Acetophenyl-thienyl-aniline-Linked Nucleotide for Construction of Solvatochromic Fluorescence Light-Up DNA Probes Sensing Protein-DNA Interactions
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
17-14791S
Czech Science Foundation
CZ.02.1.01/0.0/0.0/16?019/0000729
European Regional Development Fund
Czech Academy of Sciences
17-14791S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000729
European Regional Development Fund
Praemium Academiae
Akademie Věd České Republiky
PubMed
33769635
DOI
10.1002/chem.202100575
Knihovny.cz E-zdroje
- Klíčová slova
- DNA polymerases, fluorescent labelling, nucleotides, protein-DNA interactions, solvatochromism,
- MeSH
- aniliny MeSH
- DNA sondy MeSH
- DNA * MeSH
- fluorescence MeSH
- fluorescenční barviva MeSH
- nukleotidy * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aniliny MeSH
- DNA sondy MeSH
- DNA * MeSH
- fluorescenční barviva MeSH
- nukleotidy * MeSH
The synthesis of 2'-deoxycytidine and its 5'-O-triphosphate bearing solvatochromic acetophenyl-thienyl-aniline fluorophore was developed using the Sonogashira cross-coupling reaction as the key step. The triphosphate was used for polymerase synthesis of labelled DNA. The labelled nucleotide or DNA exerted weak red fluorescence when excited at 405 nm, but a significant colour change (to yellow or green) and light-up (up to 20 times) was observed when the DNA probes interacted with proteins or lipids.
Zobrazit více v PubMed
W. Xu, K. M. Chan, E. T. Kool, Nat. Chem. 2017, 9, 1043-1055;
R. W. Sinkeldam, N. J. Greco, Y. Tor, Chem. Rev. 2010, 110, 2579-2619;
A. A. Tanpure, M. G. Pawar, S. G. Srivatsan, Isr. J. Chem. 2013, 53, 366-378.
B. Y. Michel, D. Dziuba, R. Benhida, A. P. Demchenko, A. Burger, Front. Chem. 2020, 8, 112.
D. D. Burns, K. L. Teppang, R. W. Lee, M. E. Lokensgard, B. W. Purse, J. Am. Chem. Soc. 2017, 139, 1372-1375;
Y. Saito, A. Suzuki, Y. Okada, Y. Yamasaka, N. Nemoto, I. Saito, Chem. Commun. 2013, 49, 5684-5686;
M. Yanagi, A. Suzuki, R. H. E. Hudson, Y. Saito, Org. Biomol. Chem. 2018, 16, 1496-1507;
S. G. Srivatsan, H. Weizman, Y. Tor, Org. Biomol. Chem. 2008, 6, 1334-1338;
A. Karimi, R. Börner, G. Mata, N. W. Luedtke, J. Am. Chem. Soc. 2020, 142, 14422-14426;
R. Varghese, P. Gajula, T. Chakraborty, H.-A. Wagenknecht, Synlett 2009, 3252-3257;
F. Hövelmann, O. Seitz, Acc. Chem. Res. 2016, 49, 714-723;
P. Klimkowski, S. De Ornellas, D. Singleton, A. H. El-Sagheer, T. Brown, Org. Biomol. Chem. 2019, 17, 5943-5950.
T. Kanamori, A. Takamura, N. Tago, Y. Masaki, A. Ohkubo, M. Sekine, K. Seio, Org. Biomol. Chem. 2017, 15, 1190-1197;
T. Kanamori, Y. Masaki, Y. Oda, H. Ohzeki, A. Ohkubo, M. Sekine, K. Seio, Org. Biomol. Chem. 2019, 17, 2077-2080;
S. Manna, D. Sarkar, S. G. Srivatsan, J. Am. Chem. Soc. 2018, 140, 12622-12633;
A. Nuthanakanti, I. Ahmed, S. Y. Khatik, K. Saikrishnan, S. G. Srivatsan, Nucleic Acids Res. 2019, 47, 6059-6072;
M. Kuba, T. Kraus, R. Pohl, M. Hocek, Chem. Eur. J. 2020, 26, 11950-11954.
D. Dziuba, R. Pohl, M. Hocek, Chem. Commun. 2015, 51, 4880-4882.
D. Dziuba, P. Jurkiewicz, M. Cebecauer, M. Hof, M. Hocek, Angew. Chem. Int. Ed. 2016, 55, 174-178;
Angew. Chem. 2016, 128, 182-186;
P. Güixens-Gallardo, J. Humpolickova, S. P. Miclea, R. Pohl, T. Kraus, P. Jurkiewicz, M. Hof, M. Hocek, Org. Biomol. Chem. 2020, 18, 912-919.
M. Tokugawa, Y. Masaki, J. C. Canggadibrata, K. Kaneko, T. Shiozawa, T. Kanamori, M. Grøtli, L. M. Wilhelmsson, M. Sekine, K. Seio, Chem. Commun. 2016, 52, 3809-3812.
A. S. Klymchenko, Acc. Chem. Res. 2017, 50, 366-375;
K. Seio, T. Kanamori, Y. Masaki, Tetrahedron Lett. 2018, 59, 1977-1985.
T. Kimura, K. Kawai, T. Majima, Org. Lett. 2005, 7, 5829-5832;
K. Tainaka, K. Tanaka, S. Ikeda, K. Nishiza, T. Unzai, Y. Fujiwara, I. Saito, A. Okamoto, J. Am. Chem. Soc. 2007, 129, 4776-4784;
G. Mata, N. W. Luedtke, Org. Lett. 2013, 15, 2462-2465;
G. Mata, N. W. Luedtke, J. Am. Chem. Soc. 2015, 137, 699-707.
D. Dziuba, P. Pospíšil, J. Matyašovský, J. Brynda, D. Nachtigallová, L. Rulíšek, R. Pohl, M. Hof, M. Hocek, Chem. Sci. 2016, 7, 5775-5785.
Y. Ando, Y. Homma, Y. Hiruta, D. Citterio, K. Suzuki, Dyes Pigm. 2009, 83, 198-206.
M. Collot, S. Bou, T. K. Fam, L. Richert, Y. Mély, L. Danglot, A. S. Klymchenko, Anal. Chem. 2019, 91, 1928-1935.
M. Hocek, Acc. Chem. Res. 2019, 52, 1730-1737.
M. Fojta, H. Pivonkova, M. Brazdova, K. Nemcova, E. Palecek, B. Vojtesek, Eur. J. Biochem. 2004, 271, 3865-3876.
Z. Zawada, A. Tatar, P. Mocilac, M. Buděšínský, T. Kraus, Angew. Chem. Int. Ed. 2018, 57, 9891-9895;
Angew. Chem. 2018, 130, 10039-10043;
P. Güixens-Gallardo, Z. Zawada, J. Matyašovský, D. Dziuba, R. Pohl, T. Kraus, M. Hocek, Bioconjugate Chem. 2018, 29, 3906-3912.
M. Poot, Y. Z. Zhang, J. A. Krämer, K. S. Wells, L. J. Jones, D. K. Hanzel, A. G. Lugade, V. L. Singer, R. P. Haugland, J. Histochem. Cytochem. 1996, 44, 1363-1372.
Z. Cao, F. Peng, Z. Hu, B. Chu, Y. Zhong, Y. Su, S. He, Y. He, Nanoscale 2017, 9, 7602-7611.
G. van Meer, D. R. Voelker, G. W. Feigenson, Nat. Rev. Mol. Cell Biol. 2008, 9, 112-124;
E. Boura, V. Ivanov, L. A. Carlson, K. Mizuuchi, J. H. Hurley, J. Biol. Chem. 2012, 287, 28144-28151.
A. A. Bergh, Phys. Status Solidi A 2004, 201, 2740-2754.