Development of a new flippase-dependent mouse model for red fluorescence-based isolation of KRASG12D oncogene-expressing tumor cells
Jazyk angličtina Země Nizozemsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-31322S
Grantová Agentura České Republiky
20-31322S
Grantová Agentura České Republiky
20-31322S
Grantová Agentura České Republiky
20-31322S
Grantová Agentura České Republiky
20-31322S
Grantová Agentura České Republiky
20-31322S
Grantová Agentura České Republiky
20-31322S
Grantová Agentura České Republiky
EXCELES, LX22NPO5102
Ministerstvo Školství, Mládeže a Tělovýchovy
EXCELES, LX22NPO5102
Ministerstvo Školství, Mládeže a Tělovýchovy
EXCELES, LX22NPO5102
Ministerstvo Školství, Mládeže a Tělovýchovy
EXCELES, LX22NPO5102
Ministerstvo Školství, Mládeže a Tělovýchovy
EXCELES, LX22NPO5102
Ministerstvo Školství, Mládeže a Tělovýchovy
EXCELES, LX22NPO5102
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
39786607
PubMed Central
PMC11717838
DOI
10.1007/s11248-024-00429-2
PII: 10.1007/s11248-024-00429-2
Knihovny.cz E-zdroje
- Klíčová slova
- Colon cancer, Gene targeting, Intestinal organoids, KRAS oncogene, Lung cancer, MRTX1133 inhibitor,
- MeSH
- červený fluorescenční protein * MeSH
- DNA-nukleotidyltransferasy genetika metabolismus MeSH
- genový knockin MeSH
- luminescentní proteiny * genetika metabolismus MeSH
- modely nemocí na zvířatech MeSH
- myši transgenní MeSH
- myši MeSH
- nádory plic genetika patologie MeSH
- protoonkogenní proteiny p21(ras) * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- červený fluorescenční protein * MeSH
- DNA-nukleotidyltransferasy MeSH
- Hras protein, mouse MeSH Prohlížeč
- luminescentní proteiny * MeSH
- protoonkogenní proteiny p21(ras) * MeSH
Proto-oncogene KRAS, GTPase (KRAS) is one of the most intensively studied oncogenes in cancer research. Although several mouse models allow for regulated expression of mutant KRAS, selective isolation and analysis of transforming or tumor cells that produce the KRAS oncogene remains a challenge. In our study, we present a knock-in model of oncogenic variant KRASG12D that enables the "activation" of KRASG12D expression together with production of red fluorescent protein tdTomato. Both proteins are expressed from the endogenous Kras locus after recombination of a transcriptional stop box in the genomic DNA by the enzyme flippase (Flp). We have demonstrated the functionality of the allele termed RedRas (abbreviated KrasRR) under in vitro conditions with mouse embryonic fibroblasts and organoids and in vivo in the lung and colon epithelium. After recombination with adenoviral vectors carrying the Flp gene, the KrasRR allele itself triggers formation of lung adenomas. In the colon epithelium, it causes the progression of adenomas that are triggered by the loss of tumor suppressor adenomatous polyposis coli (APC). Importantly, cells in which recombination has successfully occurred can be visualized and isolated using the fluorescence emitted by tdTomato. Furthermore, we show that KRASG12D production enables intestinal organoid growth independent of epidermal growth factor (EGF) signaling and that the KRASG12D function is effectively suppressed by specific inhibitor MRTX1133.
Zobrazit více v PubMed
Amalfitano A (2004) Utilization of adenovirus vectors for multiple gene transfer applications. Methods 33:173–178. 10.1016/j.ymeth.2003.11.006 PubMed
Bahar ME, Kim HJ, Kim DR (2023) Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 8:455. 10.1038/s41392-023-01705-z PubMed PMC
Bahrami A et al (2018) Targeting RAS signaling pathway as a potential therapeutic target in the treatment of colorectal cancer. J Cell Physiol 233:2058–2066. 10.1002/jcp.25890 PubMed
Buchholz F, Angrand PO, Stewart AF (1998) Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat Biotechnol 16:657–662. 10.1038/nbt0798-657 PubMed
Calcagno SR, Li S, Colon M, Kreinest PA, Thompson EA, Fields AP, Murray NR (2008) Oncogenic K-ras promotes early carcinogenesis in the mouse proximal colon. Int J Cancer 122:2462–2470. 10.1002/ijc.23383 PubMed PMC
Cancer Genome Atlas N (2012) Comprehensive molecular characterization of human colon and rectal cancer Nature 487:330–337. 10.1038/nature11252 PubMed PMC
Dunne PD, Arends MJ (2024) Molecular pathological classification of colorectal cancer-an update. Virchows Arch 484:273–285. 10.1007/s00428-024-03746-3 PubMed PMC
DuPage M, Dooley AL, Jacks T (2009) Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc 4:1064–1072. 10.1038/nprot.2009.95 PubMed PMC
Fakih MG et al. (2022) Sotorasib for previously treated colorectal cancers with KRAS(G12C) mutation (CodeBreaK100): a prespecified analysis of a single-arm, phase 2 trial Lancet Oncol 23:115–124. 10.1016/S1470-2045(21)00605-7 PubMed
Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci USA 93:10887–10890. 10.1073/pnas.93.20.10887 PubMed PMC
Ferrer I, Zugazagoitia J, Herbertz S, John W, Paz-Ares L, Schmid-Bindert G (2018) KRAS-mutant non-small cell lung cancer: from biology to therapy. Lung Cancer 124:53–64. 10.1016/j.lungcan.2018.07.013 PubMed
Haigis KM (2017) KRAS alleles: the devil is in the detail. Trends Cancer 3:686–697. 10.1016/j.trecan.2017.08.006 PubMed PMC
Haigis KM et al (2008) Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat Genet 40:600–608. 10.1038/ng.115 PubMed PMC
Hallin J et al (2022) Anti-tumor efficacy of a potent and selective non-covalent KRAS(G12D) inhibitor. Nat Med 28:2171–2182. 10.1038/s41591-022-02007-7 PubMed
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. 10.1016/j.cell.2011.02.013 PubMed
Hobbs GA, Der CJ, Rossman KL (2016) RAS isoforms and mutations in cancer at a glance. J Cell Sci 129:1287–1292. 10.1242/jcs.182873 PubMed PMC
Hrckulak D et al (2018) Wnt effector TCF4 is dispensable for wnt signaling in human cancer cells. Genes (Basel). 10.3390/genes9090439 PubMed PMC
Jackson EL et al (2001) Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15:3243–3248. 10.1101/gad.943001 PubMed PMC
Janeckova L et al (2015) HIC1 tumor suppressor loss potentiates TLR2/NF-kappaB signaling and promotes tissue damage-associated tumorigenesis. Mol Cancer Res 13:1139–1148. 10.1158/1541-7786.MCR-15-0033 PubMed
Kasparek P, Krausova M, Haneckova R, Kriz V, Zbodakova O, Korinek V, Sedlacek R (2014) Efficient gene targeting of the Rosa26 locus in mouse zygotes using TALE nucleases. FEBS Lett 588:3982–3988. 10.1016/j.febslet.2014.09.014 PubMed
Kim D et al (2023) Pan-KRAS inhibitor disables oncogenic signalling and tumour growth. Nature 619:160–166. 10.1038/s41586-023-06123-3 PubMed PMC
Kris MG et al (2003) Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 290:2149–2158. 10.1001/jama.290.16.2149 PubMed
Kristianto J, Johnson MG, Zastrow RK, Radcliff AB, Blank RD (2017) Spontaneous recombinase activity of Cre-ERT2 in vivo. Transgenic Res 26:411–417. 10.1007/s11248-017-0018-1 PubMed PMC
Kuraguchi M et al (2006) Adenomatous polyposis coli (APC) is required for normal development of skin and thymus. PLoS Genet 2:e146. 10.1371/journal.pgen.0020146 PubMed PMC
Ledford H (2015) Cancer: the ras renaissance. Nature 520:278–280. 10.1038/520278a PubMed
Lenart S et al (2022) TACSTD2 upregulation is an early reaction to lung infection. Sci Rep 12:9583. 10.1038/s41598-022-13637-9 PubMed PMC
Lievre A et al (2006) KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 66:3992–3995. 10.1158/0008-5472.CAN-06-0191 PubMed
Madisen L et al (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13:133–140. 10.1038/nn.2467 PubMed PMC
Meinke G, Bohm A, Hauber J, Pisabarro MT, Buchholz F (2016) Cre recombinase and other tyrosine recombinases. Chem Rev 116:12785–12820. 10.1021/acs.chemrev.6b00077 PubMed
Ng K et al (2013) Phase II study of everolimus in patients with metastatic colorectal adenocarcinoma previously treated with bevacizumab-, fluoropyrimidine-, oxaliplatin-, and irinotecan-based regimens. J Clin Cancer Res 19:3987–3995. 10.1158/1078-0432.CCR-13-0027 PubMed PMC
Nuevo-Tapioles C, Philips MR (2022) The role of KRAS splice variants in cancer biology. Front Cell Dev Biol 10:1033348. 10.3389/fcell.2022.1033348 PubMed PMC
O’Gorman S, Fox DT, Wahl GM (1991) Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251:1351–1355. 10.1126/science.1900642 PubMed
Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM (2013) K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503:548–551. 10.1038/nature12796 PubMed PMC
Pospichalova V et al (2011) Generation of two modified mouse alleles of the Hic1 tumor suppressor gene. Genesis 49:142–151. 10.1002/dvg.20719 PubMed
Provost E, Rhee J, Leach SD (2007) Viral 2A peptides allow expression of multiple proteins from a single ORF in transgenic zebrafish embryos. Genesis 45:625–629. 10.1002/dvg.20338 PubMed
Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D (2011) RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 11:761–774. 10.1038/nrc3106 PubMed PMC
Raymond CS, Soriano P (2007) High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS ONE 2:e162. 10.1371/journal.pone.0000162 PubMed PMC
Rodriguez CI et al (2000) High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat Genet 25:139–140. 10.1038/75973 PubMed
Ryan DP, Hong TS, Bardeesy N (2014) Pancreatic adenocarcinoma. N Engl J Med 371:1039–1049. 10.1056/NEJMra1404198 PubMed
Sansom OJ et al (2006) Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo. Proc Natl Acad Sci U S A 103:14122–14127. 10.1073/pnas.0604130103 PubMed PMC
Sato T et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265. 10.1038/nature07935 PubMed
Sato T et al (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469:415–418. 10.1038/nature09637 PubMed PMC
Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci U S A 85:5166–5170. 10.1073/pnas.85.14.5166 PubMed PMC
Schindelin J et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. 10.1038/nmeth.2019 PubMed PMC
Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909. 10.1038/nmeth819 PubMed
Shaw AT et al (2007) Sprouty-2 regulates oncogenic K-ras in lung development and tumorigenesis. Genes Dev 21:694–707. 10.1101/gad.1526207 PubMed PMC
Snippert HJ, Schepers AG, van Es JH, Simons BD, Clevers H (2014) Biased competition between Lgr5 intestinal stem cells driven by oncogenic mutation induces clonal expansion. EMBO Rep 15:62–69. 10.1002/embr.201337799 PubMed PMC
Susaki EA, Tainaka K, Perrin D, Yukinaga H, Kuno A, Ueda HR (2015) Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat Protoc 10:1709–1727. 10.1038/nprot.2015.085 PubMed
Tuveson DA et al (2004) Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5:375–387. 10.1016/s1535-6108(04)00085-6 PubMed
Yaeger R et al (2023) Adagrasib with or without cetuximab in colorectal cancer with mutated KRAS G12C. N Engl J Med 388:44–54. 10.1056/NEJMoa2212419 PubMed PMC
Yang Y, Zhang H, Huang S, Chu Q (2023) KRAS mutations in solid tumors: characteristics, current therapeutic strategy, and potential treatment exploration. J Clin Med. 10.3390/jcm12020709 PubMed PMC
Young NP, Crowley D, Jacks T (2011) Uncoupling cancer mutations reveals critical timing of p53 loss in sarcomagenesis. Cancer Res 71:4040–4047. 10.1158/0008-5472.CAN-10-4563 PubMed PMC