Application of random mutagenesis to enhance the production of polyhydroxyalkanoates by Cupriavidus necator H16 on waste frying oil
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- acylkoenzym A metabolismus MeSH
- bakteriální proteiny genetika metabolismus MeSH
- bioreaktory MeSH
- biosyntetické dráhy MeSH
- Brassica rapa MeSH
- Cupriavidus necator účinky léků genetika metabolismus MeSH
- fermentace MeSH
- hydroxybutyráty metabolismus MeSH
- kyseliny mastné mononenasycené MeSH
- mutageneze * MeSH
- olej z řepky MeSH
- oleje rostlin chemie metabolismus MeSH
- oxidační stres MeSH
- polyestery metabolismus MeSH
- polyhydroxyalkanoáty metabolismus MeSH
- průmyslový odpad MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acylkoenzym A MeSH
- bakteriální proteiny MeSH
- hydroxybutyráty MeSH
- kyseliny mastné mononenasycené MeSH
- olej z řepky MeSH
- oleje rostlin MeSH
- poly-beta-hydroxybutyrate MeSH Prohlížeč
- polyestery MeSH
- polyhydroxyalkanoáty MeSH
- propionyl-coenzyme A MeSH Prohlížeč
- průmyslový odpad MeSH
Using random chemical mutagenesis we obtained the mutant of Cupriavidus necator H16 which was capable of improved (about 35 %) production of poly(3-hydroxybuytrate) (PHB) compared to the wild-type strain. The mutant exhibited significantly enhanced specific activities of enzymes involved in oxidative stress response such as malic enzyme, NADP-dependent isocitrate dehydrogenase, glucose-6-phosphate dehydrogenase and glutamate dehydrogenase. Probably, due to the activation of these enzymes, we also observed an increase of NADPH/NADP⁺ ratio. It is likely that as a side effect of the increase of NADPH/NADP⁺ ratio the activity of PHB biosynthetic pathway was enhanced, which supported the accumulation of PHB. Furthermore, the mutant was also able to incorporate propionate into copolymer poly(3-hydroxybuytyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] more efficiently than the wild-type strain (Y3HV/prec = 0.17 and 0.29 for the wild-type strain and the mutant, respectively)). We assume that it may be caused by lower availability of oxaloacetate for the utilization of propionyl-CoA in 2-methylcitrate cycle due to increased action of malic enzyme. Therefore, propionyl-CoA was incorporated into copolymer rather than transformed to pyruvate via 2-methylcitrate cycle. Thus, the mutant was capable of the utilization of waste frying oils and the production of P(3HB-co-3HV) with better yields and improved content of 3HV resulting in better mechanical properties of copolymer than the wild-type strain. The results of this work may be used for the development of innovative fermentation strategies for the production of PHA and also it might help to define novel targets for the genetic manipulations of PHA producing bacteria.
Zobrazit více v PubMed
Appl Microbiol Biotechnol. 2006 Jun;71(1):80-9 PubMed
Curr Opin Struct Biol. 2007 Dec;17(6):755-60 PubMed
J Biosci Bioeng. 2000;90(3):266-70 PubMed
Bioresour Technol. 2010 Nov;101(21):8355-60 PubMed
Biotechnol Prog. 2004 Jul-Aug;20(4):1015-24 PubMed
FEMS Microbiol Lett. 2002 Jul 2;212(2):159-64 PubMed
J Biotechnol. 2001 Mar 30;86(2):97-104 PubMed
Can J Microbiol. 2009 Jun;55(6):714-28 PubMed
J Microbiol Biotechnol. 2012 Mar;22(3):371-7 PubMed
J Ind Microbiol Biotechnol. 2013 Apr;40(3-4):275-86 PubMed
J Bacteriol. 2007 Sep;189(18):6665-75 PubMed
Extremophiles. 2009 Jan;13(1):59-66 PubMed
Biotechnol Bioeng. 1996 Dec 20;52(6):707-12 PubMed
Arch Microbiol. 1977 Sep 28;114(3):211-7 PubMed
Biotechnol Lett. 2010 Dec;32(12):1925-32 PubMed
Arch Microbiol. 2006 Nov;186(5):385-92 PubMed
Extremophiles. 2005 Oct;9(5):367-73 PubMed
Cytometry A. 2006 Jan;69(1):27-35 PubMed
Anal Biochem. 2000 Oct 1;285(1):163-7 PubMed
Appl Microbiol Biotechnol. 2008 Apr;78(6):955-61 PubMed
Arch Microbiol. 1999 Jan;171(2):73-80 PubMed
J Mol Microbiol Biotechnol. 2009;16(1-2):91-108 PubMed
FEMS Microbiol Lett. 2003 Oct 10;227(1):9-16 PubMed
Appl Microbiol Biotechnol. 2011 Mar;89(5):1611-9 PubMed
J Appl Microbiol. 2011 Feb;110(2):375-86 PubMed
Appl Microbiol Biotechnol. 2009 Oct;84(6):1069-77 PubMed
J Appl Microbiol. 2010 Jul;109(1):79-90 PubMed
Appl Environ Microbiol. 2001 Jan;67(1):225-30 PubMed
Microb Cell Fact. 2012 Sep 14;11:130 PubMed
World J Microbiol Biotechnol. 2011 Jun;27(6):1281-96 PubMed
J Bacteriol. 1998 Apr;180(8):1979-87 PubMed
Appl Microbiol Biotechnol. 2008 Dec;81(4):615-28 PubMed
Appl Environ Microbiol. 1988 Aug;54(8):1977-82 PubMed
Biotechnol Bioeng. 1996 Apr 20;50(2):197-202 PubMed
Antonie Van Leeuwenhoek. 2001 Oct;80(1):57-63 PubMed
Microbiology (Reading). 2007 Jul;153(Pt 7):2013-2025 PubMed
Folia Microbiol (Praha). 2010 Jan;55(1):17-22 PubMed
Appl Biochem Biotechnol. 2006 Spring;129-132:933-41 PubMed
Bioresour Technol. 2005 Jul;96(11):1229-34 PubMed
Microbiology (Reading). 2001 Aug;147(Pt 8):2203-2214 PubMed
World J Microbiol Biotechnol. 2010 Jul;26(7):1261-7 PubMed
Enzymatic Hydrolysis of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Scaffolds