TACSTD2 upregulation is an early reaction to lung infection

. 2022 Jun 10 ; 12 (1) : 9583. [epub] 20220610

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35688908
Odkazy

PubMed 35688908
PubMed Central PMC9185727
DOI 10.1038/s41598-022-13637-9
PII: 10.1038/s41598-022-13637-9
Knihovny.cz E-zdroje

TACSTD2 encodes a transmembrane glycoprotein Trop2 commonly overexpressed in carcinomas. While the Trop2 protein was discovered already in 1981 and first antibody-drug conjugate targeting Trop2 were recently approved for cancer therapy, the physiological role of Trop2 is still not fully understood. In this article, we show that TACSTD2/Trop2 expression is evolutionarily conserved in lungs of various vertebrates. By analysis of publicly available transcriptomic data we demonstrate that TACSTD2 level consistently increases in lungs infected with miscellaneous, but mainly viral pathogens. Single cell and subpopulation based transcriptomic data revealed that the major source of TACSTD2 transcript are lung epithelial cells and their progenitors and that TACSTD2 is induced directly in lung epithelial cells following infection. Increase in TACSTD2 expression may represent a mechanism to maintain/restore epithelial barrier function and contribute to regeneration process in infected/damaged lungs.

Zobrazit více v PubMed

Lenárt S, et al. Trop2: Jack of all trades, master of none. Cancers. 2020;12:3328. doi: 10.3390/cancers12113328. PubMed DOI PMC

Remšík J, et al. Trop-2 plasticity is controlled by epithelial-to-mesenchymal transition. Carcinogenesis. 2018;39:1411–1418. doi: 10.1093/carcin/bgy095. PubMed DOI

Linnenbach AJ, et al. Sequence investigation of the major gastrointestinal tumor-associated antigen gene family, GA733. Proc. Natl. Acad. Sci. U.S.A. 1989;86:27–31. doi: 10.1073/pnas.86.1.27. PubMed DOI PMC

Linnenbach AJ, et al. Retroposition in a family of carcinoma-associated antigen genes. Mol. Cell. Biol. 1993;13:1507–1515. PubMed PMC

El Sewedy T, Fornaro M, Alberti S. Cloning of the murine TROP2 gene: Conservation of a PIP2-binding sequence in the cytoplasmic domain of TROP-2. Int. J. Cancer. 1998;75:324–330. doi: 10.1002/(SICI)1097-0215(19980119)75:2<324::AID-IJC24>3.0.CO;2-B. PubMed DOI

Lipinski M, Parks DR, Rouse RV, Herzenberg LA. Human trophoblast cell-surface antigens defined by monoclonal antibodies. Proc. Natl. Acad. Sci. U.S.A. 1981;78:5147–5150. doi: 10.1073/pnas.78.8.5147. PubMed DOI PMC

Stepan LP, et al. Expression of Trop2 cell surface glycoprotein in normal and tumor tissues. J. Histochem. Cytochem. 2011;59:701–710. doi: 10.1369/0022155411410430. PubMed DOI PMC

Trerotola M, et al. Upregulation of Trop-2 quantitatively stimulates human cancer growth. Oncogene. 2013;32:222–233. doi: 10.1038/onc.2012.36. PubMed DOI

Sozo F, Wallace MJ, Zahra VA, Filby CE, Hooper SB. Gene expression profiling during increased fetal lung expansion identifies genes likely to regulate development of the distal airways. Physiol. Genomics. 2006;24:105–113. doi: 10.1152/physiolgenomics.00148.2005. PubMed DOI

McDougall ARA, et al. The oncogene Trop2 regulates fetal lung cell proliferation. Am. J. Physiol. Lung Cell. Mol. Physiol. 2011;301:478–489. doi: 10.1152/ajplung.00063.2011. PubMed DOI

Mustata RC, et al. Identification of Lgr5-independent spheroid-generating progenitors of the mouse fetal intestinal epithelium. Cell Rep. 2013;5:421–432. doi: 10.1016/j.celrep.2013.09.005. PubMed DOI

Fernandez Vallone V, et al. Trop2 marks transient gastric fetal epithelium and adult regenerating cells after epithelial damage. Dev. Camb. Engl. 2016;143:1452–1463. PubMed PMC

Sun W, Wilhelmina Aalders T, Oosterwijk E. Identification of potential bladder progenitor cells in the trigone. Dev. Biol. 2014;393:84–92. doi: 10.1016/j.ydbio.2014.06.018. PubMed DOI

Tsukahara Y, Tanaka M, Miyajima A. TROP2 expressed in the trunk of the ureteric duct regulates branching morphogenesis during kidney development. PLoS ONE. 2011;6:e28607. doi: 10.1371/journal.pone.0028607. PubMed DOI PMC

McDougall ARA, et al. Intrauterine growth restriction alters the postnatal development of the rat cerebellum. Dev. Neurosci. 2017;39:215–227. doi: 10.1159/000470902. PubMed DOI

Tsujikawa M, et al. Identification of the gene responsible for gelatinous drop-like corneal dystrophy. Nat. Genet. 1999;21:420–423. doi: 10.1038/7759. PubMed DOI

Takaoka M, Nakamura T, Ban Y, Kinoshita S. Phenotypic investigation of cell junction-related proteins in gelatinous drop-like corneal dystrophy. Investig. Ophthalmol. Vis. Sci. 2007;48:1095–1101. doi: 10.1167/iovs.06-0740. PubMed DOI

Aizarani N, et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature. 2019;572:199–204. doi: 10.1038/s41586-019-1373-2. PubMed DOI PMC

Goldstein AS, et al. Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proc. Natl. Acad. Sci. U.S.A. 2008;105:20882–20887. doi: 10.1073/pnas.0811411106. PubMed DOI PMC

Okabe M, et al. Potential hepatic stem cells reside in EpCAM+ cells of normal and injured mouse liver. Development. 2009;136:1951–1960. doi: 10.1242/dev.031369. PubMed DOI

Yang J, et al. Trop2 regulates the proliferation and differentiation of murine compact-bone derived MSCs. Int. J. Oncol. 2013;43:859–867. doi: 10.3892/ijo.2013.1987. PubMed DOI

Memarzadeh S, et al. Cell-autonomous activation of the PI3-kinase pathway initiates endometrial cancer from adult uterine epithelium. Proc. Natl. Acad. Sci. U.S.A. 2010;107:17298–17303. doi: 10.1073/pnas.1012548107. PubMed DOI PMC

Li T, et al. Trop2 guarantees cardioprotective effects of cortical bone-derived stem cells on myocardial ischemia/reperfusion injury. Cell Transplant. 2018;27:1256–1268. doi: 10.1177/0963689718786882. PubMed DOI PMC

Wang J, et al. Loss of Trop2 promotes carcinogenesis and features of epithelial to mesenchymal transition in squamous cell carcinoma. Mol. Cancer Res. 2011;9:1686–1695. doi: 10.1158/1541-7786.MCR-11-0241. PubMed DOI PMC

Dreyfuss D, Ricard J-D. Acute lung injury and bacterial infection. Clin. Chest Med. 2005;26:105–112. doi: 10.1016/j.ccm.2004.10.014. PubMed DOI

GBD 2017 Causes of Death Collaborators Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Lond. Engl. 2018;392:1736–1788. doi: 10.1016/S0140-6736(18)32203-7. PubMed DOI PMC

Osuka A, Ogura H, Ueyama M, Shimazu T, Lederer JA. Immune response to traumatic injury: Harmony and discordance of immune system homeostasis. Acute Med. Surg. 2014;1:63–69. doi: 10.1002/ams2.17. PubMed DOI PMC

Stoecklein VM, Osuka A, Lederer JA. Trauma equals danger–damage control by the immune system. J. Leukoc. Biol. 2012;92:539–551. doi: 10.1189/jlb.0212072. PubMed DOI PMC

Huber-Lang M, Lambris JD, Ward PA. Innate immune responses to trauma. Nat. Immunol. 2018;19:327–341. doi: 10.1038/s41590-018-0064-8. PubMed DOI PMC

Vieira Braga FA, et al. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat. Med. 2019;25:1153–1163. doi: 10.1038/s41591-019-0468-5. PubMed DOI

Travaglini KJ, et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature. 2020;587:619–625. doi: 10.1038/s41586-020-2922-4. PubMed DOI PMC

Yu Y, et al. A rat RNA-Seq transcriptomic BodyMap across 11 organs and 4 developmental stages. Nat. Commun. 2014;5:3230. doi: 10.1038/ncomms4230. PubMed DOI PMC

Angelidis I, et al. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat. Commun. 2019;10:963. doi: 10.1038/s41467-019-08831-9. PubMed DOI PMC

Kim EY, et al. Persistent activation of an innate immune axis translates respiratory viral infection into chronic lung disease. Nat. Med. 2008;14:633–640. doi: 10.1038/nm1770. PubMed DOI PMC

Liu Q, et al. Increased expression of TROP2 in airway basal cells potentially contributes to airway remodeling in chronic obstructive pulmonary disease. Respir. Res. 2016;17:159. doi: 10.1186/s12931-016-0463-z. PubMed DOI PMC

Major J, et al. Type I and III interferons disrupt lung epithelial repair during recovery from viral infection. Science. 2020;369:712–717. doi: 10.1126/science.abc2061. PubMed DOI PMC

Kamata H, et al. Epithelial cell-derived secreted and transmembrane 1A signals to activated neutrophils during Pneumococcal pneumonia. Am. J. Respir. Cell Mol. Biol. 2016;55:407–418. doi: 10.1165/rcmb.2015-0261OC. PubMed DOI PMC

Katsura H, et al. Human lung stem cell-based alveolospheres provide insights into SARS-CoV-2-mediated interferon responses and pneumocyte dysfunction. Cell Stem Cell. 2020;27:890–904.e8. doi: 10.1016/j.stem.2020.10.005. PubMed DOI PMC

Gerlach RL, Camp JV, Chu Y-K, Jonsson CB. Early host responses of seasonal and pandemic influenza A viruses in primary well-differentiated human lung epithelial cells. PLoS ONE. 2013;8:e78912. doi: 10.1371/journal.pone.0078912. PubMed DOI PMC

Shen BQ, Finkbeiner WE, Wine JJ, Mrsny RJ, Widdicombe JH. Calu-3: A human airway epithelial cell line that shows cAMP-dependent Cl-secretion. Am. J. Physiol. 1994;266:L493–501. PubMed

Rezaee F, Georas SN. Breaking barriers. New insights into airway epithelial barrier function in health and disease. Am. J. Respir. Cell Mol. Biol. 2014;50:857–869. doi: 10.1165/rcmb.2013-0541RT. PubMed DOI PMC

Soong G, Parker D, Magargee M, Prince AS. The type III toxins of Pseudomonas aeruginosa disrupt epithelial barrier function. J. Bacteriol. 2008;190:2814–2821. doi: 10.1128/JB.01567-07. PubMed DOI PMC

Short KR, et al. Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions. Eur. Respir. J. 2016;47:954–966. doi: 10.1183/13993003.01282-2015. PubMed DOI

Linfield DT, Raduka A, Aghapour M, Rezaee F. Airway tight junctions as targets of viral infections. Tissue Barriers. 2021;9:1883965. doi: 10.1080/21688370.2021.1883965. PubMed DOI PMC

Nakatsukasa M, et al. Tumor-associated calcium signal transducer 2 is required for the proper subcellular localization of claudin 1 and 7: Implications in the pathogenesis of gelatinous drop-like corneal dystrophy. Am. J. Pathol. 2010;177:1344–1355. doi: 10.2353/ajpath.2010.100149. PubMed DOI PMC

Xu P, et al. A new in vitro model of GDLD by knocking out TACSTD2 and its paralogous gene EpCAM in human corneal epithelial cells. Transl. Vis. Sci. Technol. 2018;7:30. doi: 10.1167/tvst.7.6.30. PubMed DOI PMC

Nakato G, et al. Amelioration of congenital tufting enteropathy in EpCAM (TROP1)-deficient mice via heterotopic expression of TROP2 in Intestinal EPITHELIAL cells. Cells. 2020;9:1847. doi: 10.3390/cells9081847. PubMed DOI PMC

Singh R, et al. A new triglycyl peptide linker for antibody-drug conjugates (ADCs) with improved targeted killing of cancer cells. Mol. Cancer Ther. 2016;15:1311–1320. doi: 10.1158/1535-7163.MCT-16-0021. PubMed DOI

Szala S, et al. Molecular cloning of cDNA for the carcinoma-associated antigen GA733-2. Proc. Natl. Acad. Sci. 1990;87:3542–3546. doi: 10.1073/pnas.87.9.3542. PubMed DOI PMC

Mashhadi SMY, et al. Shedding light on the EpCAM: An overview. J. Cell. Physiol. 2019;234:12569–12580. doi: 10.1002/jcp.28132. PubMed DOI

Wu C-J, Mannan P, Lu M, Udey MC. Epithelial cell adhesion molecule (EpCAM) regulates claudin dynamics and tight junctions. J. Biol. Chem. 2013;288:12253–12268. doi: 10.1074/jbc.M113.457499. PubMed DOI PMC

Kozan PA, et al. Mutation of EpCAM leads to intestinal barrier and ion transport dysfunction. J. Mol. Med. Berl. Ger. 2015;93:535–545. doi: 10.1007/s00109-014-1239-x. PubMed DOI PMC

Wu C-J, Lu M, Feng X, Nakato G, Udey MC. Matriptase cleaves EpCAM and TROP2 in keratinocytes, destabilizing both proteins and associated claudins. Cells. 2020;9:1027. doi: 10.3390/cells9041027. PubMed DOI PMC

de Vries M, et al. The relation between age and airway epithelial barrier function. Respir. Res. 2022;23:43. doi: 10.1186/s12931-022-01961-7. PubMed DOI PMC

Li Z, Jiang X, Zhang W. TROP2 overexpression promotes proliferation and invasion of lung adenocarcinoma cells. Biochem. Biophys. Res. Commun. 2016;470:197–204. doi: 10.1016/j.bbrc.2016.01.032. PubMed DOI

Guerra E, et al. Trop-2 induces tumor growth through AKT and determines sensitivity to AKT inhibitors. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2016;22:4197–4205. doi: 10.1158/1078-0432.CCR-15-1701. PubMed DOI

Tang G, et al. TROP2 increases growth and metastasis of human oral squamous cell carcinoma through activation of the PI3K/Akt signaling pathway. Int. J. Mol. Med. 2019;44:2161–2170. PubMed PMC

Li X, et al. TROP2 promotes proliferation, migration and metastasis of gallbladder cancer cells by regulating PI3K/AKT pathway and inducing EMT. Oncotarget. 2017;8:47052–47063. doi: 10.18632/oncotarget.16789. PubMed DOI PMC

Gu Q-Z, et al. TROP2 promotes cell proliferation and migration in osteosarcoma through PI3K/AKT signaling. Mol. Med. Rep. 2018;18:1782–1788. PubMed

Sun X, et al. Knockdown of Trop2 inhibits proliferation and migration and induces apoptosis of endometrial cancer cells via AKT/β-catenin pathway. Cell Biochem. Funct. 2020;38:141–148. doi: 10.1002/cbf.3450. PubMed DOI

Gopallawa I, Lee RJ. Targeting the phosphoinositide-3-kinase/protein kinase B pathway in airway innate immunity. World J. Biol. Chem. 2020;11:30–51. doi: 10.4331/wjbc.v11.i2.30. PubMed DOI PMC

Qiao S, et al. The p110δ isoforme of phosphatidylinositol 3-kinase plays an important role in host defense against chlamydial lung infection through influencing CD4+ T-cell function. Pathog. Dis. 2018 doi: 10.1093/femspd/fty053. PubMed DOI

García-Fojeda B, et al. Lung surfactant lipids provide immune protection against Haemophilus influenzae respiratory infection. Front. Immunol. 2019 doi: 10.3389/fimmu.2019.00458. PubMed DOI PMC

Guo Q, et al. Caveolin-1 plays a critical role in host immunity against Klebsiella pneumoniae by regulating STAT5 and Akt activity. Eur. J. Immunol. 2012;42:1500–1511. doi: 10.1002/eji.201142051. PubMed DOI PMC

Yang Z, et al. Inhibition of the PI3K/AKT signaling pathway or overexpression of beclin1 blocks reinfection of Streptococcus pneumoniae after infection of influenza A virus in severe community-acquired pneumonia. Inflammation. 2019;42:1741–1753. doi: 10.1007/s10753-019-01035-9. PubMed DOI PMC

Dai X, Zhang L, Hong T. Host cellular signaling induced by influenza virus. Sci. China Life Sci. 2011;54:68–74. doi: 10.1007/s11427-010-4116-z. PubMed DOI

Torres-Flores JM, Arias CF. Tight junctions go viral! Viruses. 2015;7:5145–5154. doi: 10.3390/v7092865. PubMed DOI PMC

Colpitts CC, Baumert TF. Claudins in viral infection: From entry to spread. Pflugers Arch. 2017;469:27–34. doi: 10.1007/s00424-016-1908-4. PubMed DOI PMC

Sekhar V, et al. Infection with hepatitis C virus depends on TACSTD2, a regulator of claudin-1 and occludin highly downregulated in hepatocellular carcinoma. PLoS Pathog. 2018;14:e1006916. doi: 10.1371/journal.ppat.1006916. PubMed DOI PMC

Quinton LJ, Mizgerd JP. NF-κB and STAT3 signaling hubs for lung innate immunity. Cell Tissue Res. 2011;343:153–165. doi: 10.1007/s00441-010-1044-y. PubMed DOI

Wu M, Liu L, Hijazi H, Chan C. A multi-layer inference approach to reconstruct condition-specific genes and their regulation. Bioinformatics. 2013;29:1541–1552. doi: 10.1093/bioinformatics/btt186. PubMed DOI PMC

Li H, et al. Ginsenoside Rb3 alleviates CSE-induced TROP2 upregulation through p38 MAPK and NF-κB pathways in basal cells. Am. J. Respir. Cell Mol. Biol. 2021;64:747–759. doi: 10.1165/rcmb.2020-0208OC. PubMed DOI

Chopra M, Reuben JS, Sharma AC. Acute lung injury: Apoptosis and signaling mechanisms. Exp. Biol. Med. 2009;234:361–371. doi: 10.3181/0811-MR-318. PubMed DOI

Tripathi S, White MR, Hartshorn KL. The amazing innate immune response to influenza A virus infection. Innate Immun. 2015;21:73–98. doi: 10.1177/1753425913508992. PubMed DOI

Cardozo CM, Hainaut P. Viral strategies for circumventing p53: The case of severe acute respiratory syndrome coronavirus. Curr. Opin. Oncol. 2021;33:149–158. doi: 10.1097/CCO.0000000000000713. PubMed DOI PMC

Sato Y, Tsurumi T. Genome guardian p53 and viral infections. Rev. Med. Virol. 2013;23:213–220. doi: 10.1002/rmv.1738. PubMed DOI

Papatheodorou I, et al. Expression Atlas update: From tissues to single cells. Nucleic Acids Res. 2020;48:D77–D83. doi: 10.1093/nar/gkaa339. PubMed DOI PMC

Uhlén M, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419. doi: 10.1126/science.1260419. PubMed DOI

Lonsdale J, et al. The genotype-tissue expression (GTEx) project. Nat. Genet. 2013;45:580–585. doi: 10.1038/ng.2653. PubMed DOI PMC

Bastian FB, et al. The Bgee suite: Integrated curated expression atlas and comparative transcriptomics in animals. Nucleic Acids Res. 2021;49:D831–D847. doi: 10.1093/nar/gkaa793. PubMed DOI PMC

Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995;57:289–300.

Barrett T, et al. NCBI GEO: Archive for functional genomics data sets—Update. Nucleic Acids Res. 2013;41:D991–D995. doi: 10.1093/nar/gks1193. PubMed DOI PMC

Concordet J-P, Haeussler M. CRISPOR: Intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 2018;46:W242–W245. doi: 10.1093/nar/gky354. PubMed DOI PMC

Ran FA, et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013;8:2281–2308. doi: 10.1038/nprot.2013.143. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...