Root response in Pisum sativum under naproxen stress: Morpho-anatomical, cytological, and biochemical traits

. 2020 Nov ; 258 () : 127411. [epub] 20200616

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32947668

Non-steroidal anti-inflammatory drugs as an important group of emerging environmental contaminants in irrigation water and soils can influence biochemical and physiological processes essential for growth and development in plants as non-target organisms. Plants are able to take up, transport, transform, and accumulate drugs in the roots. Root biomass in ten-days old pea plants was lowered by 6% already under 0.1 mg/L naproxen (NPX) due to a lowered number of lateral roots, although 0.5 mg/L NPX stimulated the total root length by 30% as against control. Higher section area (by 40%) in root tip, area of xylem (by 150%) or stele-to-section ratio (by 10%) in zone of maturation, and lower section area in zone of lateral roots (by 18%) prove the changes in primary root anatomy and its earlier differentiation at 10 mg/L NPX. Accumulated NPX (up to 10 μg/g DW at 10 mg/L) and products of its metabolization in roots increased the amounts of hydrogen peroxide (by 33%), and superoxide (by 62%), which was reflected in elevated lipid peroxidation (by 32%), disruption of membrane integrity (by 89%) and lowering both oxidoreductase and dehydrogenase activities (by up to 40%). Elevated antioxidant capacity (SOD, APX, and other molecules) under low treatments decreased at 10 mg/L NPX (both by approx. 30%). Naproxen was proved to cause changes at both cellular and tissue levels in roots, which was also reflected in their anatomy and morphology. Higher environmental loading through drugs thus can influence even the root function.

Zobrazit více v PubMed

Ahmed M.B.M., Rajapaksha A.U., Lim J.E., Vu N.T., Kim I.S., Kang H.M., Lee S.S., Ok Y.S. Distribution and accumulative pattern of tetracyclines and sulfonamides in edible vegetables of cucumber, tomato, and lettuce. J. Agric. Food Chem. 2015;63:398–405. PubMed

Alkio M., Tabuchi T.M., Wang X., Colon-Carmona A. Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. J. Exp. Bot. 2005;56:2983–2994. PubMed

Arduini I., Godbold D.L., Onnis A. Cadmium and cooper change root growth and morphology of Pinus pineqa and Pinus pinaster seedlings. Physiol. Plantarum. 1994;92:675–680. PubMed

Babula P., Vaverková V., Pobořilová Z., Ballová L., Masařík M., Provazník I. Phytotoxic action of naphthoquinone juglone demonstrated on lettuce seedling roots. Plant Physiol. Biochem. (Paris) 2014;84:78–86. PubMed

Bałdyga B., Wieczorek J., Smoczyński S., Wieczorek Z., Smoczyńska K. Pea plant response to anthracene present in soil. Pol. J. Environ. Stud. 2005;14:397–401.

Bambridge L., Macelod R., Hamer R. Plant growth and cell division in Pisum sativum L. and Picea sitchensis (Bong.) Carr, exposed to ozone. New Phytol. 1995;130:75–80.

Banon S., Fernandez J.A., Franco J.A., Torrecillas A., Alarcon J.J., Sanches-Blanco M.J. Effects of water stress and night temperature preconditioning on water relations and morphological and anatomical changes of Lotus creticus plants. Sci. Hortic.-Amsterdam. 2004;101:333–342.

Bartha B., Huber C., Schröder P. Uptake and metabolism of diclofenac in Typha latifolia – how plants cope with human pharmaceutical pollution. Plant Sci. 2014;227:12–20. PubMed

Bartrons M., Peñuelas J. Pharmaceuticals and personal-care products in plants. Trends Plant Sci. 2017;22:194–203. PubMed

Baxter A., Mittler R., Suzuki N. ROS as key players in plant stress signalling. J. Exp. Bot. 2014;65:1229–1240. PubMed

Bellver-Domingo A., Fuentes R., Hernández-Sancho F. Shadow prices of emerging pollutants in wastewater treatment plants: quantification of environmental externalities. J. Environ. Manag. 2017;203:439–447. PubMed

Bowler C., Vancamp W., Vanmontagu M., Inze D. Superoxide-dismutase in plants. Crit. Rev. Plant Sci. 1994;13:199–218.

Burton A.L., Williams M., Lynch J.P., Brown K.M. RootScan: software for high-throughput analysis of root anatomical traits. Plant Soil. 2012;357:189–203.

Carter L.J., Williams M., Bӧttcher C., Kookana R.S. Uptake of pharmaceuticals influences plant development and affects nutrient and hormone homeostasis. Environ. Sci. Technol. 2015;49:12509–12518. PubMed

Casimiro I., Marchant A., Bhalerao R.P., Beeckman T., Dhooge S., Swarup R., Graham N., Inzé D., Sandberg G., Casero P.J., Bennett M. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell. 2001;13:843–852. PubMed PMC

Ding T., Lin K., Yang B., Yang B., Li J., Li W., Gan J. Biodegradation of naproxen by freshwater algae Cymbella sp. and Scenedesmus quadricauda and the comparative toxicity. Bioresour. Technol. 2017;238:164–173. PubMed

Di Marco G., Gismondi A., Canuti L., Scimeca M., Volpe A., Canini A. Tetracycline accumulates in Iberis sempervirens L. through apoplastic transport inducing oxidative stress and growth inhibition. Plant Biol. 2014;16:792–800. PubMed

Emhofer L., Himmelsbach M., Buchberger W., Klampfl C.W. High-performance liquid chromatography – mass spectrometry analysis of the parent drugs and their metabolites in extracts from cress (Lepidium sativum) grown hydroponically in water containing four non-steroidal anti-inflammatory drugs. J. Chromatogr., A. 2017;1491:137–144. PubMed

Farmer E.E., Mueller M.J. ROS-mediated lipid peroxidation and RES-activated signalling. Annu. Rev. Plant Biol. 2013;64:429–450. PubMed

Fu Q., Zhang J., Borchardt D., Schlenk D., Gan J. Direct conjugation of emerging contaminants in Arabidopsis: indication for an overlooked risk in plants? Environ. Sci. Technol. 2017;51:6071–6081. PubMed

Go Y.-M., Jones D.P. Thiol/disulfide redox states in signaling and sensing. Crit. Rev. Biochem. Mol. 2013;48:173–191. PubMed PMC

Gonzáles-García M., Fernández-López C., Polesel F., Trapp S. Predicting the uptake of emerging organic contaminants in vegetables irrigated with treated wastewater – implications for food safety assessment. Environ. Res. 2019;172:175–181. PubMed

He Y., Sutton N.B., Lei Y., Rijnaarts H.H.M., Langenhoff A.A.M. Fate and distribution of pharmaceutically active compounds in mesocosm constructed wetlands. J. Hazard Mater. 2018;357:198–206. PubMed

Huber C., Bartha B., Harpaintner R., Schröder P. Metabolism of acetaminophen (paracetamol) in plants — two independent pathways result in the formation of a glutathione and a glucose conjugate. Environ. Sci. Pollut. Res. 2009;16:206–213. PubMed

Jin Z., Pei Y. Physiological implications of hydrogen sulfide in plants: pleasant exploration behind its unpleasant odour. Oxid. Med. Cell. Longev. 2015;2015:397502. PubMed PMC

Klampfl C.W. Metabolization of pharmaceuticals by plants after uptake from water and soil: a review. Trac. Trends Anal. Chem. 2019;111:13–26.

Kummerová M., Zezulka Š., Babula P., Tříska J. Possible ecological risk of two pharmaceuticals diclofenac and paracetamol demonstrated on a plant Lemna minor. J. Hazard Mater. 2016;302:351–361. PubMed

Kummerová M., Zezulka Š., Babula P., Váňová L. Root response in Pisum sativum and Zea mays under fluoranthene stress: morphological and anatomical traits. Chemosphere. 2013;90:665–673. PubMed

Landa P., Přerostová S., Langhansová L., Maršík P., Vaňková R., Vaněk T. Transcriptomic response of Arabidopsis thaliana roots to naproxen and praziquantel. Ecotoxicol. Environ. Saf. 2018;166:301–310. PubMed

López-Pacheco I.Y., Silva-Núñez A., Salinas-Salazar C., Arévalo-Gallegos A., Lizarazo-Holguin L.A., Barceló D., Iqbal H.M.N., Parra-Saldívar R. Anthropogenic contaminants of high concern: existence in water resources and their adverse effects. Sci. Total Environ. 2019;690:1068–1088. PubMed

Lutterbeck C.A., Kern D.I., Machado Ê.L., Kümmerer K. Evaluation of the toxic effects of four anti-cancer drugs in plant bioassays and its potency for screening in the context of waste water reuse for irrigation. Chemosphere. 2015;135:403–410. PubMed

Marsidi N., Nye C.K., Abdullah S.R.S., Abu Hassan H., Halmi M.I.E. Phytoremediation of naproxen in waste water using Vetiver zizanoides. J. Eng. Sci. Technol. 2016;11:1086–1097.

Marsik P., Rezek J., Židková M., Kramulová B., Tauchen J., Vaněk T. Non-steroidal anti-inflammatory drugs in the watercourses of Elbe basin in Czech Republic. Chemosphere. 2017;171:97–105. PubMed

Martínez-Alcalá I., Guillén-Navarro J.M., Fernándéz-López C. Pharmaceutical biological degradation, sorption and mass balance determination in a conventional activated-sludge wastewater treatment plant from Murcia, Spain. Chem. Eng. J. 2017;316:332–340.

Mhamdi A., Queval G., Chaous S., Vanderauwera S., Van Breusegem F., Noctor G. Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J. Exp. Bot. 2010;61:4197–4220. PubMed

Nishida N., Tamotsu S., Nagata N., Saito Ch, Sakai A. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J. Chem. Ecol. 2005;31:1187–1203. PubMed

Nivala J., Kahl S., Boog J., van Afferden M., Reemtsma T., Müller R.A. Dynamics of emerging organic contaminant removal in conventional and intensified subsurface flow treatment wetlands. Sci. Total Environ. 2019;649:1144–1156. PubMed

Parsanathan R., Jain S.K. Hydrogen sulfide increases glutathione biosynthesis and glucose uptake and utilisation in C2C12 mouse myotubes. Free Radic. Res. 2018;52:288–303. PubMed PMC

Passaia G., Fonini L.S., Caverzan A., Jardim-Messeder D., Christoff A.P., Gaeta M.L., de Araujo Mariath J.E., Margis R., Margis-Pinheiro M. The mitochondrial glutathione peroxidase GPX3 is essential for H2O2 homeostasis and root and shoot development in rice. Plant Sci. 2013;208:93–101. PubMed

Pellerin S., Tabourel F. Length of the apical unbranched zone of maize axile roots: its relationship to root elongation rate. Environ. Exp. Bot. 1995;35:193–200.

Picó Y., Alvarez-Ruiz R., Alfarhan A.H., El-Sheikh M.A., Alobaid S.M., Barceló D. Uptake and accumulation of emerging contaminants in soil and plant treated with wastewater under real-world environmental conditions in the Al Hayer area (Saudi Arabia) Sci. Total Environ. 2019;652:562–572. PubMed

Pound P.M., French A.P., Atkinson J.A., Wells D.M., Bennett M.J., Pridmore T. RootNav: navigating images of complex root architectures. Plant Physiol. 2013;162:1802–1814. PubMed PMC

Reed R.C., Brady S.R., Muday G.K. Inhibition of auxin movement from the shoot into the root inhibits lateral root developments in Arabidopsis. Plant Physiol. 1998;118:1369–1378. PubMed PMC

Reid P.H., York E.T. Effects of nutrient deficiencies on growth and fruiting characteristics of peanuts in sand culture. Agron. J. 1958;50:63–67.

Soukup A., Votrubová O., Čížková H. Development of anatomical structure of roots of Phragmites australis. New Phytol. 2002;153:277–287.

Stepanova A.N., Yun J., Likhacheva A.V., Alonso J.M. Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell. 2007;19:2169–2185. PubMed PMC

Svobodníková L., Kummerová M., Zezulka Š., Babula P. Possible use of a Nicotiana tabacum ‘Bright Yellow 2’ cell suspension as a model to assess phytotoxicity of pharmaceuticals (diclofenac) Ecotoxicol. Environ. Saf. 2019;182:109369. doi: 10.1016/j.ecoenv.2019.109369. PubMed DOI

Szymonik A., Lach J., Malińska K. Fate and removal of pharmaceuticals and illegal drugs present in drinking water and wastewater. Ecol. Chem. Eng. S. 2017;24:65–85.

Vitha S., Baluška F., Jasik J., Volkmann D., Barlow P.W. Steedman’s wax for F-actin visualization. In: Staiger C.J., Baluška F., Volkmann D., Barlow P., editors. Actin: A Dynamic Framework for Multiple Plant Cell Functions. Springer; Dordrecht: 2000. pp. 619–636.

Wild S.R., Berrow M.L., McGrath S.P., Jones K.C. Polynuclear aromatic hydrocarbons in crops from long-term field experiments amended with sewage sludge. Environ. Pollut. 1992;76:25–32. PubMed

Yan Q., Gao X., Guo J., Zhu Z., Feng G. Insights into the molecular mechanism of the responses for Cyperus alternifolius to PhACs stress in constructed wetlands. Chemosphere. 2016;164:278–289. PubMed

Yu Q.X., Ahammed G.J., Zhou Y.H., Shi K., Zhou J., Yu Y., Yu J.Q., Xia X.J. Nitric oxide is involved in the oxytetracycline-induced suppression of root growth through inhibiting hydrogen peroxide accumulation in the root meristem. Sci. Rep. 2017;7:43096. PubMed PMC

Zezulka Š., Kummerová M., Babula P., Hájková M., Oravec M. Sensitivity of physiological and biochemical endpoints in early ontogenetic stages of crops under diclofenac and paracetamol treatments. Environ. Sci. Pollut. Res. 2019;26:3965–3979. PubMed

Zhang X., Jing R., Feng X., Dai Y., Tao R., Vymazal J., Cai N., Yang Y. Removal of acidic pharmaceuticals by small-scale constructed wetlands using different design configurations. Sci. Total Environ. 2018;639:640–647. PubMed

Ziólkowska A., Piotrowicz-Cieślak A.I., Rydzyński D., Adomas B., Nalęcz-Jawecki G. Biomarkers of leguminous plant viability in response to soil contamination with diclofenac. Pol. J. Environ. Stud. 2014;23:263–269.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...