Rapid Drop in Coronary Heart Disease Mortality in Czech Male Population-What Was Actually behind It?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU20-01-00022
Ministry of Health of the Czech Republic
PubMed
36359388
PubMed Central
PMC9687300
DOI
10.3390/biomedicines10112871
PII: biomedicines10112871
Knihovny.cz E-zdroje
- Klíčová slova
- cholesterol, coronary heart disease mortality, diet, economy, inflammation, macrophages, n-3 fatty acids,
- Publikační typ
- časopisecké články MeSH
The high mortality of coronary heart disease (CHD) among Czech men-one of the highest worldwide-began to decline in 1991 soon after the abolition of government subsidies to all foodstuffs rich in animal fat. As participants in the WHO MONICA Project, we were able to analyze the CHD risk factors just before and after this major economic change. We had previously documented that the originally subsidized prices decreased animal fat consumption and consequently non-HDL cholesterol concentrations in the population. By the early 1990s, no progress had been made in the treatment of acute myocardial infarction, statins were unavailable as was not the currently more effective antihypertensive therapy. Our recent research proved a close relationship between cholesterolemia and proinflammatory macrophages in adipose tissue and accelerated macrophage polarization with increased palmitate and palmitoleate contents in cell membrane phospholipids. By contrast, the proportion of proinflammatory macrophages decreases with increasing presence of n-3 fatty acids in the cell membrane. The combination of non-HDL cholesterol drop and a decreased proportion of proinflammatory macrophages due to replacement of alimentary fat decreased CHD mortality immediately.
Zobrazit více v PubMed
Rosamond W., Flegal K., Friday G., Furie K., Go A., Greenlund K., Haase N., Ho M., Howard V., Kissela B., et al. Heart disease and stroke statistics—2007 update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2007;115:e69–e171. doi: 10.1161/CIRCULATIONAHA.106.179918. PubMed DOI
Kannel W.B., Thom T.J. Declining cardiovascular mortality. Circulation. 1984;70:331–336. doi: 10.1161/01.CIR.70.3.331. PubMed DOI
Capewell S., Morrison C.E., McMurray J.J. Contribution of modern cardiovascular treatment and risk factor changes to the decline in coronary heart disease mortality in Scotland between 1975 and 1994. Heart. 1999;81:380–386. doi: 10.1136/hrt.81.4.380. PubMed DOI PMC
Ford E.S., Ajani U.A., Croft J.B., Critchley J.A., Labarthe D.R., Kottke T.E., Giles W.H., Capewell S. Explaining the decrease in U.S. deaths from coronary disease, 1980–2000. N. Engl. J. Med. 2007;356:2388–2398. doi: 10.1056/NEJMsa053935. PubMed DOI
Björck L., Rosengren A., Bennett K., Lappas G., Capewell S. Modelling the decreasing coronary heart disease mortality in Sweden between 1986 and 2002. Eur. Heart J. 2009;30:1046–1056. doi: 10.1093/eurheartj/ehn554. PubMed DOI
Moore K.J., Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011;145:341–355. doi: 10.1016/j.cell.2011.04.005. PubMed DOI PMC
Hansson G.K. Atherosclerosis--an immune disease: The Anitschkov Lecture 2007. Atherosclerosis. 2009;202:2–10. doi: 10.1016/j.atherosclerosis.2008.08.039. PubMed DOI
von Ehr A., Bode C., Hilgendorf I. Macrophages in Atheromatous Plaque Developmental Stages. Front. Cardiovasc. Med. 2022;9:865367. doi: 10.3389/fcvm.2022.865367. PubMed DOI PMC
Ridker P.M., Buring J.E., Cook N.R., Rifai N. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: An 8-year follow-up of 14 719 initially healthy American women. Circulation. 2003;107:391–397. doi: 10.1161/01.CIR.0000055014.62083.05. PubMed DOI
Koenig W., Sund M., Fröhlich M., Fischer H.G., Löwel H., Döring A., Hutchinson W.L., Pepys M.B. C-Reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: Results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation. 1999;99:237–242. doi: 10.1161/01.cir.99.2.237. PubMed DOI
Weisberg S.P., McCann D., Desai M., Rosenbaum M., Leibel R.L., Ferrante A.W. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 2003;112:1796–1808. doi: 10.1172/JCI200319246. PubMed DOI PMC
Christen T., Trompet S., Rensen P.C.N., Willems van Dijk K., Lamb H.J., Jukema J.W., Rosendaal F.R., le Cessie S., de Mutsert R. The role of inflammation in the association between overall and visceral adiposity and subclinical atherosclerosis. Nutr. Metab. Cardiovasc. Dis. 2019;29:728–735. doi: 10.1016/j.numecd.2019.03.010. PubMed DOI
Poledne R., Kralova Lesna I., Kralova A., Fronek J., Cejkova S. The relationship between non-HDL cholesterol and macrophage phenotypes in human adipose tissue. J. Lipid Res. 2016;57:1899–1905. doi: 10.1194/jlr.P068015. PubMed DOI PMC
Poledne R., Malinska H., Kubatova H., Fronek J., Thieme F., Kauerova S., Lesna I.K. Polarization of Macrophages in Human Adipose Tissue is Related to the Fatty Acid Spectrum in Membrane Phospholipids. Nutrients. 2019;12:8. doi: 10.3390/nu12010008. PubMed DOI PMC
Majesky M.W. Developmental basis of vascular smooth muscle diversity. Arterioscler. Thromb. Vasc. Biol. 2007;27:1248–1258. doi: 10.1161/ATVBAHA.107.141069. PubMed DOI
Libby P., Ridker P.M., Hansson G.K. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–325. doi: 10.1038/nature10146. PubMed DOI
Geovanini G.R., Libby P. Atherosclerosis and inflammation: Overview and updates. Clin. Sci. 2018;132:1243–1252. doi: 10.1042/CS20180306. PubMed DOI
Ridker P.M., Everett B.M., Thuren T., MacFadyen J.G., Chang W.H., Ballantyne C., Fonseca F., Nicolau J., Koenig W., Anker S.D., et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017;377:1119–1131. doi: 10.1056/NEJMoa1707914. PubMed DOI
Poledne R., Skodová Z. Changes in nutrition, cholesterol concentration, and cardiovascular disease mortality in the Czech population in the past decade. Nutrition. 2000;16:785–786. doi: 10.1016/S0899-9007(00)00390-7. PubMed DOI
Kralova Lesna I., Poledne R., Fronek J., Kralova A., Sekerkova A., Thieme F., Pitha J. Macrophage subsets in the adipose tissue could be modified by sex and the reproductive age of women. Atherosclerosis. 2015;241:255–258. doi: 10.1016/j.atherosclerosis.2015.03.018. PubMed DOI
Kralova Lesna I., Kralova A., Cejkova S., Fronek J., Petras M., Sekerkova A., Thieme F., Janousek L., Poledne R. Characterisation and comparison of adipose tissue macrophages from human subcutaneous, visceral and perivascular adipose tissue. J. Transl. Med. 2016;14:208. doi: 10.1186/s12967-016-0962-1. PubMed DOI PMC
Malinska H., Hüttl M., Oliyarnyk O., Bratova M., Kazdova L. Conjugated linoleic acid reduces visceral and ectopic lipid accumulation and insulin resistance in chronic severe hypertriacylglycerolemia. Nutrition. 2015;31:1045–1051. doi: 10.1016/j.nut.2015.03.011. PubMed DOI
Eder K. Gas chromatographic analysis of fatty acid methyl esters. J. Chromatogr. B Biomed. Appl. 1995;671:113–131. doi: 10.1016/0378-4347(95)00142-6. PubMed DOI
Zatoński W.A. Epidemiological analysis of health situation development in Europe and its causes until 1990. Ann. Agric. Environ. Med. 2011;18:194–202. PubMed
Vojacek J. Development of the Czech intervention cardiology and its comparison with Europe. Interv. Akut. Kardiol. 2003;2:152–155. (In Czech)
Paukner K., Králová Lesná I., Poledne R. Cholesterol in the Cell Membrane-An Emerging Player in Atherogenesis. Int. J. Mol. Sci. 2022;23:533. doi: 10.3390/ijms23010533. PubMed DOI PMC
Barrett T.J. Macrophages in Atherosclerosis Regression. Arterioscler. Thromb. Vasc. Biol. 2020;40:20–33. doi: 10.1161/ATVBAHA.119.312802. PubMed DOI PMC
Kralova Lesna I., Suchanek P., Brabcova E., Kovar J., Malinska H., Poledne R. Effect of different types of dietary fatty acids on subclinical inflammation in humans. Physiol. Res./Acad. Sci. Bohemoslov. 2013;62:145–152. doi: 10.33549/physiolres.932439. PubMed DOI
Kawai T., Autieri M.V., Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021;320:C375–C391. doi: 10.1152/ajpcell.00379.2020. PubMed DOI PMC
Engin A.B. Adipocyte-Macrophage Cross-Talk in Obesity. Adv. Exp. Med. Biol. 2017;960:327–343. doi: 10.1007/978-3-319-48382-5_14. PubMed DOI
Kralova Lesna I., Petras M., Cejkova S., Kralova A., Fronek J., Janousek L., Thieme F., Tyll T., Poledne R. Cardiovascular disease predictors and adipose tissue macrophage polarization: Is there a link? Eur. J. Prev. Cardiol. 2018;25:328–334. doi: 10.1177/2047487317743355. PubMed DOI
Ridker P.M., Cushman M., Stampfer M.J., Tracy R.P., Hennekens C.H. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N. Engl. J. Med. 1997;336:973–979. doi: 10.1056/NEJM199704033361401. PubMed DOI
Tall A.R., Yvan-Charvet L. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 2015;15:104–116. doi: 10.1038/nri3793. PubMed DOI PMC
Langsted A., Nordestgaard B.G. Nonfasting lipids, lipoproteins, and apolipoproteins in individuals with and without diabetes: 58 434 individuals from the Copenhagen General Population Study. Clin. Chem. 2011;57:482–489. doi: 10.1373/clinchem.2010.157164. PubMed DOI