Sensitivity of physiological and biochemical endpoints in early ontogenetic stages of crops under diclofenac and paracetamol treatments
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
GF 17-33746L
Grantová Agentura České Republiky
PubMed
30552611
DOI
10.1007/s11356-018-3930-x
PII: 10.1007/s11356-018-3930-x
Knihovny.cz E-zdroje
- Klíčová slova
- Content of pharmaceuticals, Crop plants, Growth, Nonsteroidal anti-inflammatory drugs, Oxidative stress,
- MeSH
- antioxidancia analýza MeSH
- chemické látky znečišťující vodu toxicita MeSH
- diklofenak analýza toxicita MeSH
- fotosyntéza účinky léků MeSH
- klíčení účinky léků MeSH
- kořeny rostlin účinky léků metabolismus MeSH
- listy rostlin účinky léků MeSH
- malondialdehyd analýza MeSH
- odpadní voda chemie MeSH
- paracetamol analýza toxicita MeSH
- peroxid vodíku analýza metabolismus MeSH
- semena rostlinná účinky léků fyziologie MeSH
- zemědělské plodiny účinky léků růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- chemické látky znečišťující vodu MeSH
- diklofenak MeSH
- malondialdehyd MeSH
- odpadní voda MeSH
- paracetamol MeSH
- peroxid vodíku MeSH
Early stages of ontogenesis determining subsequent growth, development, and productivity of crops can be affected by wastewater and sludge contaminated with pharmaceuticals. Diclofenac (DCF) and paracetamol (PCT; both 0.0001 to 10 mg/L) did not affect seed germination and primary root length of onion, lettuce, pea, and tomato. Conversely, 20-day-old pea and maize plants exhibited decrease in biomass production, leaf area (by approx. 40% in pea and 70% in maize under 10 mg/L DCF), or content of photosynthetic pigments (by 10% and 60% under 10 mg/L PCT). Quantum yields of photosystem II were reduced only in maize (FV/FM and ΦII by more than 40% under 10 mg/L of both pharmaceuticals). Contents of H2O2 and superoxide increased in roots of both species (more than four times under 10 mg/L PCT in pea). Activities of antioxidant enzymes were elevated in pea under DCF treatments, but decreased in maize under both pharmaceuticals. Oxidative injury of root cells expressed as lowered oxidoreductase activity (MTT assay, by 40% in pea and 80% in maize) and increase in malondialdehyde content (by 60% and 100%) together with the membrane integrity disruption (higher Evans Blue accumulation, by 100% in pea and 300% in maize) confirmed higher sensitivity of maize as a C4 monocot plant to both pharmaceuticals.
Zobrazit více v PubMed
J Exp Bot. 2000 Apr;51(345):659-68 PubMed
Free Radic Res. 2000 Nov;33(5):607-21 PubMed
Chemosphere. 2001 Sep;44(8):1711-21 PubMed
Environ Toxicol. 2002 Oct;17(5):462-71 PubMed
Plant Physiol. 2003 Jul;132(3):1489-98 PubMed
Arch Biochem Biophys. 1959 May;82(1):70-7 PubMed
Environ Pollut. 1995;87(3):319-36 PubMed
J Exp Bot. 2005 Nov;56(421):2983-94 PubMed
Plant Physiol. 1980 Feb;65(2):245-8 PubMed
Environ Sci Pollut Res Int. 2009 Mar;16(2):206-13 PubMed
J Hazard Mater. 2009 Sep 30;169(1-3):751-7 PubMed
Chemosphere. 2009 Sep;76(10):1428-34 PubMed
J Integr Plant Biol. 2009 Dec;51(12):1086-94 PubMed
Chemosphere. 2010 Mar;78(11):1416-21 PubMed
Sci Total Environ. 2011 Sep 1;409(19):3555-63 PubMed
Analyst. 2009 Aug;134(8):1594-600 PubMed
Food Chem Toxicol. 2011 Mar;49(3):556-62 PubMed
Arch Environ Contam Toxicol. 2011 Feb;60(2):220-32 PubMed
Folia Biol (Krakow). 2011;59(1-2):41-4 PubMed
Chemosphere. 2013 Jan;90(2):665-73 PubMed
J Hazard Mater. 2013 Sep 15;260:176-82 PubMed
Aquat Toxicol. 2013 Sep 15;140-141:37-47 PubMed
Plant Physiol Biochem. 2013 Sep;70:278-86 PubMed
Environ Pollut. 2013 Nov;182:150-6 PubMed
Environ Int. 2013 Oct;60:15-22 PubMed
Sci Total Environ. 2014 Jan 15;468-469:908-32 PubMed
Plant Biol (Stuttg). 2014 Jul;16(4):792-800 PubMed
J Hazard Mater. 2013 Nov 15;262:796-804 PubMed
Environ Pollut. 2014 Apr;187:193-201 PubMed
Chemosphere. 2014 Nov;115:95-9 PubMed
Environ Sci Technol. 2014 Aug 19;48(16):9325-33 PubMed
Chemosphere. 2014 Oct;112:185-93 PubMed
Plant Sci. 2014 Oct;227:12-20 PubMed
Plant Physiol Biochem. 2014 Nov;84:78-86 PubMed
Environ Sci Pollut Res Int. 2015 May;22(9):6920-31 PubMed
J Agric Food Chem. 2015 Jan 21;63(2):398-405 PubMed
Chemosphere. 2015 Sep;135:403-10 PubMed
Oxid Med Cell Longev. 2015;2015:397502 PubMed
Environ Sci Technol. 2015 Oct 20;49(20):12509-18 PubMed
Environ Int. 2015 Dec;85:327-33 PubMed
J Hazard Mater. 2016 Jan 25;302:351-361 PubMed
Chemosphere. 2016 Feb;144:2290-301 PubMed
Ecotoxicol Environ Saf. 2016 Apr;126:228-237 PubMed
Chemosphere. 2016 Sep;159:193-198 PubMed
Environ Int. 2016 Sep;94:712-723 PubMed
Environ Sci Pollut Res Int. 2016 Nov;23(22):22530-22541 PubMed
Chemosphere. 2016 Dec;164:278-289 PubMed
Chemosphere. 2016 Dec;165:442-452 PubMed
Plant Biol (Stuttg). 2017 May;19(3):335-344 PubMed
Trends Plant Sci. 2017 Mar;22(3):194-203 PubMed
Sci Rep. 2017 Feb 21;7:43096 PubMed
Chemosphere. 2017 Jun;177:250-257 PubMed
Daru. 2017 Apr 12;25(1):9 PubMed
Sci Total Environ. 2017 Dec 1;599-600:1140-1148 PubMed
Drug Metab Rev. 2017 Nov;49(4):395-437 PubMed
Toxics. 2017 Apr 02;5(2):null PubMed
Free Radic Res. 2018 Feb;52(2):288-303 PubMed
Anal Biochem. 1976 May 7;72:248-54 PubMed
Effect of Acetaminophen (APAP) on Physiological Indicators in Lactuca sativa