Effect of Acetaminophen (APAP) on Physiological Indicators in Lactuca sativa
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33238445
PubMed Central
PMC7700141
DOI
10.3390/life10110303
PII: life10110303
Knihovny.cz E-zdroje
- Klíčová slova
- APAP, Lactuca sativa, acetaminophen, fluorescence, photosynthesis,
- Publikační typ
- časopisecké články MeSH
This study analyzes the effects of acetaminophen (APAP) as a contaminant on physiological characteristics of lettuce plants (Lactuca sativa L.). Experiments were provided in an experimental greenhouse with semi-controlled conditions. The effect of different amounts of contaminant was evaluated by using regression analysis. Plants were grown in five concentrations of APAP: 0 µM, 5 µM, 50 µM, 500 µM, and 5 mM for 14 days in two variants, acute and chronic. The obtained results show that the monitored parameters were demonstrably influenced by the experimental variant. Plants are more sensitive to chronic contamination compared to acute. Significant (p < 0.05) deviation in photosynthesis and fluorescence was observed compared to the control in different variants. The highest doses of APAP reduced the intensity of photosynthesis by a maximum of more than 31% compared to the control. A reduction of 18% was observed for the fluorescence parameters. Pronounced correlation was described between chlorophyll fluorescence parameters and yield mainly under APAP conditions. The amount of chlorophyll was influenced by exposure to APAP.
Zobrazit více v PubMed
Carter L.J., Chefetz B., Abdeen Z., Boxall A.B.A. Emerging investigator series: Towards a framework for establishing the impacts of pharmaceuticals in wastewater irrigation systems on agro-ecosystems and human health. Environ. Sci. Process. Impacts. 2019;21:605–622. doi: 10.1039/c9em00020h. PubMed DOI
Ji K., Choi K., Lee S., Park S., Kim J.S., Jo E.H., Choi K.H., Zhang X., Giesy J.P. Effects of sulfathiazole, oxytetracycline and chlortetracycline onsteroidogenesis in the human adrenocarcinoma (H295R) cell line andfreshwater fish Oryzias latipes. J. Hazard. Mater. 2010;182:494–502. PubMed
Lee W.M. Acetaminophen (APAP) hepatotoxicity-Isn’t it time for APAP to go away? J. Hepatol. 2017;67:1324–1331. doi: 10.1016/j.jhep.2017.07.005. PubMed DOI PMC
Langford K., Thomas K.V. Input of selected human pharmaceuticalmetabolites into the Norwegian aquatic environment. J. Environ. Monit. 2011;13:416–421. doi: 10.1039/c0em00342e. PubMed DOI
Ebele A.J., Abdallah M.A.-E., Harrad S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contam. 2017;3:1–16. doi: 10.1016/j.emcon.2016.12.004. DOI
Gheorghe S., Petre J., Lucaciu I., Stoica C., Nita-Lazar M. Risk screening of pharmaceutical compounds in Romanian aquatic environment. Environ. Monit. Assess. 2016;188:1–16. doi: 10.1007/s10661-016-5375-3. PubMed DOI
Marchlewicz A., Domaradzka D., Guzik U., Wojcieszyńska D. Bacillus thuringiensis B1(2015b) is a gram-positive bacteria able to degrade naproxen and ibuprofen. Water Air Soil Pollut. 2016;227:1–8. doi: 10.1007/s11270-016-2893-0. PubMed DOI PMC
Roberts P.H., Thomas K.V. The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Sci. Total. Environ. 2006;356:143–153. doi: 10.1016/j.scitotenv.2005.04.031. PubMed DOI
Yang Y., Ok Y.S., Kim K.-H., Kwon E.E., Tsang Y.F. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total. Environ. 2017:303–320. doi: 10.1016/j.scitotenv.2017.04.102. PubMed DOI
Żur J., Piński A., Marchlewicz A., Hupert-Kocurek K., Wojcieszyńska D., Guzik U. Organic micropollutants paracetamol and ibuprofen-toxicity, biodegradation, and genetic background of their utilization by bacteria. Environ. Sci. Pollut. Res. 2018;25:21498–21524. doi: 10.1007/s11356-018-2517-x. PubMed DOI PMC
Bunchorntavakul C., Reddy K.R. Acetaminophen-related hepatotoxicity. Clin. Liver Dis. 2013;17:587–607. doi: 10.1016/j.cld.2013.07.005. PubMed DOI
Andersson A., Nilsson K.O. Enrichment of trace elements from sewage sludge fertilizer in soils and plants. Ambio. 1972;1:176–179.
Labrecque M., Teodorescu T.I., Daigle S. Early performance and nutrition of two willow species in short-rotation intensive culture fertilized with wastewater sludge and impact on the soil characteristic. Can. J. For. Res. 1998;28:1621–1635.
Coimbra R.N., Calisto V., Ferreira C.I.A., Esteves V.I., Otero M. Removal of pharmaceuticals from municipal wastewater by adsorption onto pyrolyzed pulp mill sludge. Arab. J. Chem. 2019;12:3611–3620. doi: 10.1016/j.arabjc.2015.12.001. DOI
Shraim A., Diab A., AlSuhaimi A., Niazy E., Metwally M., Amad M., Sioud S., Dawoud A. Analysis of some pharmaceuticals in municipal wastewater of Almadinah Almunawarah. Arab. J. Chem. 2017;10:S719–S729. doi: 10.1016/j.arabjc.2012.11.014. DOI
Radjenović J., Petrović M., Barceló D. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res. 2009;43:831–841. doi: 10.1016/j.watres.2008.11.043. PubMed DOI
Focazio M.J., Kolpin D.W., Barnes K.K., Furlong E.T., Meyer M.T., Zaugg S.D., Barber L.B., Thurman M.E. A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the united states-II) Untreated drinking water sources. Sci. Total Environ. 2008;402:201–216. PubMed
Freitas R., Coelho D., Pires A., Soares A.M.V.M., Figueira E., Nunes B. Preliminary evaluation of Diopatra neapolitana regenerative capacity as a biomarker for paracetamol exposure. Environ. Sci. Pollut. Res. 2015;22:13382–13392. doi: 10.1007/s11356-015-4589-1. PubMed DOI
Gómez-Oliván L.M., Neri-Cruz N., Galar-Martínez M., Vieyra-Reyes P., García-Medina S., Razo-Estrada C., Dublán-García O., Corral-Avitia A.Y. Assessing the oxidative stress induced by paracetamol spiked in artificial sediment on Hyalella azteca. Water Air Soil Pollut. 2012;223:5097–5104. doi: 10.1007/s11270-012-1261-y. DOI
Glick B.R. Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 2003;21:383–393. doi: 10.1016/s0734-9750(03)00055-7. PubMed DOI
Greenberg B., Huang X., Gurska Y., Gerhardt K., Wang W., Lampi M., Zhang C., Khalid A., Isherwood D., Chang P., et al. Successful field tests of a multi-process phytoremediation system for decontamination of persistent petroleum and organic contaminants; Proceedings of the 29th Arctic and Marine Oilspill Program (AMOP) Technical Seminar; Vancouver, BC, Canada. 6–8 June 2006; Ottawa, ON, Canada: Environment Canada; 2006. p. 1122.
Huang X.D., El-Alawi Y., Gurska J., Glick B.R., Greenberg B.M. A multi-process phytoremediation system for decontamination of per-sistent total petroleum hydrocarbons (TPHs) from soils. Micro-Chem. J. 2005;81:139–147.
An J., Zhou Q.X., Sun F.H., Zhang L. Eco-toxicological effects of paracetamol on seed germination and seedling development of wheat (Triticum aestivum L.) J. Hazard. Mater. 2009;169:751–757. PubMed
Zezulka Š., Kummerová M., Babula P., Hájková M., Oravec M. Sensitivity of physiological and biochemical endpoints in early ontogenic stages of crops under diclofenac and paracetamol treatments. Environ. Sci. Pollut. Res. 2019;26:3965–3979. PubMed
Huber C., Bartha B., Harpaintner R., Schröder P. Metabolism of acetaminophen (paracetamol) in plants-two independent pathways result in the formation of a glutathione and a glucose conjugate. Environ. Sci. Pollut. Res. 2009;16:206–213. doi: 10.1007/s11356-008-0095-z. PubMed DOI
Faraloni C., Cutino I., Petruccelli R., Leva A., Lazzeri S., Torzillo G. Chlorophyll fluorescence technique as a rapid tool for in vitro screening of olive cultivars (Olea europaea L.) tolerant to drought stress. Environ. Exp. Bot. 2011;73:49–56. doi: 10.1016/j.envexpbot.2010.10.011. DOI
Dias M.C., Bruggemann W. Limitations of photosynthesis in Phaseolus vulgaris under drought stress: Gas exchange, chlorophyll fluorescence and Calvin cycle enzymes. Photosynthesis. 2010;48:96–102. doi: 10.1007/s11099-010-0013-8. DOI
Porra R., Thompson W., Kriedemann P. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta (BBA)-Bioenerg. 1989;975:384–394. doi: 10.1016/s0005-2728(89)80347-0. DOI
Maxwell K., Johnson G.N. Chlorophyll fluorescence-A practical guide. J. Exp. Bot. 2000;51:659–668. PubMed
Gorbe E., Calatayud A. Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. Sci. Hortic. 2012;138:24–35. doi: 10.1016/j.scienta.2012.02.002. DOI
Murchie E.H., Lawson T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013;64:3983–3998. doi: 10.1093/jxb/ert208. PubMed DOI
Sayyad-Amin P., Jahansooz M.-R., Borzouei A., Ajili F. Changes in photosynthetic pigments and chlorophyll-a fluorescence attributes of sweet-forage and grain sorghum cultivars under salt stress. J. Biol. Phys. 2016;42:601–620. doi: 10.1007/s10867-016-9428-1. PubMed DOI PMC
Marcińska I., Dziurka K., Waligórski P., Janowiak F., Skrzypek E., Warchoł M., Juzoń K., Kapłoniak K., Czyczyło-Mysza I. Exogenous polyamines only indirectly induce stress tolerance in wheat growing in hydroponic culture under polyethylene glycol-induced osmotic stress. Life. 2020;10:151. doi: 10.3390/life10080151. PubMed DOI PMC
Jain N., Singh G.P., Pandey R., Ramya P., Singh P.K., Nivedita, Prabhu K.V. Chlorophyll fluorescence kinetics and response of wheat (Triticum aestivum L.) under high temperature stress. Indian J. Exp. Biol. 2018;56:194–201.
Borowiak K., Gąsecka M., Mleczek M., Dąbrowski J., Chadzinikolau T., Magdziak Z., Goliński P., Rutkowski P., Kozubik T. Photosynthetic activity in relation to chlorophylls, carbohydrates, phenolics and growth of a hybrid Salix purpurea × triandra × viminalis 2 at various Zn concentrations. Acta Physiol. Plant. 2015;37:37. doi: 10.1007/s11738-015-1904-x. DOI
Martins M., Sousa B., Lopes J., Soares C., Machado J., Carvalho S., Fidalgo F., Teixeira J. Diclofenac shifts the role of root glutamine synthetase and glutamate dehydrogenase for maintaining nitrogen assimilation and proline production at the expense of shoot carbon reserves in Solanum lycopersicum L. Environ. Sci. Pollut. Res. 2020;27:29130–29142. doi: 10.1007/s11356-020-09136-x. PubMed DOI
Hájková M., Kummerová M., Zezulka Š., Babula P., Váczi P. Diclofenac as an environmental threat: Impact on the photosynthetic processes of Lemna minor chloroplasts. Chemosphere. 2019;224:892–899. doi: 10.1016/j.chemosphere.2019.02.197. PubMed DOI
Copolovici L., Timis D., Taschina M., Copolovici D., Cioca G., Bungau S. Diclofenac influence on photosynthetic parameters and volatile organic compounds emision from Phaseolus vulgaris L. plants. Rev. Chim. 2017;68:2076–2078. doi: 10.37358/rc.17.9.5826. DOI
Hörtensteiner S., Kräutler B. Chlorophyll breakdown in higher plants. Biochim. Biophys. Acta (BBA)-Bioenerg. 2011;1807:977–988. doi: 10.1016/j.bbabio.2010.12.007. PubMed DOI
Alkimin G., Daniel D., Frankenbach S., Serôdio J., Soares A.M.V.M., Barata C., Nunes B. Evaluation of pharmaceutical toxic effects of non-standard endpoints on the macrophyte species Lemna minor and Lemna gibba. Sci. Total Environ. 2019;657:926–937. doi: 10.1016/j.scitotenv.2018.12.002. PubMed DOI
Pierattini E.C., Francini A., Huber C., Sebastiani L., Schröder P. Poplar and diclofenac pollution: A focus on physiology, oxidative stress and uptake in plant organs. Sci. Total Environ. 2018;636:944–952. doi: 10.1016/j.scitotenv.2018.04.355. PubMed DOI
Kummerová M., Zezulka Š., Babula P., Tříska J. Possible ecological risk of two pharmaceuticals diclofenac and paracetamol demonstrated on a model plant Lemna minor. J. Hazard. Mater. 2016;302:351–361. doi: 10.1016/j.jhazmat.2015.09.057. PubMed DOI
Taschina M., Copolovici D.M., Bungau S.G., Andreea L.P., Copolovici L., Iovan C. The influence of residual acetaminophen on Phaseolus vulgaris L. Secondary metabolites. Farmacia. 2017;65:709–713.
Renberg L., Johansson A.I., Shutova T., Stenlund H., Aksmann A., Raven J.A., Gardeström P., Moritz T., Samuelsson G. A Metabolomic approach to study major metabolite changes during acclimation to limiting CO2 in Chlamydomonas reinhardtii. Plant. Physiol. 2010;154:187–196. doi: 10.1104/pp.110.157651. PubMed DOI PMC
Kalaji H.M., Račková L., Paganová V., Swoczyna T., Rusinowski S., Sitko K. Can chlorophyll-a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill? Environ. Exp. Bot. 2018;152:149–157.
Guo Y., Tan J. Recent advances in the application of chlorophyllafluorescence from photosystem II. Photochem. Photobiol. 2014;91:1–14. doi: 10.1111/php.12362. PubMed DOI
Hajihashemi S., Noedoost F., Geuns J.M.C., Djalovic I., Siddique K.H. Effect of cold stress on photosynthetic traits, carbohydrates, morphology, and anatomy in nine cultivars of Stevia rebaudiana. Front. Plant. Sci. 2018;9:1430. doi: 10.3389/fpls.2018.01430. PubMed DOI PMC
Yang Y., Zhang L., Huang X., Zhou Y., Quan Q., Li Y., Zhu X. Response of photosynthesis to different concentrations of heavy metals in Davidia involucrata. PLoS ONE. 2020;15:e0228563. doi: 10.1371/journal.pone.0228563. PubMed DOI PMC
Roach T., Krieger-Liszkay A. Regulation of photosynthetic electron transport and photoinhibition. Curr. Protein Pept. Sci. 2014;15:351–362. doi: 10.2174/1389203715666140327105143. PubMed DOI PMC
Galle A., Flexas J. Methodologies and Results in Grapevine Research. Springer Science and Business Media LLC; Dordrecht, The Netherlands: 2010. Gas-exchange and chlorophyll fluorescence measurements in grapevine leaves in the field; pp. 107–121.
Kitajima M., Butler W. Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim. Biophys. Acta (BBA)-Bioenerg. 1975;376:105–115. doi: 10.1016/0005-2728(75)90209-1. PubMed DOI
Baker N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant. Biol. 2008;59:89–113. doi: 10.1146/annurev.arplant.59.032607.092759. PubMed DOI
Kramer D.M., Johnson G., Kiirats O., Edwards G.E. New fluorescence parameters for the determination of Q A redox state and excitation energy fluxes. Photosynt. Res. 2004;79:209. PubMed
Stirbet A., Lazár D., Kromdijk J., Govindjee G. Chlorophyll afluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica. 2018;56:86–104.
Faseela P., Sinisha A.K., Brestic M., Puthur J. Special issue in honour of Prof. Reto J. Strasser-Chlorophyll a fluorescence parameters as indicators of a particular abiotic stress in rice. Photosynthesis. 2020;58:293–300. doi: 10.32615/ps.2019.147. DOI
Dubey R., Mishra S. Biological Approaches to Sustainable Soil Systems. Volume 20051262. Informa UK Limited; London, UK: 2005. Heavy metal toxicity induced alterations in photosynthetic metabolism in plants; pp. 845–863.
Aggarwal A., Sharma I., Tripathi B.N., Munjal A.K., Baunthiyal M., Sharma V. Metal Toxicity and Photosynthesis in Photosynthesis: Overviews on Recent Progress and Future Perspectives. IK International Publishing House (Pvt) Limited; New Delhi, India: 2012.
Zhang H., Xu Z., Guo K., Huo Y., He G., Sun H., Guan Y., Xu N., Yang W., Guangyu S. Toxic effects of heavy metal Cd and Zn on chlorophyll, carotenoid metabolism and photosynthetic function in tobacco leaves revealed by physiological and proteomics analysis. Ecotoxicol. Environ. Saf. 2020;202:110856. doi: 10.1016/j.ecoenv.2020.110856. PubMed DOI
Koyama K., Takemoto S. Morning reduction of photosynthetic capacity before midday depression. Sci. Rep. 2014;4:4389. doi: 10.1038/srep04389. PubMed DOI PMC
Lin M.-Z., Jin M.-F. Soil Cu contamination destroys the photosynthetic systems and hampers the growth of green vegetables. Photosynthesis. 2018;56:1336–1345. doi: 10.1007/s11099-018-0831-7. DOI
Xiao M., Li Y., Wang J., Hu X., Wang L., Miao Z. Study on the law of nitrogen transfer and conversionand use of fertilizer nitrogen in paddy fields under water-saving irrigation mode. Water. 2019;11:218.
Xu Q., Ma X., Lv T., Bai M., Wang Z., Niu J. Effects of water stress on fluorescence parameters and photosynthetic characteristics of drip irrigation in rice. Water. 2020;12:289. doi: 10.3390/w12010289. DOI
Ralph P.J., Burchett M. Impact of petrochemicals on the photosynthesis of Halophila ovalis using chlorophyll fluorescence. Mar. Pollut. Bull. 1998;36:429–436. doi: 10.1016/s0025-326x(97)00207-5. DOI
Ouzounidou G., Elefiherion E.P., Karataglis S. Ecophysiological and ultrastructural effects of copper in Thlaspi ochroleucum (Cruciferae) Can. J. Bot. 1992;70:947–957.
Li H., Zhang G.C., Xie H.C., Li K., Zhang S.Y. The effects of the phenol concentrations on photosynthetic parameters of Salix babylonica L. Photosynthesis. 2015;53:430–435. doi: 10.1007/s11099-015-0135-0. DOI
Borjigidai A., Hikosaka K., Hirose T., Hasegawa T., Okada M., Kobayashi K. Seasonal changes in temperature dependence of photosynthetic rate in rice under a free-air CO2 enrichment. Ann. Bot. 2006;97:549–557. doi: 10.1093/aob/mcl001. PubMed DOI PMC
Hejnák V. The effect of growth regulators on photosynthesis and water regime of sugar beet during water stress. Listy Cukrov. Řepař. 2010;126:27–30.
Kalaji H.M., Carpentier R., Allakhverdiev S.I., Bosa K. Fluorescence parameters as early indicators of light stress in barley. J. Photochem. Photobiol. B Biol. 2012;112:1–6. doi: 10.1016/j.jphotobiol.2012.03.009. PubMed DOI
Schreiber U. Chlorophyll a Fluorescence. Springer; Dordrecht, The Netherlands: 2004. Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: An overview; pp. 279–319. DOI