacol. 2009;1(3):119–123. doi: 10.4255/mcpharmacol.09.15 PubMed DOI PMC

Puga A, Xia Y, Elferink C. Role of the aryl hydrocarbon receptor in cell cycle regulation. Chem Biol Interact. 2002;141(1–2):117–130. doi: 10.1016/S0009-2797(02)00069-8 PubMed DOI

Barhoover MA, Hall JM, Greenlee WF, et al. Aryl hydrocarbon receptor regulates cell cycle progression in human breast cancer cells via a functional interaction with cyclin-dependent kinase 4. Mol Pharmacol. 2010;77(2):195–201. doi: 10.1124/mol.109.059675 PubMed DOI

Ikuta T, Kobayashi Y, Kawajiri K. Cell density regulates intracellular localization of aryl hydrocarbon receptor. J Biol Chem. 2004;279(18):19209–19216. doi: 10.1074/jbc.M310492200 PubMed DOI

Denison MS, Faber SC. And Now for something completely different: diversity in ligand-dependent activation of Ah receptor responses. Curr Opin Toxicol. 2017;2:124–131. doi: 10.1016/j.cotox.2017.01.006 PubMed DOI PMC

Denison MS, Nagy SR. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol. 2003;43(1):309–334. doi: 10.1146/annurev.pharmtox.43.100901.135828 PubMed DOI

Jin UH, Lee SO, Safe S. Aryl hydrocarbon receptor (AHR)-active pharmaceuticals are selective AHR modulators in MDA-MB-468 and BT474 breast cancer cells. J Pharmacol Exp Ther. 2012;343(2):333–341. doi: 10.1124/jpet.112.195339 PubMed DOI PMC

Safe S, Qin C, McDougal A. Development of selective aryl hydrocarbon receptor modulators for treatment of breast cancer. Expert Opin Investig Drugs. 1999;8(9):1385–1396. doi: 10.1517/13543784.8.9.1385 PubMed DOI

Bissonnette R, Stein Gold L, Rubenstein DS, et al. Tapinarof in the treatment of psoriasis: a review of the unique mechanism of action of a novel therapeutic aryl hydrocarbon receptor–modulating agent. J Am Acad Dermatol. 2021;84(4):1059–1067. doi: 10.1016/j.jaad.2020.10.085 PubMed DOI

McKean M, Aggen DH, Lakhani NJ, et al. Phase 1a/b open-label study of IK-175, an oral AHR inhibitor, alone and in combination with nivolumab in patients with locally advanced or metastatic solid tumors and urothelial carcinoma. J Clin Oncol. 2022;40(16_suppl):TPS3169–TPS. doi: 10.1200/JCO.2022.40.16_suppl.TPS3169 DOI

Kober C, Roewe J, Schmees N, et al. Targeting the aryl hydrocarbon receptor (AhR) with BAY 2416964: a selective small molecule inhibitor for cancer immunotherapy. J Immunother Cancer. 2023;11(11):11. doi: 10.1136/jitc-2023-007495 PubMed DOI PMC

Rothhammer V, Quintana FJ. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat Rev Immunol. 2019;19(3):184–197. doi: 10.1038/s41577-019-0125-8 PubMed DOI

Miller DR, Ingersoll MA, Teply BA, et al. Targeting treatment options for castration-resistant prostate cancer. Am J Clin Exp Urol. 2021;9:101–120. PubMed PMC

Fernandez-Salguero P, Pineau T, Hilbert DM, et al. Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science. 1995;268(5211):722–726. doi: 10.1126/science.7732381 PubMed DOI

Abbott BD, Schmid JE, Pitt JA, et al. Adverse reproductive outcomes in the transgenic ah receptor-deficient mouse. Toxicol Appl Pharmacol. 1999;155(1):62–70. doi: 10.1006/taap.1998.8601 PubMed DOI

McDonnell WM, Chensue SW, Askari FK, et al. Hepatic Fibrosis in Ahr −/− Mice. Science. 1996;271(5246):223–224. doi: 10.1126/science.271.5246.223-b PubMed DOI

Vasquez A, Atallah-Yunes N, Smith FC, et al. A role for the aryl hydrocarbon receptor in cardiac physiology and function as demonstrated by AhR knockout mice. Cardiovasc Toxicol. 2003;3(2):153–163. doi: 10.1385/CT:3:2:153 PubMed DOI

Lin TM, Ko K, Moore RW, et al. Role of the aryl hydrocarbon receptor in the development of control and 2,3,7,8-tetrachlorodibenzo-p-dioxin-exposed male mice. J Toxicol Environ Health A. 2001;64(4):327–342. doi: 10.1080/152873901316981312 PubMed DOI

Schmidt JV, Su GH, Reddy JK, et al. Characterization of a murine Ahr null allele: involvement of the ah receptor in hepatic growth and development. Proc Natl Acad Sci USA. 1996;93(13):6731–6736. doi: 10.1073/pnas.93.13.6731 PubMed DOI PMC

Singh KP, Garrett RW, Casado FL, et al. Aryl hydrocarbon receptor-null allele mice have hematopoietic stem/progenitor cells with abnormal characteristics and functions. Stem Cells Dev. 2011;20(5):769–784. doi: 10.1089/scd.2010.0333 PubMed DOI PMC

Latchney SE, Hein AM, O’Banion MK, et al. Deletion or activation of the aryl hydrocarbon receptor alters adult hippocampal neurogenesis and contextual fear memory. J Neurochem. 2013;125:430–445. doi: 10.1111/jnc.12130 PubMed DOI PMC

Lahvis GP, Lindell SL, Thomas RS, et al. Portosystemic shunting and persistent fetal vascular structures in aryl hydrocarbon receptor-deficient mice. Proc Natl Acad Sci USA. 2000;97(19):10442–10447. doi: 10.1073/pnas.190256997 PubMed DOI PMC

Schneider AJ, Branam AM, Peterson RE. Intersection of AHR and wnt signaling in development, health, and disease. Int J Mol Sci. 2014;15(10):17852–17885. doi: 10.3390/ijms151017852 PubMed DOI PMC

Kashani M, Steiner G, Haitel A, et al. Expression of the aryl hydrocarbon receptor (AhR) and the aryl hydrocarbon receptor nuclear translocator (ARNT) in fetal, benign hyperplastic, and malignant prostate. Prostate. 1998;37(2):98–108. doi: 10.1002/(SICI)1097-0045(19981001)37:2<98:AID-PROS6>3.0.CO;2-H PubMed DOI

Bergengren O, Pekala KR, Matsoukas K, et al. 2022 update on prostate cancer epidemiology and risk factors—A systematic review. Eur Urol. 2023;84(2):191–206. doi: 10.1016/j.eururo.2023.04.021 PubMed DOI PMC

Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: an overview. Int J Cancer. 2021;149(4):778–789. doi: 10.1002/ijc.33588 PubMed DOI

Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660 PubMed DOI

Roman BL, Peterson RE. In utero and lactational exposure of the male rat to 2,3,7,8-tetrachlorodibenzo-p-dioxin impairs prostate development. 1. Effects on gene expression. Toxicol Appl Pharmacol. 1998;150(2):240–253. doi: 10.1006/taap.1997.8362 PubMed DOI

Jana NR, Sarkar S, Ishizuka M, et al. Cross-talk between 2,3,7,8-tetrachlorodibenzo-p-dioxin and testosterone signal transduction pathways in LNCaP prostate cancer cells. Biochem Biophys Res Commun. 1999;256(3):462–468. doi: 10.1006/bbrc.1999.0367 PubMed DOI

Lin TM, Ko K, Moore RW, et al. Effects of aryl hydrocarbon receptor null mutation and in utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on prostate and seminal vesicle development in C57BL/6 mice. Toxicol Sci. 2002;68(2):479–487. doi: 10.1093/toxsci/68.2.479 PubMed DOI

Lin TM, Rasmussen NT, Moore RW, et al. Region-specific inhibition of prostatic epithelial bud formation in the urogenital sinus of C57BL/6 mice exposed in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci. 2003;76(1):171–181. doi: 10.1093/toxsci/kfg218 PubMed DOI

Moore RW, Potter CL, Theobald HM, et al. Androgenic deficiency in male rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol. 1985;79(1):99–111. doi: 10.1016/0041-008X(85)90372-2 PubMed DOI

Gray LE Jr., Kelce WR, Monosson E, et al. Exposure to TCDD during development permanently alters reproductive function in male long Evans rats and hamsters: reduced ejaculated and epididymal sperm numbers and sex accessory gland weights in offspring with normal androgenic status. Toxicol Appl Pharmacol. 1995;131(1):108–118. doi: 10.1006/taap.1995.1052 PubMed DOI

Cooke GM, Price CA, Oko RJ. Effects of in utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on serum androgens and steroidogenic enzyme activities in the male rat reproductive tract. J Steroid Biochem Mol Biol. 1998;67(4):347–354. doi: 10.1016/S0960-0760(98)00127-7 PubMed DOI

Mably TA, Moore RW, Peterson RE. In utero and lactational exposure of male rats to 2,3,7,8-tetrachlorodibenzo-p-dioxin. 1. Effects on androgenic status. Toxicol Appl Pharmacol. 1992;114(1):97–107. doi: 10.1016/0041-008X(92)90101-W PubMed DOI

Vinggaard AM, Hnida C, Larsen JC. Environmental polycyclic aromatic hydrocarbons affect androgen receptor activation in vitro. Toxicology. 2000;145(2–3):173–183. doi: 10.1016/S0300-483X(00)00143-8 PubMed DOI

Rebello RJ, Oing C, Knudsen KE, et al. Prostate cancer. Nat Rev Dis Primers. 2021;7(1):9. doi: 10.1038/s41572-020-00243-0 PubMed DOI

Fritz WA, Lin TM, Moore RW, et al. In utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure: effects on the prostate and its response to castration in senescent C57BL/6J mice. Toxicol Sci. 2005;86(2):387–395. doi: 10.1093/toxsci/kfi189 PubMed DOI

Arima A, Kato H, Ise R, et al. In utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces disruption of glands of the prostate and fibrosis in rhesus monkeys. Reprod Toxicol. 2010;29(3):317–322. doi: 10.1016/j.reprotox.2009.12.007 PubMed DOI

Ricke WA, Lee CW, Clapper TR, et al. In utero and lactational TCDD exposure increases susceptibility to lower urinary tract dysfunction in adulthood. Toxicol Sci. 2016;150(2):429–440. doi: 10.1093/toxsci/kfw009 PubMed DOI PMC

Fritz WA, Lin TM, Cardiff RD, et al. The aryl hydrocarbon receptor inhibits prostate carcinogenesis in TRAMP mice. Carcinogenesis. 2007;28(2):497–505. doi: 10.1093/carcin/bgl179 PubMed DOI

Fritz WA, Lin TM, Safe S, et al. The selective aryl hydrocarbon receptor modulator 6-methyl-1,3,8-trichlorodibenzofuran inhibits prostate tumor metastasis in TRAMP mice. Biochem Pharmacol. 2009;77(7):1151–1160. doi: 10.1016/j.bcp.2008.12.015 PubMed DOI PMC

Chen Z, Cai A, Zheng H, et al. Carbidopa suppresses prostate cancer via aryl hydrocarbon receptor-mediated ubiquitination and degradation of androgen receptor. Oncogenesis. 2020;9(5):49. doi: 10.1038/s41389-020-0236-x PubMed DOI PMC

Gupta A, Ketchum N, Roehrborn CG, et al. Serum dioxin, testosterone, and subsequent risk of benign prostatic hyperplasia: a prospective cohort study of air force veterans. Environ Health Perspect. 2006;114(11):1649–1654. doi: 10.1289/ehp.8957 PubMed DOI PMC

Gupta A, Schecter A, Aragaki CC, et al. Dioxin exposure and benign prostatic hyperplasia. Journal Of Occupational & Environmental Medicine. 2006;48(7):708–714. doi: 10.1097/01.jom.0000205417.12621.17 PubMed DOI

Endo F, Monsees TK, Akaza H, et al. Effects of single non-ortho, mono-ortho, and di-ortho chlorinated biphenyls on cell functions and proliferation of the human prostatic carcinoma cell line, LNCaP. Reprod Toxicol. 2003;17(2):229–236. doi: 10.1016/S0890-6238(02)00126-0 PubMed DOI

Kizu R, Okamura K, Toriba A, et al. A role of aryl hydrocarbon receptor in the antiandrogenic effects of polycyclic aromatic hydrocarbons in LNCaP human prostate carcinoma cells. Arch Toxicol. 2003;77(6):335–343. doi: 10.1007/s00204-003-0454-y PubMed DOI

Ohtake F, Baba A, Takada I, et al. Dioxin receptor is a ligand-dependent E3 ubiquitin ligase. Nature. 2007;446(7135):562–566. doi: 10.1038/nature05683 PubMed DOI

Ohtake F, Baba A, Fujii-Kuriyama Y, et al. Intrinsic AhR function underlies cross-talk of dioxins with sex hormone signalings. Biochem Biophys Res Commun. 2008;370(4):541–546. doi: 10.1016/j.bbrc.2008.03.054 PubMed DOI

Sanada N, Gotoh-Kinoshita Y, Yamashita N, et al. An androgen-independent mechanism underlying the androgenic effects of 3-methylcholanthrene, a potent aryl hydrocarbon receptor agonist. Toxicol Res (Camb). 2020;9(3):271–282. doi: 10.1093/toxres/tfaa027 PubMed DOI PMC

Gao X, Xie C, Wang Y, et al. The antiandrogen flutamide is a novel aryl hydrocarbon receptor ligand that disrupts bile acid homeostasis in mice through induction of Abcc4. Biochem Pharmacol. 2016;119:93–104. doi: 10.1016/j.bcp.2016.08.021 PubMed DOI PMC

Chen CS, Gao GL, Ho DR, et al. Cyproterone acetate acts as a disruptor of the aryl hydrocarbon receptor. Sci Rep. 2021;11(1):5457. doi: 10.1038/s41598-021-84769-7 PubMed DOI PMC

Rice MA, Malhotra SV, Stoyanova T. Second-generation Antiandrogens: from discovery to standard of care in castration resistant prostate cancer. Front Oncol. 2019;9:801. doi: 10.3389/fonc.2019.00801 PubMed DOI PMC

Le TK, Duong QH, Baylot V, et al. Castration-resistant prostate cancer: from uncovered resistance mechanisms to Current treatments. Cancers (Basel). 2023;15(20):15. doi: 10.3390/cancers15205047 PubMed DOI PMC

Davies AH, Beltran H, Zoubeidi A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat Rev Urol. 2018;15(5):271–286. doi: 10.1038/nrurol.2018.22 PubMed DOI

Chandrasekar T, Yang JC, Gao AC, et al. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl Androl Urol. 2015;13(1):365–380. doi: 10.1186/s12916-015-0457-6 PubMed DOI PMC

Sobhani N, Neeli PK, D’Angelo A, et al. AR-V7 in metastatic prostate cancer: a strategy beyond redemption. Int J Mol Sci. 2021;22(11):22. doi: 10.3390/ijms22115515 PubMed DOI PMC

Sharp A, Coleman I, Yuan W, et al. Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer. J Clin Invest. 2019;129(1):192–208. doi: 10.1172/JCI122819 PubMed DOI PMC

Welti J, Rodrigues DN, Sharp A, et al. Analytical validation and clinical qualification of a new immunohistochemical assay for androgen receptor splice variant-7 protein expression in metastatic castration-resistant prostate cancer. Eur Urol. 2016;70(4):599–608. doi: 10.1016/j.eururo.2016.03.049 PubMed DOI PMC

Khan T, Becker TM, Scott KF, et al. Prognostic and predictive value of liquid biopsy-derived androgen receptor variant 7 (AR-V7) in prostate cancer: a systematic review and meta-analysis. Front Oncol. 2022;12:868031. doi: 10.3389/fonc.2022.868031 PubMed DOI PMC

Antonarakis ES, Lu C, Wang H, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371(11):1028–1038. doi: 10.1056/NEJMoa1315815 PubMed DOI PMC

Armstrong AJ, Halabi S, Luo J, et al. Prospective multicenter validation of androgen receptor splice variant 7 and hormone therapy resistance in high-risk castration-resistant prostate cancer: the PROPHECY study. J Clin Oncol. 2019;37(13):1120–1129. doi: 10.1200/JCO.18.01731 PubMed DOI PMC

Zhu Y, Dalrymple SL, Coleman I, et al. Role of androgen receptor splice variant-7 (AR-V7) in prostate cancer resistance to 2nd-generation androgen receptor signaling inhibitors. Oncogene. 2020;39(45):6935–6949. doi: 10.1038/s41388-020-01479-6 PubMed DOI PMC

Xu D, Zhan Y, Qi Y, et al. Androgen receptor splice variants dimerize to transactivate target genes. Cancer Res. 2015;75(17):3663–3671. doi: 10.1158/0008-5472.CAN-15-0381 PubMed DOI PMC

Sun F, Indran IR, Zhang ZW, et al. A novel prostate cancer therapeutic strategy using icaritin-activated arylhydrocarbon-receptor to co-target androgen receptor and its splice variants. Carcinogenesis. 2015;36(7):757–768. doi: 10.1093/carcin/bgv040 PubMed DOI PMC

Tran C, Richmond O, Aaron L, et al. Inhibition of constitutive aryl hydrocarbon receptor (AhR) signaling attenuates androgen independent signaling and growth in (C4-2) prostate cancer cells. Biochem Pharmacol. 2013;85(6):753–762. doi: 10.1016/j.bcp.2012.12.010 PubMed DOI PMC

Richmond O, Ghotbaddini M, Allen C, et al. The aryl hydrocarbon receptor is constitutively active in advanced prostate cancer cells. PloS One. 2014;9(4):e95058. doi: 10.1371/journal.pone.0095058 PubMed DOI PMC

Ghotbaddini M, Powell JB. The AhR Ligand, TCDD, regulates androgen receptor activity differently in androgen-sensitive versus castration-resistant human prostate cancer cells. Int J Environ Res Public Health. 2015;12(7):7506–7518. doi: 10.3390/ijerph120707506 PubMed DOI PMC

Ide H, Lu Y, Yu J, et al. Aryl hydrocarbon receptor signaling involved in the invasiveness of LNCaP cells. Hum Cell. 2017;30(2):133–139. doi: 10.1007/s13577-016-0158-2 PubMed DOI

Bishop JL, Davies A, Ketola K, et al. Regulation of tumor cell plasticity by the androgen receptor in prostate cancer. Endocr Relat Cancer. 2015;22(3):R165–82. doi: 10.1530/ERC-15-0137 PubMed DOI

Leone RD, Powell JD. Metabolism of immune cells in cancer. Nat Rev Cancer. 2020;20(9):516–531. doi: 10.1038/s41568-020-0273-y PubMed DOI PMC

Zhou H, He Q, Li C, et al. Focus on the tumor microenvironment: a seedbed for neuroendocrine prostate cancer. Front Cell Dev Biol. 2022;10:955669. doi: 10.3389/fcell.2022.955669 PubMed DOI PMC

Vinay DS, Ryan EP, Pawelec G, et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015;35:S185–S98. doi: 10.1016/j.semcancer.2015.03.004 PubMed DOI

Koinis F, Xagara A, Chantzara E, et al. Myeloid-derived suppressor cells in prostate cancer: present knowledge and future perspectives. Cells. 2021;11(1):11. doi: 10.3390/cells11010020 PubMed DOI PMC

Sui H, Dongye S, Liu X, et al. Immunotherapy of targeting MDSCs in tumor microenvironment. Front Immunol. 2022;13:990463. doi: 10.3389/fimmu.2022.990463 PubMed DOI PMC

Lindau D, Gielen P, Kroesen M, et al. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology. 2013;138(2):105–115. doi: 10.1111/imm.12036 PubMed DOI PMC

De Cicco P, Ercolano G, Ianaro A. The New Era of cancer Immunotherapy: targeting myeloid-derived suppressor cells to overcome immune evasion. Front Immunol. 2020;11:1680. doi: 10.3389/fimmu.2020.01680 PubMed DOI PMC

Zhang Q, Liu S, Zhang Q, et al. Interleukin-17 promotes development of castration-resistant prostate cancer potentially through creating an immunotolerant and pro-angiogenic tumor microenvironment. Prostate. 2014;74(8):869–879. doi: 10.1002/pros.22805 PubMed DOI PMC

Gonzalez FJ, Fernandez-Salguero P, Lee SS, et al. Xenobiotic receptor knockout mice. Toxicol Lett. 1995;82-83:117–121. doi: 10.1016/0378-4274(95)03548-6 PubMed DOI

Hundeiker C, Pineau T, Cassar G, et al. Thymocyte development in ah-receptor-deficient mice is refractory to TCDD-inducible changes. Int j immunopharmacol. 1999;21(12):841–859. doi: 10.1016/S0192-0561(99)00053-3 PubMed DOI

Boitano AE, Wang J, Romeo R, et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science. 2010;329(5997):1345–1348. doi: 10.1126/science.1191536 PubMed DOI PMC

Smith BW, Rozelle SS, Leung A, et al. The aryl hydrocarbon receptor directs hematopoietic progenitor cell expansion and differentiation. Blood. 2013;122(3):376–385. doi: 10.1182/blood-2012-11-466722 PubMed DOI PMC

Murante FG, Gasiewicz TA. Hemopoietic progenitor cells are sensitive targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin in C57BL/6J mice. Toxicol Sci. 2000;54(2):374–383. doi: 10.1093/toxsci/54.2.374 PubMed DOI

Singh KP, Wyman A, Casado FL, et al. Treatment of mice with the Ah receptor agonist and human carcinogen dioxin results in altered numbers and function of hematopoietic stem cells. Carcinogenesis. 2009;30(1):11–19. doi: 10.1093/carcin/bgn224 PubMed DOI PMC

Ju M, Gao Z, Gu G, et al. Prognostic value of circulating tumor cells associated with white blood cells in solid cancer: a systematic review and meta-analysis of 1471 patients with solid tumors. BMC Cancer. 2023;23(1):1224. doi: 10.1186/s12885-023-11711-7 PubMed DOI PMC

Diamantopoulou Z, Castro-Giner F, Schwab FD, et al. The metastatic spread of breast cancer accelerates during sleep. Nature. 2022;607(7917):156–162. doi: 10.1038/s41586-022-04875-y PubMed DOI

Gutierrez-Vazquez C, Quintana FJ. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity. 2018;48(1):19–33. doi: 10.1016/j.immuni.2017.12.012 PubMed DOI PMC

Zhou L. AHR function in lymphocytes: emerging concepts. Trends Immunol. 2016;37(1):17–31. doi: 10.1016/j.it.2015.11.007 PubMed DOI PMC

Korn T, Bettelli E, Oukka M, et al. IL-17 and Th17 cells. Annu Rev Immunol. 2009;27(1):485–517. doi: 10.1146/annurev.immunol.021908.132710 PubMed DOI

Jiao S, Subudhi SK, Aparicio A, et al. Differences in tumor microenvironment dictate t helper lineage polarization and response to immune checkpoint therapy. Cell. 2019;179(5):1177–90 e13. doi: 10.1016/j.cell.2019.10.029 PubMed DOI

Mills KHG. IL-17 and IL-17-producing cells in protection versus pathology. Nat Rev Immunol. 2023;23(1):38–54. doi: 10.1038/s41577-022-00746-9 PubMed DOI PMC

Zenobia C, Hajishengallis G. Basic biology and role of interleukin-17 in immunity and inflammation. Periodontol 2000. 2015;69(1):142–159. doi: 10.1111/prd.12083 PubMed DOI PMC

Voo KS, Wang YH, Santori FR, et al. Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci USA. 2009;106(12):4793–4798. doi: 10.1073/pnas.0900408106 PubMed DOI PMC

Tabarkiewicz J, Pogoda K, Karczmarczyk A, et al. The role of IL-17 and Th17 lymphocytes in autoimmune diseases. Arch Immunol Ther Exp (Warsz). 2015;63(6):435–449. doi: 10.1007/s00005-015-0344-z PubMed DOI PMC

Chehimi M, Vidal H, Eljaafari A. Pathogenic role of IL-17-Producing immune cells in obesity, and related inflammatory diseases. J Clin Med. 2017;6(7):6. doi: 10.3390/jcm6070068 PubMed DOI PMC

Janiczek M, Szylberg L, Antosik P, et al. Expression levels of IL-17A, IL-17F, IL-17RA, and IL-17RC in prostate cancer with taking into account the histological grade according to Gleason scale in comparison to Benign Prostatic Hyperplasia: In search of new therapeutic options. J Immunol Res. 2020;2020:4910595. doi: 10.1155/2020/4910595 PubMed DOI PMC

Zhang Q, Liu S, Parajuli KR, et al. Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition. Oncogene. 2017;36(5):687–699. doi: 10.1038/onc.2016.240 PubMed DOI PMC

Kielb P, Kaczorowski M, Kowalczyk K, et al. Role of IL-17A and IL-17RA in prostate cancer with lymph nodes metastasis: expression patterns and clinical significance. Cancers (Basel). 2023;15(18):15. doi: 10.3390/cancers15184578 PubMed DOI PMC

Rani A, Dasgupta P, Murphy JJ. Prostate cancer: the role of inflammation and chemokines. Am J Pathol. 2019;189(11):2119–2137. doi: 10.1016/j.ajpath.2019.07.007 PubMed DOI

Wu N, Wang Y, Wang K, et al. Cathepsin K regulates the tumor growth and metastasis by IL-17/CTSK/EMT axis and mediates M2 macrophage polarization in castration-resistant prostate cancer. Cell Death Dis. 2022;13(9):813. doi: 10.1038/s41419-022-05215-8 PubMed DOI PMC

Liu J, Duan Y, Cheng X, et al. IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma. Biochem Biophys Res Commun. 2011;407(2):348–354. doi: 10.1016/j.bbrc.2011.03.021 PubMed DOI

Zalfa C, Paust S. Natural killer cell interactions with myeloid derived suppressor cells in the tumor microenvironment and implications for cancer immunotherapy. Front Immunol. 2021;12:633205. doi: 10.3389/fimmu.2021.633205 PubMed DOI PMC

Campbell C, Rudensky A. Roles of regulatory t cells in tissue pathophysiology and metabolism. Cell Metab. 2020;31(1):18–25. doi: 10.1016/j.cmet.2019.09.010 PubMed DOI PMC

Malko D, Elmzzahi T, Beyer M. Implications of regulatory T cells in non-lymphoid tissue physiology and pathophysiology. Front Immunol. 2022;13:954798. doi: 10.3389/fimmu.2022.954798 PubMed DOI PMC

Zhao E, Wang L, Dai J, et al. Regulatory T cells in the bone marrow microenvironment in patients with prostate cancer. Oncoimmunology. 2012;1(2):152–161. doi: 10.4161/onci.1.2.18480 PubMed DOI PMC

Meng F, Han X, Min Z, et al. Prognostic signatures associated with high infiltration of tregs in bone metastatic prostate cancer. Aging (Albany NY). 2021;13(13):17442–17461. doi: 10.18632/aging.203234 PubMed DOI PMC

Huppert LA, Green MD, Kim L, et al. Tissue-specific Tregs in cancer metastasis: opportunities for precision immunotherapy. Cell Mol Immunol. 2022;19(1):33–45. doi: 10.1038/s41423-021-00742-4 PubMed DOI PMC

Negishi T, Kato Y, Ooneda O, et al. Effects of aryl hydrocarbon receptor signaling on the modulation of TH1/TH2 balance. J Immunol. 2005;175(11):7348–7356. doi: 10.4049/jimmunol.175.11.7348 PubMed DOI

Quintana FJ, Basso AS, Iglesias AH, et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature. 2008;453(7191):65–71. doi: 10.1038/nature06880 PubMed DOI

Veldhoen M, Hirota K, Westendorf AM, et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature. 2008;453(7191):106–109. doi: 10.1038/nature06881 PubMed DOI

Li J, Bhattacharya S, Zhou J, et al. Aryl hydrocarbon receptor activation suppresses EBF1 and PAX5 and impairs human B Lymphopoiesis. J Immunol. 2017;199(10):3504–3515. doi: 10.4049/jimmunol.1700289 PubMed DOI PMC

Dooley RK, Holsapple MP. Elucidation of cellular targets responsible for tetrachlorodibenzo-p-dioxin (TCDD)-induced suppression of antibody responses: I. The role of the B lymphocyte. Immunopharmacology. 1988;16(3):167–180. doi: 10.1016/0162-3109(88)90005-7 PubMed DOI

Garin MI, Chu CC, Golshayan D, et al. Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood. 2007;109(5):2058–2065. doi: 10.1182/blood-2006-04-016451 PubMed DOI

Laderach DJ, Gentilini LD, Giribaldi L, et al. A unique galectin signature in human prostate cancer progression suggests galectin-1 as a key target for treatment of advanced disease. Cancer Res. 2013;73(1):86–96. doi: 10.1158/0008-5472.CAN-12-1260 PubMed DOI

Shih TC, Liu R, Wu CT, et al. Targeting galectin-1 impairs castration-resistant prostate cancer progression and invasion. Clin Cancer Res. 2018;24(17):4319–4331. doi: 10.1158/1078-0432.CCR-18-0157 PubMed DOI PMC

Cedeno-Laurent F, Opperman M, Barthel SR, et al. Galectin-1 triggers an immunoregulatory signature in Th cells functionally defined by IL-10 expression. J Immunol. 2012;188(7):3127–3137. doi: 10.4049/jimmunol.1103433 PubMed DOI PMC

Calcinotto A, Spataro C, Zagato E, et al. IL-23 secreted by myeloid cells drives castration-resistant prostate cancer. Nature. 2018;559(7714):363–369. doi: 10.1038/s41586-018-0266-0 PubMed DOI PMC

De Sanctis F, Adamo A, Cane S, et al. Targeting tumour-reprogrammed myeloid cells: the new battleground in cancer immunotherapy. Semin Immunopathol. 2023;45(2):163–186. doi: 10.1007/s00281-022-00965-1 PubMed DOI PMC

Wang Y, Jia A, Bi Y, et al. Targeting myeloid-derived suppressor cells in cancer immunotherapy. Cancers (Basel). 2020;12(9):12. doi: 10.3390/cancers12092626 PubMed DOI PMC

Joshi S, Sharabi A. Targeting myeloid-derived suppressor cells to enhance natural killer cell-based immunotherapy. Pharmacol Ther. 2022;235:108114. doi: 10.1016/j.pharmthera.2022.108114 PubMed DOI PMC

Idorn M, Kollgaard T, Kongsted P, et al. Correlation between frequencies of blood monocytic myeloid-derived suppressor cells, regulatory T cells and negative prognostic markers in patients with castration-resistant metastatic prostate cancer. Cancer Immunol Immunother. 2014;63(11):1177–1187. doi: 10.1007/s00262-014-1591-2 PubMed DOI PMC

Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol. 2021;21(8):485–498. doi: 10.1038/s41577-020-00490-y PubMed DOI PMC

Vuk-Pavlovic S, Bulur PA, Lin Y, et al. Immunosuppressive CD14 + HLA-DR low/− monocytes in prostate cancer. Prostate. 2010;70(4):443–455. doi: 10.1002/pros.21078 PubMed DOI PMC

Wen J, Huang G, Liu S, et al. Polymorphonuclear MDSCs are enriched in the stroma and expanded in metastases of prostate cancer. J Pathol Clin Res. 2020;6(3):171–177. doi: 10.1002/cjp2.160 PubMed DOI PMC

Wei Y, Peng N, Deng C, et al. Aryl hydrocarbon receptor activation drives polymorphonuclear myeloid-derived suppressor cell response and efficiently attenuates experimental Sjögren’s syndrome. Cell Mol Immunol. 2022;19(12):1361–1372. doi: 10.1038/s41423-022-00943-5 PubMed DOI PMC

Neamah WH, Singh NP, Alghetaa H, et al. AhR activation leads to massive mobilization of myeloid-derived suppressor cells with immunosuppressive activity through regulation of CXCR2 and MicroRNA miR-150-5p and miR-543-3p that target anti-inflammatory genes. J Immunol. 2019;203(7):1830–1844. doi: 10.4049/jimmunol.1900291 PubMed DOI PMC

Pili R, Haggman M, Stadler WM, et al. Phase II randomized, double-blind, placebo-controlled study of tasquinimod in men with minimally symptomatic metastatic castrate-resistant prostate cancer. J Clin Oncol. 2011;29(30):4022–4028. doi: 10.1200/JCO.2011.35.6295 PubMed DOI

Armstrong AJ, Haggman M, Stadler WM, et al. Long-term survival and biomarker correlates of tasquinimod efficacy in a multicenter randomized study of men with minimally symptomatic metastatic castration-resistant prostate cancer. Clin Cancer Res. 2013;19(24):6891–6901. doi: 10.1158/1078-0432.CCR-13-1581 PubMed DOI PMC

Mehta AR, Armstrong AJ. Tasquinimod in the treatment of castrate-resistant prostate cancer – current status and future prospects. Ther Adv Urol. 2016;8(1):9–18. doi: 10.1177/1756287215603558 PubMed DOI PMC

Isaacs JT, Dalrymple SL, Antony L, et al. Third generation quinoline-3-carboxamide transcriptional disrupter of HDAC4, HIF-1α, and MEF-2 signaling for metastatic castration-resistant prostate cancer. Prostate. 2023;83(15):1470–1493. doi: 10.1002/pros.24606 PubMed DOI PMC

Yu J, Du W, Yan F, et al. Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol. 2013;190(7):3783–3797. doi: 10.4049/jimmunol.1201449 PubMed DOI

Kado SY, Bein K, Castaneda AR, et al. Regulation of IDO2 by the Aryl Hydrocarbon Receptor (AhR) in breast cancer. Cells. 2023;12(10):12. doi: 10.3390/cells12101433 PubMed DOI PMC

Hoechst B, Gamrekelashvili J, Manns MP, et al. Plasticity of human Th17 cells and iTregs is orchestrated by different subsets of myeloid cells. Blood. 2011;117(24):6532–6541. doi: 10.1182/blood-2010-11-317321 PubMed DOI

Takenaka MC, Gabriely G, Rothhammer V, et al. Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39. Nat Neurosci. 2019;22(5):729–740. doi: 10.1038/s41593-019-0370-y PubMed DOI PMC

McKay ZP, Brown MC, Gromeier M. Aryl hydrocarbon receptor signaling controls CD155 expression on macrophages and mediates tumor immunosuppression. J Immunol. 2021;206(6):1385–1394. doi: 10.4049/jimmunol.2000792 PubMed DOI PMC

Hezaveh K, Shinde RS, Klotgen A, et al. Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity. Immunity. 2022;55(2):324–40 e8. doi: 10.1016/j.immuni.2022.01.006 PubMed DOI PMC

Gannon PO, Poisson AO, Delvoye N, et al. Characterization of the intra-prostatic immune cell infiltration in androgen-deprived prostate cancer patients. J Immunol Methods. 2009;348(1–2):9–17. doi: 10.1016/j.jim.2009.06.004 PubMed DOI

Ge R, Wang Z, Cheng L. Tumor microenvironment heterogeneity an important mediator of prostate cancer progression and therapeutic resistance. NPJ Precis Oncol. 2022;6(1):31. doi: 10.1038/s41698-022-00272-w PubMed DOI PMC

Escamilla J, Schokrpur S, Liu C, et al. CSF1 receptor targeting in prostate cancer reverses macrophage-mediated resistance to androgen blockade therapy. Cancer Res. 2015;75(6):950–962. doi: 10.1158/0008-5472.CAN-14-0992 PubMed DOI PMC

El-Kenawi A, Dominguez-Viqueira W, Liu M, et al. Macrophage-derived cholesterol contributes to therapeutic resistance in prostate cancer. Cancer Res. 2021;81(21):5477–5490. doi: 10.1158/0008-5472.CAN-20-4028 PubMed DOI PMC

Guan W, Hu J, Yang L, et al. Inhibition of TAMs improves the response to docetaxel in castration-resistant prostate cancer. Endocr Relat Cancer. 2019;26(1):131–140. doi: 10.1530/ERC-18-0284 PubMed DOI PMC

Li XY, Das I, Lepletier A, et al. CD155 loss enhances tumor suppression via combined host and tumor-intrinsic mechanisms. J Clin Invest. 2018;128(6):2613–2625. doi: 10.1172/JCI98769 PubMed DOI PMC

Modoux M, Rolhion N, Mani S, et al. Tryptophan metabolism as a pharmacological target. Trends Pharmacol Sci. 2021;42(1):60–73. doi: 10.1016/j.tips.2020.11.006 PubMed DOI

Li F, Zhao Z, Zhang Z, et al. Tryptophan metabolism induced by TDO2 promotes prostatic cancer chemotherapy resistance in a AhR/c-Myc dependent manner. BMC Cancer. 2021;21(1):1112. doi: 10.1186/s12885-021-08855-9 PubMed DOI PMC

Watson MJ, Delgoffe GM. Fighting in a wasteland: deleterious metabolites and antitumor immunity. J Clin Invest. 2022;132(2):132. doi: 10.1172/JCI148549 PubMed DOI PMC

Jha GG, Gupta S, Tagawa ST, et al. A phase II randomized, double-blind study of sipuleucel-T followed by IDO pathway inhibitor, indoximod, or placebo in the treatment of patients with metastatic castration resistant prostate cancer (mCRPC). J Clin Oncol. 2017;35(15_suppl):3066–. doi: 10.1200/JCO.2017.35.15_suppl.3066 DOI

Zhang Q, Liu S, Ge D, et al. Targeting Th17-IL-17 pathway in prevention of micro-invasive prostate cancer in a mouse model. Prostate. 2017;77(8):888–899. doi: 10.1002/pros.23343 PubMed DOI PMC

Gerber-Ferder Y, Cosgrove J, Duperray-Susini A, et al. Breast cancer remotely imposes a myeloid bias on haematopoietic stem cells by reprogramming the bone marrow niche. Nat Cell Biol. 2023;25(12):1736–1745. doi: 10.1038/s41556-023-01291-w PubMed DOI

Kwon ED, Drake CG, Scher HI, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15(7):700–712. doi: 10.1016/S1470-2045(14)70189-5 PubMed DOI PMC

Lu X, Horner JW, Paul E, et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature. 2017;543(7647):728–732. doi: 10.1038/nature21676 PubMed DOI PMC

Wu AA, Bever KM, Ho WJ, et al. A phase II study of allogeneic GM-CSF–transfected pancreatic tumor vaccine (GVAX) with Ipilimumab as maintenance treatment for metastatic pancreatic cancer. Clin Cancer Res. 2020;26(19):5129–5139. doi: 10.1158/1078-0432.CCR-20-1025 PubMed DOI PMC

Zhu S, Niu M, O’Mary H, et al. Targeting of tumor-associated macrophages made possible by PEG-sheddable, mannose-modified nanoparticles. Mol Pharm. 2013;10(9):3525–3530. doi: 10.1021/mp400216r PubMed DOI PMC

Stone E, Marshall N, Donkor M, et al. Abstract LB-226-LB-: depletion of kynurenine using an engineered therapeutic enzyme potently inhibits cancer immune checkpoints both as a monotherapy and in combination with anti-PD-1. Cancer Res. 2015;75(15_Supplement):LB–226. doi: 10.1158/1538-7445.AM2015-LB-226 DOI

Sperger JM, Helzer KT, Stahlfeld CN, et al. Expression and therapeutic targeting of TROP-2 in treatment-resistant prostate cancer. Clin Cancer Res. 2023;29(12):2324–2335. doi: 10.1158/1078-0432.CCR-22-1305 PubMed DOI PMC

Lenart S, Lenart P, Smarda J, et al. Trop2: jack of all trades, master of none. Cancers (Basel). 2020;12(11):12. doi: 10.3390/cancers12113328 PubMed DOI PMC

Shen M, Liu S, Stoyanova T. The role of Trop2 in prostate cancer: an oncogene, biomarker, and therapeutic target. Am J Clin Exp Urol. 2021;9:73–87. PubMed PMC

Bardia A, Hurvitz SA, Tolaney SM, et al. Sacituzumab govitecan in metastatic triple-negative breast cancer. N Engl J Med. 2021;384(16):1529–1541. doi: 10.1056/NEJMoa2028485 PubMed DOI

Trerotola M, Jernigan DL, Liu Q, et al. Trop-2 promotes prostate cancer metastasis by modulating β1 integrin functions. Cancer Res. 2013;73(10):3155–3167. doi: 10.1158/0008-5472.CAN-12-3266 PubMed DOI PMC

Lenart S, Lenart P, Knopfova L, et al. TACSTD2 upregulation is an early reaction to lung infection. Sci Rep. 2022;12(1):9583. doi: 10.1038/s41598-022-13637-9 PubMed DOI PMC

Sun H, Chen Q, Liu W, et al. TROP2 modulates the progression in papillary thyroid carcinoma. J Cancer. 2021;12(22):6883–6893. doi: 10.7150/jca.62461 PubMed DOI PMC

Zhou B, Xu W, Herndon D, et al. Analysis of factorial time-course microarrays with application to a clinical study of burn injury. Proc Natl Acad Sci USA. 2010;107(22):9923–9928. doi: 10.1073/pnas.1002757107 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...