Cholesterol in the Cell Membrane-An Emerging Player in Atherogenesis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
no. NU20-01-00022
Ministry of Health of the Czech Republic
PubMed
35008955
PubMed Central
PMC8745363
DOI
10.3390/ijms23010533
PII: ijms23010533
Knihovny.cz E-zdroje
- Klíčová slova
- cell membrane, cholesterol, macrophages,
- MeSH
- ateroskleróza * MeSH
- biologický transport MeSH
- buněčná membrána chemie metabolismus MeSH
- cholesterol chemie metabolismus MeSH
- homeostáza MeSH
- lidé MeSH
- lipoproteiny metabolismus MeSH
- makrofágy metabolismus MeSH
- membránové mikrodomény chemie metabolismus MeSH
- metabolismus lipidů MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cholesterol MeSH
- lipoproteiny MeSH
Membrane cholesterol is essential for cell membrane properties, just as serum cholesterol is important for the transport of molecules between organs. This review focuses on cholesterol transport between lipoproteins and lipid rafts on the surface of macrophages. Recent studies exploring this mechanism and recognition of the central dogma-the key role of macrophages in cardiovascular disease-have led to the notion that this transport mechanism plays a major role in the pathogenesis of atherosclerosis. The exact molecular mechanism of this transport remains unclear. Future research will improve our understanding of the molecular and cellular bases of lipid raft-associated cholesterol transport.
Zobrazit více v PubMed
Anitschkow N.N., Chalatow S. Über experimentelle Cholesterinsteatose und ihre Bedeutung für die Entstehung einiger pathologischer Prozesse. Zent. Fur. Allg. Pathol. Und Pathol. Anat. 1913;24:1–9.
Keys A., Anderson J.T., Grande F. Effect on Serum Cholesterol in Man of Mono-Ene Fatty Acid (Oleic Acid) in the Diet. Soc. Exp. Biol. Med. 2016;98:387–391. doi: 10.3181/00379727-98-24052. PubMed DOI
Bloch K. The Intermediary Metabolism of Cholesterol. Circulation. 1950;1:214–219. doi: 10.1161/01.CIR.1.2.214. PubMed DOI
Gofman J.W., Glazier F., Tamplin A., Strisower B., Lalla O.D. Lipoproteins, Coronary Heart Disease, and Atherosclerosis. Physiol. Rev. 1954;34:589–607. doi: 10.1152/physrev.1954.34.3.589. PubMed DOI
Herrick J.B. An intimate account of my early experience with coronary thrombosis. Am. Heart J. 1944;27:1–18. doi: 10.1016/S0002-8703(44)90602-2. DOI
Goldstein J.L., Brown M.S. A Century of Cholesterol and Coronaries: From Plaques to Genes to Statins. Cell. 2015;161:161. doi: 10.1016/j.cell.2015.01.036. PubMed DOI PMC
Scandinavian Simvastatin Survival Study Group Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Simvastatin Survival Study (4S) Lancet. 1994;344:1383–1389. PubMed
Lee A.G. How lipids affect the activities of integral membrane proteins. Biochim. Biophys. Acta-Biomembr. 2004;1666:62–87. doi: 10.1016/j.bbamem.2004.05.012. PubMed DOI
Maxfield F.R., Tabas I. Role of cholesterol and lipid organization in disease. Nature. 2005;438:612–621. doi: 10.1038/nature04399. PubMed DOI
Cardoso D., Perucha E. Cholesterol metabolism: A new molecular switch to control inflammation. Clin. Sci. 2021;135:1389–1408. doi: 10.1042/CS20201394. PubMed DOI PMC
Goldstein J.L., Brown M.S. Molecular medicine. The cholesterol quartet. Science. 2001;292:1310–1312. doi: 10.1126/science.1061815. PubMed DOI
Foster G.A., Xu L., Chidambaram A.A., Soderberg S.R., Armstrong E.J., Wu H., Simon S.I. CD11c/CD18 signals very late antigen-4 activation to initiate foamy monocyte recruitment during the onset of hypercholesterolemia. J. Immunol. 2015;195:5380. doi: 10.4049/jimmunol.1501077. PubMed DOI PMC
Sijbrands E.J.G., Westendorp R.G.J., Defesche J.C., Meier P.H.E.M.d., Smelt A.H.M., Kastelein J.J.P. Mortality over two centuries in large pedigree with familial hypercholesterolaemia: Family tree mortality study. BMJ Br. Med. J. 2001;322:1019. doi: 10.1136/bmj.322.7293.1019. PubMed DOI PMC
Poledne R., Zicha J. Human Genome Evolution and Development of Cardiovascular Risk Factors Through Natural Selection. Physiol. Res. 2018;67:155–163. doi: 10.33549/physiolres.933885. PubMed DOI
Tall A.R., Yvan-Charvet L. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 2015;15:104–116. doi: 10.1038/nri3793. PubMed DOI PMC
Netea M.G., Demacker P.N., Kullberg B.J., Boerman O.C., Verschueren I., Stalenhoef A.F., Meer J.W.V.d. Low-density lipoprotein receptor-deficient mice are protected against lethal endotoxemia and severe gram-negative infections. J. Clin. Investig. 1996;97:1366. doi: 10.1172/JCI118556. PubMed DOI PMC
Libby P., Ridker P.M., Hansson G.K. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;437:317–325. doi: 10.1038/nature10146. PubMed DOI
Medbury H.J., Williams H., Li S., Fletcher J.P. The Bidirectional Relationship between Cholesterol and Macrophage Polarization. J. Clin. Cell. Immunol. 2015;6:303. doi: 10.4172/2155-9899.1000303. DOI
Ridker P.M., Rifai N., Rose L., Buring J.E., Cook N.R. Comparison of C-Reactive Protein and Low-Density Lipoprotein Cholesterol Levels in the Prediction of First Cardiovascular Events. N. Engl. J. Med. 2009;347:1557–1565. doi: 10.1056/NEJMoa021993. PubMed DOI
Ridker P.M., Cook N. Clinical Usefulness of Very High and Very Low Levels of C-Reactive Protein Across the Full Range of Framingham Risk Scores. Circulation. 2004;109:1955–1959. doi: 10.1161/01.CIR.0000125690.80303.A8. PubMed DOI
Ridker P.M., Cannon C.P., Morrow D., Rifai N., Rose L.M., McCabe C.H., Pfeffer M.A., Braunwald E. C-Reactive Protein Levels and Outcomes after Statin Therapy. N. Engl. J. Med. 2009;8:8–9. doi: 10.1056/NEJMOA042378. PubMed DOI
Aday A.W., Ridker P.M. Targeting Residual Inflammatory Risk: A Shifting Paradigm for Atherosclerotic Disease. Front. Cardiovasc. Med. 2019;6:16. doi: 10.3389/fcvm.2019.00016. PubMed DOI PMC
Ridker P.M., Everett B.M., Thuren T., MacFadyen J.G., Chang W.H., Ballantyne C., Fonseca F., Nicolau J., Koenig W., Anker S.D., et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017;377:1119–1131. doi: 10.1056/NEJMoa1707914. PubMed DOI
Ohtani Y., Irie T., Uekama K., Fukunaga K., Pitha J. Differential effects of alpha-, beta- and gamma-cyclodextrins on human erythrocytes. Eur. J. Biochem. 1989;186:17–22. doi: 10.1111/j.1432-1033.1989.tb15171.x. PubMed DOI
Riottot M., Olivier P., Huet A., Caboche J.-J., Parquet M., Khallou J., Lutton C. Hypolipidemic effects of β-cyclodextrin in the hamster and in the genetically hypercholesterolemic rico rat. Lipids. 1993;28:181–188. doi: 10.1007/BF02536637. PubMed DOI
Qin L., Zhu N., Ao B.X., Liu C., Shi Y.N., Du K., Chen J.X., Zheng X.L., Liao D.F. Caveolae and Caveolin-1 Integrate Reverse Cholesterol Transport and Inflammation in Atherosclerosis. Int. J. Mol. Sci. 2016;17:429. doi: 10.3390/ijms17030429. PubMed DOI PMC
Stöger J.L., Gijbels M.J.J., Velden S., Manca M., Loos C.M., Biessen E.A.L., Daemen M.J.A.P., Lutgens E., Winther M.P.J.d. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis. 2012;225:461–468. doi: 10.1016/j.atherosclerosis.2012.09.013. PubMed DOI
Summerhill V.I., Grechko A.V., Yet S.F., Sobenin I.A., Orekhov A.N. The Atherogenic Role of Circulating Modified Lipids in Atherosclerosis. Int. J. Mol. Sci. 2019;20:3561. doi: 10.3390/ijms20143561. PubMed DOI PMC
Ohkawa R., Low H., Mukhamedova N., Fu Y., Lai S.-J., Sasaoka M., Hara A., Yamazaki A., Kameda T., Horiuchi Y., et al. Cholesterol transport between red blood cells and lipoproteins contributes to cholesterol metabolism in blood. J. Lipid Res. 2020;61:1577–1588. doi: 10.1194/jlr.RA120000635. PubMed DOI PMC
Turner S., Voogt J., Davidson M., Glass A., Killion S., Decaris J., Mohammed H., Minehira K., Boban D., Murphy E., et al. Measurement of Reverse Cholesterol Transport Pathways in Humans: In Vivo Rates of Free Cholesterol Efflux, Esterification, and Excretion. J. Am. Heart Assoc. 2012;1:1826. doi: 10.1161/JAHA.112.001826. PubMed DOI PMC
Jakulj L., Dijk T.H., Boer J.F., Kootte R.S., Schonewille M., Paalvast Y., Boer T., Bloks V.W., Boverhof R., Nieuwdorp M., et al. Transintestinal Cholesterol Transport Is Active in Mice and Humans and Controls Ezetimibe-Induced Fecal Neutral Sterol Excretion. Cell Metab. 2016;24:783–794. doi: 10.1016/j.cmet.2016.10.001. PubMed DOI
Boer J.F., Schonewille M., Dikkers A., Koehorst M., Havinga R., Kuipers F., Tietge U.J.F., Groen A.K. Transintestinal and Biliary Cholesterol Secretion Both Contribute to Macrophage Reverse Cholesterol Transport in Rats—Brief Report. Arterioscler. Thromb. Vasc. Biol. 2017;37:643–646. doi: 10.1161/ATVBAHA.116.308558. PubMed DOI
Hung K.T., Berisha S.Z., Ritchey B.M., Santore J., Smith J.D. Red Blood Cells Play a Role in Reverse Cholesterol Transport. Arterioscler. Thromb. Vasc. Biol. 2012;32:1460. doi: 10.1161/ATVBAHA.112.248971. PubMed DOI PMC
Lai S.-J., Ohkawa R., Horiuchi Y., Kubota T., Tozuka M. Red blood cells participate in reverse cholesterol transport by mediating cholesterol efflux of high-density lipoprotein and apolipoprotein A-I from THP-1 macrophages. Biol. Chem. 2019;400:1593–1602. doi: 10.1515/hsz-2019-0244. PubMed DOI
Goldstein J.L., Brown M.S. Regulation of low-density lipoprotein receptors: Implications for pathogenesis and therapy of hypercholesterolemia and atherosclerosis. Circulation. 1987;76:504–507. doi: 10.1161/01.CIR.76.3.504. PubMed DOI
Brown M.S., Goldstein J.L. Lipoprotein receptors in the liver. Control signals for plasma cholesterol traffic. J. Clin. Investig. 1983;72:743–747. doi: 10.1172/JCI111044. PubMed DOI PMC
Brown M.S., Goldstein J.L. Lipoprotein metabolism in the macrophage: Implications for Cholesterol Deposition in Atherosclerosis. Annu. Rev. Biochem. 2003;52:223–261. doi: 10.1146/annurev.bi.52.070183.001255. PubMed DOI
Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat. Rev. Immunol. 2010;10:36. doi: 10.1038/nri2675. PubMed DOI PMC
Cejkova S., Kubatova H., Thieme F., Janousek L., Fronek J., Poledne R., Kralova Lesna I. The effect of cytokines produced by human adipose tissue on monocyte adhesion to the endothelium. Cell Adhes. Migr. 2019;13:293. doi: 10.1080/19336918.2019.1644856. PubMed DOI PMC
Bernardi S., Marcuzzi A., Piscianz E., Tommasini A., Fabris B. The Complex Interplay between Lipids, Immune System and Interleukins in Cardio-Metabolic Diseases. Int. J. Mol. Sci. 2018;19:4058. doi: 10.3390/ijms19124058. PubMed DOI PMC
Poledne R., Králová Lesná I., Čejková S. Adipose Tissue and Atherosclerosis. Physiol. Res. 2015;64:395–402. doi: 10.33549/physiolres.933152. PubMed DOI
Postea O., Vasina E.M., Cauwenberghs S., Projahn D., Liehn E.A., Lievens D., Theelen W., Kramp B.K., Butoi E.D., Soehnlein O., et al. Contribution of Platelet CX3CR1 to Platelet–Monocyte Complex Formation and Vascular Recruitment During Hyperlipidemia. Arterioscler. Thromb. Vasc. Biol. 2012;32:1186–1193. doi: 10.1161/ATVBAHA.111.243485. PubMed DOI
Reiss A.B., Cronstein B.N. Regulation of Foam Cells by Adenosine. Arterioscler. Thromb. Vasc. Biol. 2012;32:879. doi: 10.1161/ATVBAHA.111.226878. PubMed DOI PMC
Bojic L.A., Sawyez C.G., Telford D.E., Edwards J.Y., Hegele R.A., Huff M.W. Activation of Peroxisome Proliferator-Activated Receptor δ Inhibits Human Macrophage Foam Cell Formation and the Inflammatory Response Induced by Very Low-Density Lipoprotein. Arterioscler. Thromb. Vasc. Biol. 2012;32:2919–2928. doi: 10.1161/ATVBAHA.112.255208. PubMed DOI
Schulz C., Massberg S. Atherosclerosis—Multiple Pathways to Lesional Macrophages. Sci. Transl. Med. 2014;6:8922. doi: 10.1126/scitranslmed.3008922. PubMed DOI
Valledor A.F., Borràs F.E., Cullell-Young M., Celada A. Transcription factors that regulate monocyte/macrophage differentiation. J. Leukoc. Biol. 1998;63:405–417. doi: 10.1002/jlb.63.4.405. PubMed DOI
Orekhov A.N., Sukhorukov V.N., Nikiforov N.G., Kubekina M.V., Sobenin I.A., Foxx K.K., Pintus S., Stegmaier P., Stelmashenko D., Kel A., et al. Signaling Pathways Potentially Responsible for Foam Cell Formation: Cholesterol Accumulation or Inflammatory Response-What is First? Int. J. Mol. Sci. 2020;21:2716. doi: 10.3390/ijms21082716. PubMed DOI PMC
Rudick M., Anderson R.G.W. Multiple Functions of Caveolin-1. J. Biol. Chem. 2002;277:41295–41298. doi: 10.1074/JBC.R200020200. PubMed DOI
Endemannl G., Stanton L.W., Madden K.S., Bryant C.M., White R.T., Protter A.A. THE JOURNAL OF BIOLOGICAL CHEMISTRV CD36 Is a Receptor for Oxidized Low Density Lipoprotein. J. Biol. Chem. 1993;268:11811–11816. doi: 10.1016/S0021-9258(19)50272-1. PubMed DOI
Tsai T.H., Chen S.F., Huang T.Y., Tzeng C.F., Chiang A.S., Kou Y.R., Lee T.S., Shyue S.K. Impaired Cd14 and Cd36 expression, bacterial clearance, and Toll-like receptor 4-Myd88 signaling in caveolin-1-deleted macrophages and mice. Shock. 2011;35:92–99. doi: 10.1097/SHK.0b013e3181ea45ca. PubMed DOI
Heit B., Kim H., Cosío G., Castaño D., Collins R., Lowell C.A., Kain K.C., Trimble W.S., Grinstein S. Multimolecular signaling complexes enable Syk-mediated signaling of CD36 internalization. Dev. Cell. 2013;24:372. doi: 10.1016/j.devcel.2013.01.007. PubMed DOI PMC
Ring A., Le Lay S., Pohl J., Verkade P., Stremmel W. Caveolin-1 is required for fatty acid translocase (FAT/CD36) localization and function at the plasma membrane of mouse embryonic fibroblasts. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids. 2006;1761:416–423. doi: 10.1016/j.bbalip.2006.03.016. PubMed DOI
Febbraio M., Podrez E.A., Smith J.D., Hajjar D.P., Hazen S.L., Hoff H.F., Sharma K., Silverstein R.L. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J. Clin. Investig. 2000;105:1049. doi: 10.1172/JCI9259. PubMed DOI PMC
Thomas-Ecker S., Lindecke A., Hatzmann W., Kaltschmidt C., Zänker K.S., Dittmar T. Alteration in the gene expression pattern of primary monocytes after adhesion to endothelial cells. Proc. Natl. Acad. Sci. USA. 2007;104:5539. doi: 10.1073/pnas.0700732104. PubMed DOI PMC
Gils J.M., Derby M.C., Fernandes L.R., Ramkhelawon B., Ray T.D., Rayner K.J., Parathath S., Distel E., Feig J.L., Alvarez-Leite J.I., et al. The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting macrophage emigration from plaques. Nat. Immunol. 2012;13:136. doi: 10.1038/ni.2205. PubMed DOI PMC
Ramkhelawon B., Hennessy E.J., Menager M., Ray T.D., Sheedy F.J., Hutchison S., Wanschel A., Oldebeken S., Geoffrion M., Spiro W., et al. Netrin-1 promotes adipose tissue macrophage retention and insulin resistance in obesity. Nat. Med. 2014;20:377–384. doi: 10.1038/nm.3467. PubMed DOI PMC
Javadifar A., Rastgoo S., Banach M., Jamialahmadi T., Johnston T.P., Sahebkar A. Foam Cells as Therapeutic Targets in Atherosclerosis with a Focus on the Regulatory Roles of Non-Coding RNAs. Int. J. Mol. Sci. 2021;22:2529. doi: 10.3390/ijms22052529. PubMed DOI PMC
Orekhov A.N., Tertov V.V., Mukhin D.N. Desialylated low density lipoprotein--naturally occurring modified lipoprotein with atherogenic potency. Atherosclerosis. 1991;86:153–161. doi: 10.1016/0021-9150(91)90211-K. PubMed DOI
Tertov V.V., Sobenin I.A., Orekhov A.N. Characterization of desialylated low-density lipoproteins which cause intracellular lipid accumulation. Int. J. Tissue React. 1992;14:155–162. PubMed
Tertov V.V., Sobenin I.A., Gabbasov Z.A., Popov E.G., Jaakkola O., Solakivi T., Nikkari T., Smirnov V.N., Orekhov A.N. Multiple-modified desialylated low density lipoproteins that cause intracellular lipid accumulation. Isolation, fractionation and characterization. Lab. Investig. 1992;67:665–675. PubMed
Tertov V.V., Kaplun V.V., Sobenin I.A., Orekhov A.N. Low-density lipoprotein modification occurring in human plasma possible mechanism of in vivo lipoprotein desialylation as a primary step of atherogenic modification. Atherosclerosis. 1998;138:183–195. doi: 10.1016/S0021-9150(98)00023-9. PubMed DOI
Sobenin I.A., Tertov V.V., Orekhov A.N., Smirnov V.N. Synergetic effect of desialylated and glycated low density lipoproteins on cholesterol accumulation in cultured smooth muscle intimal cells. Atherosclerosis. 1991;89:151–154. doi: 10.1016/0021-9150(91)90055-8. PubMed DOI
Mezentsev A., Bezsonov E., Kashirskikh D., Baig M.S., Eid A.H., Orekhov A. Proatherogenic Sialidases and Desialylated Lipoproteins: 35 Years of Research and Current State from Bench to Bedside. Biomedicines. 2021;9:600. doi: 10.3390/biomedicines9060600. PubMed DOI PMC
Lange Y., Swaisgood M.H., Ramos B.V., Steck T.L. Plasma membranes contain half the phospholipid and 90% of the cholesterol and sphingomyelin in cultured human fibroblasts. J. Biol. Chem. 1989;264:3786–3793. doi: 10.1016/S0021-9258(19)84918-9. PubMed DOI
Yang S.-T., Kreutzberger A.J.B., Lee J., Kiessling V., Tamm L.K. The Role of Cholesterol in Membrane Fusion. Chem. Phys. Lipids. 2016;199:136. doi: 10.1016/j.chemphyslip.2016.05.003. PubMed DOI PMC
Sezgin E., Levental I., Mayor S., Eggeling C. The mystery of membrane organization: Composition, regulation and physiological relevance of lipid rafts. Nat. Rev. Mol. Cell Biol. 2017;18:361. doi: 10.1038/nrm.2017.16. PubMed DOI PMC
Brachet A., Norwood S., Brouwers J.F., Palomer E., Helms J.B., Dotti C.G., Esteban J.A. LTP-triggered cholesterol redistribution activates Cdc42 and drives AMPA receptor synaptic delivery. J. Cell Biol. 2015;208:791. doi: 10.1083/jcb.201407122. PubMed DOI PMC
Pagler T.A., Wang M., Mondal M., Murphy A.J., Westerterp M., Moore K.J., Maxfield F.R., Tall A.R. Deletion of ABCA1 and ABCG1 Impairs Macrophage Migration Because of Increased Rac1 Signaling. Circ. Res. 2011;108:194. doi: 10.1161/CIRCRESAHA.110.228619. PubMed DOI PMC
Frechin M., Stoeger T., Daetwyler S., Gehin C., Battich N., Damm E.M., Stergiou L., Riezman H., Pelkmans L. Cell-intrinsic adaptation of lipid composition to local crowding drives social behaviour. Nature. 2015;523:88–91. doi: 10.1038/nature14429. PubMed DOI
Liu S.-L., Sheng R., Jung J.H., Wang L., Stec E., O’Connor M.J., Song S., Bikkavilli R.K., Winn R.A., Lee D., et al. Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. Nat. Chem. Biol. 2017;13:268. doi: 10.1038/nchembio.2268. PubMed DOI PMC
Buwaneka P., Ralko A., Liu S.-L., Cho W. Evaluation of the available cholesterol concentration in the inner leaflet of the plasma membrane of mammalian cells. J. Lipid Res. 2021;62:84. doi: 10.1016/j.jlr.2021.100084. PubMed DOI PMC
Pike L.J. Rafts defined: A report on the Keystone symposium on lipid rafts and cell function. J. Lipid Res. 2006;47:1597–1598. doi: 10.1194/jlr.E600002-JLR200. PubMed DOI
Simons K., Toomre D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 2000;1:31–39. doi: 10.1038/35036052. PubMed DOI
Hryniewicz-Jankowska A., Augoff K., Sikorski A.F. Highlight article: The role of cholesterol and cholesterol-driven membrane raft domains in prostate cancer. Exp. Biol. Med. 2019;244:1053. doi: 10.1177/1535370219870771. PubMed DOI PMC
Schuck S., Honsho M., Ekroos K., Shevchenko A., Simons K. Resistance of cell membranes to different detergents. Proc. Natl. Acad. Sci. USA. 2003;100:5795. doi: 10.1073/pnas.0631579100. PubMed DOI PMC
Parton R.G., Simons K. The multiple faces of caveolae. Nat. Rev. Mol. Cell. Biol. 2007;8:185–194. doi: 10.1038/nrm2122. PubMed DOI
Medina F.A., Almeida C.J.d., Dew E., Li J., Bonuccelli G., Williams T.M., Cohen A.W., Pestell R.G., Frank P.G., Tanowitz H.B., et al. Caveolin-1-Deficient Mice Show Defects in Innate Immunity and Inflammatory Immune Response during Salmonella enterica Serovar Typhimurium Infection. Infect. Immun. 2006;74:6665. doi: 10.1128/IAI.00949-06. PubMed DOI PMC
Cammarota E., Soriani C., Taub R., Morgan F., Sakai J., Veatch S.L., Bryant C.E., Cicuta P. Criticality of plasma membrane lipids reflects activation state of macrophage cells. J. R. Soc. Interface. 2020;17:803. doi: 10.1098/rsif.2019.0803. PubMed DOI PMC
Varshney P., Yadav V., Saini N. Lipid rafts in immune signalling: Current progress and future perspective. Immunology. 2016;149:13–24. doi: 10.1111/imm.12617. PubMed DOI PMC
Poledne R., Malinska H., Kubatova H., Fronek J., Thieme F., Kauerova S., Lesna I.K. Polarization of Macrophages in Human Adipose Tissue is Related to the Fatty Acid Spectrum in Membrane Phospholipids. Nutrients. 2019;12:8. doi: 10.3390/nu12010008. PubMed DOI PMC
Kralova Lesna I., Petras M., Cejkova S., Kralova A., Fronek J., Janousek L., Thieme F., Tyll T., Poledne R. Cardiovascular disease predictors and adipose tissue macrophage polarization: Is there a link? Eur. J. Prev. Cardiol. 2018;25:328–334. doi: 10.1177/2047487317743355. PubMed DOI
Poledne R., Kralova Lesna I. Adipose tissue macrophages and atherogenesis—A synergy with cholesterolaemia. Physiol. Res. 2021;12:88. PubMed PMC
Molfetta R., Gasparrini F., Peruzzi G., Vian L., Piccoli M., Frati L., Santoni A., Paolini R. Lipid Raft-Dependent FcεRI Ubiquitination Regulates Receptor Endocytosis through the Action of Ubiquitin Binding Adaptors. PLoS ONE. 2009;4:e5604. doi: 10.1371/journal.pone.0005604. PubMed DOI PMC
Sen S., Roy K., Mukherjee S., Mukhopadhyay R., Roy S. Restoration of IFNγR Subunit Assembly, IFNγ Signaling and Parasite Clearance in Leishmania donovani Infected Macrophages: Role of Membrane Cholesterol. PLoS Pathog. 2011;7:e1002229. doi: 10.1371/journal.ppat.1002229. PubMed DOI PMC
Zhuang L., Kim J., Adam R.M., Solomon K.R., Freeman M.R. Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. J. Clin. Investig. 2005;115:959. doi: 10.1172/JCI200519935. PubMed DOI PMC
Lemaire-Ewing S., Lagrost L., Néel D. Lipid rafts: A signalling platform linking lipoprotein metabolism to atherogenesis. Atherosclerosis. 2012;221:303–310. doi: 10.1016/j.atherosclerosis.2011.10.016. PubMed DOI
Ridker P.M., Danielson E., Fonseca F.A., Genest J., Gotto A.M., Jr., Kastelein J.J., Koenig W., Libby P., Lorenzatti A.J., Macfadyen J.G., et al. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: A prospective study of the JUPITER trial. Lancet. 2009;373:1175–1182. doi: 10.1016/S0140-6736(09)60447-5. PubMed DOI
Wang S.h., Yuan S.g., Peng D.q., Zhao S.p. HDL and ApoA-I inhibit antigen presentation-mediated T cell activation by disrupting lipid rafts in antigen presenting cells. Atherosclerosis. 2012;225:105–114. doi: 10.1016/j.atherosclerosis.2012.07.029. PubMed DOI
Pirillo A., Bonacina F., Norata G.D., Catapano A.L. The Interplay of Lipids, Lipoproteins, and Immunity in Atherosclerosis. Curr. Atheroscler. Rep. 2018;20:7150. doi: 10.1007/s11883-018-0715-0. PubMed DOI