Genetic engineering of low-temperature polyhydroxyalkanoate production by Acidovorax sp. A1169, a psychrophile isolated from a subglacial outflow

. 2023 Sep 14 ; 27 (3) : 25. [epub] 20230914

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37709928

Grantová podpora
Grant 2017/24/C/NZ9/00232 Narodowe Centrum Nauki

Odkazy

PubMed 37709928
PubMed Central PMC10501959
DOI 10.1007/s00792-023-01311-5
PII: 10.1007/s00792-023-01311-5
Knihovny.cz E-zdroje

In recent years, extremophilic microorganisms have been employed as producers of the microbial bioplastics polyhydroxyalkanoates (PHA), which are of great biotechnological value. Nevertheless, cold-loving or psychrophilic (cryophilic) bacteria have been neglected in this regard. Here, we present an investigation of the Arctic glacier-derived PHA producer Acidovorax sp. A1169. Biolog GEN III Microplates were used as a screening tool to identify the most suitable carbon substrate concerning PHA synthesis. The strain produced homopolymer poly(3-hydroxybutyrate) (PHB) most efficiently (2 g/L) at a temperature of 15 °C when supplied with fructose or mannitol as carbon sources with a substantial decrease of PHB biosynthesis at 17.5 °C. The PHB yield did not increase considerably or even decreased when carbon source concentration exceeded 10 g/L hinting that the strain is oligotrophic in nature. The strain was also capable of introducing 3-hydroxyvalerate (3HV) into the polymer structure, which is known to improve PHA thermoplastic properties. This is the first investigation providing insight into a PHA biosynthesis process by means of a true psychrophile, offering guidelines on polar-region bacteria cultivation, production of PHA and also on the methodology for genetic engineering of psychrophiles.

Zobrazit více v PubMed

Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc

Aramvash A, Akbari Shahabi Z, Dashti Aghjeh S, Ghafari MD. Statistical physical and nutrient optimization of bioplastic polyhydroxybutyrate production by Cupriavidus necator. Int J Environ Sci Technol. 2015;12:2307–2316. doi: 10.1007/s13762-015-0768-3. DOI

Azevedo NF, Bragança SM, Simões LC, Cerqueira L, Almeida C, Keevil CW, Vieira MJ. Proposal for a method to estimate nutrient shock effects in bacteria. BMC Res Notes. 2012;5(1):1–6. doi: 10.1186/1756-0500-5-422. PubMed DOI PMC

Belal EB. Production of poly-β-hydroxybutyric acid (PHB) by Rhizobium elti and Pseudomonas stutzeri. Curr Res J Biol. 2013;5(6):273–284. doi: 10.19026/crjbs.5.5429. DOI

Cerrone F, Davis R, Kenny ST, Woods T, O’Donovan A, Gupta VK, et al. Use of a mannitol rich ensiled grass press juice (EGPJ) as a sole carbon source for polyhydroxyalkanoates (PHAs) production through high cell density cultivation. Bioresour Technol. 2015;191:45–52. doi: 10.1016/j.biortech.2015.04.128. PubMed DOI

Chen GQ, Jiang XR. Next generation industrial biotechnology based on extremophilic bacteria. Curr Opin Biotechnol. 2018;50:94–100. doi: 10.1016/j.copbio.2017.11.016. PubMed DOI

Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–i890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC

Choi TR, Park YL, Song HS, Lee SM, Park SL, Lee HS, et al. Fructose-based production of short-chain-length and medium-chain-length polyhydroxyalkanoate copolymer by arctic Pseudomonas sp. B14–6. Polymers. 2021;13(9):1398. doi: 10.3390/polym13091398. PubMed DOI PMC

Ciesielski S, Górniak D, Możejko J, Świątecki A, Grzesiak J, Zdanowski M. The diversity of bacteria isolated from Antarctic freshwater reservoirs possessing the ability to produce polyhydroxyalkanoates. Curr Microbiol. 2014;69:594–603. doi: 10.1007/s00284-014-0629-1. PubMed DOI PMC

Corrado I, Petrillo C, Isticato R, Casillo A, Corsaro MM, Sannia G, Pezzella C. The power of two: an artificial microbial consortium for the conversion of inulin into polyhydroxyalkanoates. Int J Biol Macromol. 2021;189:494–502. doi: 10.1016/j.ijbiomac.2021.08.123. PubMed DOI

DeAngelis KM, D’Haeseleer P, Chivian D, Fortney JL, Khudyakov J, Simmons B, et al. Complete genome sequence of “Enterobacter lignolyticus” SCF1. Stand Genom Sci. 2011;5(1):69–85. doi: 10.4056/sigs.2104875. PubMed DOI PMC

Du J, Liu Y, Zhu H. Genome-based analyses of the genus Acidovorax: proposal of the two novel genera Paracidovorax gen. nov., Paenacidovorax gen. nov. and the reclassification of Acidovorax antarcticus as Comamonas antarctica comb. nov. and emended description of the genus Acidovorax. Arch Microbiol. 2023;205(1):1–10. doi: 10.1007/s00203-022-03379-7. PubMed DOI

El-Sayed AK, Hothersall J, Thomas CM. Quorum-sensing-dependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. Microbiology. 2001;147(8):2127–2139. doi: 10.1099/00221287-147-8-2127. PubMed DOI

Gawor J, Grzesiak J, Sasin-Kurowska J, Borsuk P, Gromadka R, Górniak D, et al. Evidence of adaptation, niche separation and microevolution within the genus Polaromonas on Arctic and Antarctic glacial surfaces. Extremophiles. 2016;20:403–413. doi: 10.1007/s00792-016-0831-0. PubMed DOI PMC

Georlette D, Blaise V, Collins T, D'Amico S, Gratia E, Hoyoux A, et al. Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev. 2004;28(1):25–42. doi: 10.1016/j.femsre.2003.07.003. PubMed DOI

Gnaim R, Unis R, Gnayem N, Das J, Gozin M, Golberg A. Turning mannitol-rich agricultural waste to poly(3-hydroxybutyrate) with Cobetia amphilecti fermentation and recovery with methyl levulinate as a green solvent. Bioresour Technol. 2022;352:127075. doi: 10.1016/j.biortech.2022.127075. PubMed DOI

Goh YS, Tan IKP. Polyhydroxyalkanoate production by Antarctic soil bacteria isolated from Casey Station and Signy Island. Microbiol Res. 2012;167(4):211–219. doi: 10.1016/j.micres.2011.08.002. PubMed DOI

Grzesiak J, Górniak D, Świątecki A, Aleksandrzak-Piekarczyk T, Szatraj K, Zdanowski MK. Microbial community development on the surface of Hans and Werenskiold Glaciers (Svalbard, Arctic): a comparison. Extremophiles. 2015;19:885–897. doi: 10.1007/s00792-015-0764-z. PubMed DOI PMC

Handrick R, Reinhardt S, Jendrossek D. Mobilization of poly (3-hydroxybutyrate) in Ralstonia eutropha. J Bacteriol. 2000;182(20):5916–5918. doi: 10.1128/jb.182.20.5916-5918.2000. PubMed DOI PMC

Hong JW, Song HS, Moon YM, Hong YG, Bhatia SK, Jung HR, et al. Polyhydroxybutyrate production in halophilic marine bacteria Vibrio proteolyticus isolated from the Korean peninsula. Bioprocess Biosyst Eng. 2019;42:603–610. doi: 10.1007/s00449-018-02066-6. PubMed DOI

Inoue H, Nojima H, Okayama H. High efficiency transformation of Escherichia coli with plasmids. Gene. 1990;96(1):23–28. doi: 10.1016/0378-1119(90)90336-p. PubMed DOI

Kadouri D, Jurkevitch E, Okon Y. Poly β-hydroxybutyrate depolymerase (PhaZ) in Azospirillum brasilense and characterization of a phaZ mutant. Arch Microbiol. 2003;180:309–318. doi: 10.1007/s00203-003-0590-z. PubMed DOI

Kessler B, Witholt B. Factors involved in the regulatory network of polyhydroxyalkanoate metabolism. J Biotechnol. 2001;86(2):97–104. doi: 10.1016/s0168-1656(00)00404-1. PubMed DOI

Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol. 2014;64(2):346–351. doi: 10.1099/ijs.0.059774-0. PubMed DOI

Knoll M, Hamm TM, Wagner F, Martinez V, Pleiss J. The PHA depolymerase engineering database: a systematic analysis tool for the diverse family of polyhydroxyalkanoate (PHA) depolymerases. BMC Bioinform. 2009;10:1–8. doi: 10.1186/1471-2105-10-89. PubMed DOI PMC

Koller M. Production of polyhydroxyalkanoate (PHA) biopolyesters by extremophiles. MOJ Polym Sci. 2017;1(2):1–19. doi: 10.15406/mojps.2017.01.00011. DOI

Koller M. Chemical and biochemical engineering approaches in manufacturing polyhydroxyalkanoate (PHA) biopolyesters of tailored structure with focus on the diversity of building blocks. Chem Biochem Eng Q. 2018;32(4):413–438. doi: 10.15255/CABEQ.2018.1385. DOI

Koller M, Salerno A, Dias M, Reiterer A, Braunegg G. Modern biotechnological polymer synthesis: a review. Food Technol Biotechnol. 2010;48(3):255–269.

Koller M, Maršálek L, de Sousa Dias MM, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. Nat Biotechnol. 2017;37:24–38. doi: 10.1016/j.nbt.2016.05.001. PubMed DOI

Kourilova X, Pernicova I, Sedlar K, Musilova J, Sedlacek P, Kalina M, et al. Production of polyhydroxyalkanoates (PHA) by a thermophilic strain of Schlegelella thermodepolymerans from xylose rich substrates. Bioresour Technol. 2020;315:123885. doi: 10.1016/j.biortech.2020.123885. PubMed DOI

Kourilova X, Pernicova I, Vidlakova M, Krejcirik R, Mrazova K, Hrubanova K, et al. Biotechnological conversion of grape pomace to poly(3-hydroxybutyrate) by moderately thermophilic bacterium Tepidimonas taiwanensis. Bioengineering. 2021;8(10):141. doi: 10.3390/bioengineering8100141. PubMed DOI PMC

Kouřilová X, Schwarzerová J, Pernicová I, Sedlář K, Mrázová K, Krzyžánek V, et al. The first insight into polyhydroxyalkanoates accumulation in multi-extremophilic Rubrobacter xylanophilus and Rubrobacter spartanus. Microorganisms. 2021;9(5):909. doi: 10.3390/microorganisms9050909. PubMed DOI PMC

Kumar V, Thakur V, Kumar V, Kumar R, Singh D. Genomic insights revealed physiological diversity and industrial potential for Glaciimonas sp. PCH181 isolated from Satrundi glacier in Pangi-Chamba Himalaya. Genomics. 2020;112(1):637–646. doi: 10.1016/j.ygeno.2019.04.016. PubMed DOI

Kumar V, Thakur V, Ambika, Kumar S, Singh D (2018) Bioplastic reservoir of diverse bacterial communities revealed along altitude gradient of Pangi-Chamba trans-Himalayan region. FEMS Microbiol Lett 365(14):fny144 PubMed

Madigan MT, Bender KS, Buckley DH, Sattley WM, Stahl DA. Brock biology of microorganisms. Boston, US: Benjamin Cummins; 2019. pp. 1391–1407.

Margesin R, Schinner F, Marx JC, Gerday C. Psychrophiles: from biodiversity to biotechnology. Berlin: Springer; 2008. pp. 1–462.

Mezzina MP, Pettinari MJ. Phasins, multifaceted polyhydroxyalkanoate granule-associated proteins. Appl Environ Microbiol. 2016;82(17):5060–5067. doi: 10.1128/AEM.01161-16. PubMed DOI PMC

Mohr PW, Krawiec S. Temperature characteristics and Arrhenius plots for nominal psychrophiles, mesophiles and thermophiles. Microbiology. 1980;121(2):311–317. doi: 10.1099/00221287-121-2-311. PubMed DOI

Moradali MF, Rehm BH. Bacterial biopolymers: from pathogenesis to advanced materials. Nat Rev Microbiol. 2020;18(4):195–210. doi: 10.1038/s41579-019-0313-3. PubMed DOI PMC

Mostafa YS, Alrumman SA, Otaif KA, Alamri SA, Mostafa MS, Sahlabji T. Production and characterization of bioplastic by polyhydroxybutyrate accumulating Erythrobacter aquimaris isolated from mangrove rhizosphere. Molecules. 2020;25(1):179. doi: 10.3390/molecules25010179. PubMed DOI PMC

Możejko-Ciesielska J, Kiewisz R. Bacterial polyhydroxyalkanoates: still fabulous? Microbiol Res. 2016;192:271–282. doi: 10.1016/j.micres.2016.07.010. PubMed DOI

Müller-Santos M, Koskimäki JJ, Alves LPS, de Souza EM, Jendrossek D, Pirttilä AM. The protective role of PHB and its degradation products against stress situations in bacteria. FEMS Microbiol Rev. 2021;45(3):fuaa058. doi: 10.1093/femsre/fuaa058. PubMed DOI

Nowroth V, Marquart L, Jendrossek D. Low temperature-induced viable but not culturable state of Ralstonia eutropha and its relationship to accumulated polyhydroxybutyrate. Microbiol Lett. 2016;363(23):fnw249. doi: 10.1093/femsle/fnw249. PubMed DOI PMC

Nygaard D, Yashchuk O, Noseda DG, Araoz B, Hermida ÉB. Improved fermentation strategies in a bioreactor for enhancing poly(3-hydroxybutyrate)(PHB) production by wild type Cupriavidus necator from fructose. Heliyon. 2021;7(1):e05979. doi: 10.1016/j.heliyon.2021.e05979. PubMed DOI PMC

Obruca S, Snajdar O, Svoboda Z, Marova I. Application of random mutagenesis to enhance the production of polyhydroxyalkanoates by Cupriavidus necator H16 on waste frying oil. World J Microbiol Biotechnol. 2013;29:2417–2428. doi: 10.1007/s11274-013-1410-5. PubMed DOI

Obruca S, Sedlacek P, Krzyzanek V, Mravec F, Hrubanova K, Samek O, et al. Accumulation of poly (3-hydroxybutyrate) helps bacterial cells to survive freezing. PLoS ONE. 2016;11(6):e0157778. doi: 10.1371/journal.pone.0157778. PubMed DOI PMC

Pacheco N, Orellana-Saez M, Pepczynska M, Enrione J, Bassas-Galia M, Borrero-de Acuña JM, et al. Exploiting the natural poly (3-hydroxyalkanoates) production capacity of Antarctic Pseudomonas strains: from unique phenotypes to novel biopolymers. J Ind Microbiol Biotechnol. 2019;46(8):1139–1153. doi: 10.1007/s10295-019-02186-2. PubMed DOI

Park YL, Bhatia SK, Gurav R, Choi TR, Kim HJ, Song HS, et al. Fructose based hyper production of poly-3-hydroxybutyrate from Halomonas sp. YLGW01 and impact of carbon sources on bacteria morphologies. Int J Biol Macromol. 2020;154:929–936. doi: 10.1016/j.ijbiomac.2020.03.129. PubMed DOI

Reddy CSK, Ghai R, Kalia V. Polyhydroxyalkanoates: an overview. Biores Technol. 2003;87(2):137–146. doi: 10.1016/S0960-8524(02)00212-2. PubMed DOI

Rehakova V, Pernicova I, Kourilova X, Sedlacek P, Musilova J, Sedlar K, et al. Biosynthesis of versatile PHA copolymers by thermophilic members of the genus Aneurinibacillus. Int J Biol Macromol. 2023;225:1588–1598. doi: 10.1016/j.ijbiomac.2022.11.215. PubMed DOI

Rogala MM, Gawor J, Gromadka R, Kowalczyk M, Grzesiak J. Biodiversity and habitats of polar region polyhydroxyalkanoic acid-producing bacteria: bioprospection by popular screening methods. Genes. 2020;11(8):873. doi: 10.3390/genes11080873. PubMed DOI PMC

Sandle T, Skinner K, Sandle J, Gebala B, Kothandaraman P. Evaluation of the GEN III OmniLog® ID System microbial identification system for the profiling of cleanroom bacteria. Eur J Parenter Pharm Sci. 2013;18(2):44–50.

Smorawinska M, Szuplewska M, Zaleski P, Wawrzyniak P, Maj A, Plucienniczak A, Bartosik D. Mobilizable narrow host range plasmids as natural suicide vectors enabling horizontal gene transfer among distantly related bacterial species. FEMS Microbiol Lett. 2012;326(1):76–82. doi: 10.1111/j.1574-6968.2011.02432.x. PubMed DOI

Sriyapai T, Chuarung T, Kimbara K, Samosorn S, Sriyapai P. Production and optimization of polyhydroxyalkanoates (PHAs) from Paraburkholderia sp. PFN 29 under submerged fermentation. Electron J Biotechnol. 2022;56:1–11. doi: 10.1016/j.ejbt.2021.12.003. DOI

Tan D, Wang Y, Tong Y, Chen GQ. Grand challenges for industrializing polyhydroxyalkanoates (PHAs) Trends Biotechnol. 2021;39(9):953–963. doi: 10.1016/j.tibtech.2020.11.010. PubMed DOI

Tripathi AD, Yadav A, Jha A, Srivastava SK. Utilizing of sugar refinery waste (cane molasses) for production of bio-plastic under submerged fermentation process. J Polym Environ. 2012;20:446–453. doi: 10.1007/s10924-011-0394-1. DOI

Tripathi AD, Srivastava SK, Singh RP. Statistical optimization of physical process variables for bio-plastic (PHB) production by Alcaligenes sp. Biomass Bioenergy. 2013;55:243–250. doi: 10.1016/j.biombioe.2013.02.017. DOI

Wang Z, Zheng Y, Ji M, Zhang X, Wang H, Chen Y, et al. Hyperproduction of PHA copolymers containing high fractions of 4-hydroxybutyrate (4HB) by outer membrane-defected Halomonas bluephagenesis grown in bioreactors. Microb Biotechnol. 2022;15(5):1586–1597. doi: 10.1111/1751-7915.13999. PubMed DOI PMC

Wang J, Liu S, Huang J, Cui R, Xu Y, Song Z. Genetic engineering strategies for sustainable polyhydroxyalkanoate (PHA) production from carbon-rich wastes. Environ Technol Innov. 2023;30:103069. doi: 10.1016/j.eti.2023.103069. DOI

Weimer A, Kohlstedt M, Volke DC, Nikel PI, Wittmann C. Industrial biotechnology of Pseudomonas putida: advances and prospects. Appl Microbiol Biotechnol. 2020;104:7745–7766. doi: 10.1007/s00253-020-10811-9. PubMed DOI PMC

Wendy YD, Fauziah MN, Baidurah YS, Tong WY, Lee CK. Production and characterization of polyhydroxybutyrate (PHB) by Burkholderia cepacia BPT1213 using waste glycerol as carbon source. Biocatal Agric Biotechnol. 2022;41:102310. doi: 10.1016/j.bcab.2022.102310. DOI

Willems A. The family Comamonadaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes: Alphaproteobacteria and Betaproteobacteria. 4. Berlin: Springer; 2014. pp. 777–851.

Wilson K. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol. 2001;56(1):2–4. PubMed

Wolfenden R, Yuan Y. Rates of spontaneous cleavage of glucose, fructose, sucrose, and trehalose in water and the catalytic proficiencies of invertase and trehalase. J Am Chem Soc. 2008;130(24):7548–7549. doi: 10.1021/ja802206s. PubMed DOI PMC

Woźniak M, Gałązka A, Tyśkiewicz R, Jaroszuk-Ściseł J. Endophytic bacteria potentially promote plant growth by synthesizing different metabolites and their phenotypic/physiological profiles in the Biolog GEN III MicroPlateTM Test. Int J Mol Sci. 2019;20(21):5283. doi: 10.3390/ijms20215283. PubMed DOI PMC

Yamaguchi T, Narsico J, Kobayashi T, Inoue A, Ojima T. Production of poly(3-hydroyxybutyrate) by a novel alginolytic bacterium Hydrogenophaga sp. strain UMI-18 using alginate as a sole carbon source. J Biosci Bioeng. 2019;128(2):203–208. doi: 10.1016/j.jbiosc.2019.02.008. PubMed DOI

Zhang L, Jiang Z, Tsui TH, Loh KC, Dai Y, Tong YW. A review on enhancing Cupriavidus necator fermentation for poly(3-hydroxybutyrate)(PHB) production from low-cost carbon sources. Front Bioeng Biotechnol. 2022;10:946085. doi: 10.3389/fbioe.2022.946085. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...