Biotechnological Conversion of Grape Pomace to Poly(3-hydroxybutyrate) by Moderately Thermophilic Bacterium Tepidimonas taiwanensis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA19-20697S
GAČR
LM2015062 Czech-BioImaging
MEYS CR
PubMed
34677214
PubMed Central
PMC8533406
DOI
10.3390/bioengineering8100141
PII: bioengineering8100141
Knihovny.cz E-zdroje
- Klíčová slova
- Tepidimonas taiwanensis, grape pomace, polyhydroxyalkanoates, thermophiles,
- Publikační typ
- časopisecké články MeSH
Polyhydroxyalkanoates (PHA) are microbial polyesters that have recently come to the forefront of interest due to their biodegradability and production from renewable sources. A potential increase in competitiveness of PHA production process comes with a combination of the use of thermophilic bacteria with the mutual use of waste substrates. In this work, the thermophilic bacterium Tepidimonas taiwanensis LMG 22826 was identified as a promising PHA producer. The ability to produce PHA in T. taiwanensis was studied both on genotype and phenotype levels. The gene encoding the Class I PHA synthase, a crucial enzyme in PHA synthesis, was detected both by genome database search and by PCR. The microbial culture of T. taiwanensis was capable of efficient utilization of glucose and fructose. When cultivated on glucose as the only carbon source at 50 °C, the PHA titers reached up to 3.55 g/L, and PHA content in cell dry mass was 65%. The preference of fructose and glucose opens the possibility to employ T. taiwanensis for PHA production on various food wastes rich in these abundant sugars. In this work, PHA production on grape pomace extracts was successfully tested.
Zobrazit více v PubMed
Lim H., Chuah J., Chek M., Tan H., Hakoshima T., Sudesh K. Identification of regions affecting enzyme activity, substrate binding, dimer stabilization and polyhydroxyalkanoate (PHA) granule morphology in the PHA synthase of Aquitalea sp. USM4. Int. J. Biol. Macromol. 2021;186:414–423. doi: 10.1016/j.ijbiomac.2021.07.041. PubMed DOI
Raza Z., Abid S., Banat I. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegrad. 2018;126:45–56. doi: 10.1016/j.ibiod.2017.10.001. DOI
Peña C., Castillo T., García A., Millán M., Segura D. Biotechnological strategies to improve production of microbial poly-(3-hydroxybutyrate): A review of recent research work. Microb. Biotechnol. 2014;7:278–293. doi: 10.1111/1751-7915.12129. PubMed DOI PMC
Yadav B., Talan A., Tyagi R., Drogui P. Concomitant production of value-added products with polyhydroxyalkanoate (PHA) synthesis: A review. Bioresour. Technol. 2021;337:125419. doi: 10.1016/j.biortech.2021.125419. PubMed DOI
Ray S., Kalia V. Biomedical Applications of Polyhydroxyalkanoates. Indian J. Microbiol. 2017;57:261–269. doi: 10.1007/s12088-017-0651-7. PubMed DOI PMC
Chen G., Patel M. Plastics Derived from Biological Sources: Present and Future. Chem. Rev. 2012;112:2082–2099. doi: 10.1021/cr200162d. PubMed DOI
Poltronieri P., Kumar P. Polyhydroxyalcanoates (PHAs) in Industrial Applications. In: Martínez L., Kharissova O., Kharisov B., editors. Handbook of Ecomaterials. Springer International Publishing; Cham, Switzerland: 2017. pp. 1–30.
Crutchik D., Franchi O., Caminos L., Jeison D., Belmonte M., Pedrouso A., Val del Rio A., Mosquera-Corral A., Campos J. Polyhydroxyalkanoates (PHAs) Production: A Feasible Economic Option for the Treatment of Sewage Sludge in Municipal Wastewater Treatment Plants? Water. 2020;12:1118. doi: 10.3390/w12041118. DOI
Rampelotto P. Extremophiles and Extreme Environments. Life. 2013;3:482–485. doi: 10.3390/life3030482. PubMed DOI PMC
Berlemont R., Gerday C. Comprehensive Biotechnology. Elsevier; Amsterdam, The Netherlands: 2011. Extremophiles; pp. 229–242.
Irwin J. Overview of extremophiles and their food and medical applications. Physiol. Biotechnol. Asp. Extrem. 2020:65–87. doi: 10.1016/B978-0-12-818322-9.00006-X. DOI
Dumorne K., Cordova D., Astorga-Elo M., Renganathan P. Extremozymes: A Potential Source for Industrial Applications. J. Microbiol. Biotechnol. 2017;27:649–659. doi: 10.4014/jmb.1611.11006. PubMed DOI
Chen G., Jiang X. Next generation industrial biotechnology based on extremophilic bacteria. Curr. Opin. Biotechnol. 2018;50:94–100. doi: 10.1016/j.copbio.2017.11.016. PubMed DOI
Quillaguamán J., Guzmán H., Van-Thuoc D., Hatti-Kaul R. Synthesis and production of polyhydroxyalkanoates by halophiles: Current potential and future prospects. Appl. Microbiol. Biotechnol. 2010;85:1687–1696. doi: 10.1007/s00253-009-2397-6. PubMed DOI
Sedlacek P., Slaninova E., Koller M., Nebesarova J., Marova I., Krzyzanek V., Obruca S. PHA granules help bacterial cells to preserve cell integrity when exposed to sudden osmotic imbalances. New Biotechnol. 2019;49:129–136. doi: 10.1016/j.nbt.2018.10.005. PubMed DOI
Alsafadi D., Al-Mashaqbeh O. A one-stage cultivation process for the production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) from olive mill wastewater by Haloferax mediterranei. New Biotechnol. 2017;34:47–53. doi: 10.1016/j.nbt.2016.05.003. PubMed DOI
Tan D., Wu Q., Chen J., Chen G. Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates. Metab. Eng. 2014;26:34–47. doi: 10.1016/j.ymben.2014.09.001. PubMed DOI
Kucera D., Pernicová I., Kovalcik A., Koller M., Mullerova L., Sedlacek P., Mravec F., Nebesarova J., Kalina M., Marova I., et al. Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. Bioresour. Technol. 2018;256:552–556. doi: 10.1016/j.biortech.2018.02.062. PubMed DOI
Rivera-Terceros P., Tito-Claros E., Torrico S., Carballo S., Van-Thuoc D., Quillaguamán J. Production of poly(3-hydroxybutyrate) by Halomonas boliviensis in an air-lift reactor. J. Biol. Res.-Thessalon. 2015;22:8. doi: 10.1186/s40709-015-0031-6. PubMed DOI PMC
Kulkarni S., Kanekar P., Nilegaonkar S., Sarnaik S., Jog J. Production and characterization of a biodegradable poly (hydroxybutyrate-co-hydroxyvalerate) (PHB-co-PHV) copolymer by moderately haloalkalitolerant Halomonas campisalis MCM B-1027 isolated from Lonar Lake, India. Bioresour. Technol. 2010;101:9765–9771. doi: 10.1016/j.biortech.2010.07.089. PubMed DOI
Pernicova I., Kucera D., Nebesarova J., Kalina M., Novackova I., Koller M., Obruca S. Production of polyhydroxyalkanoates on waste frying oil employing selected Halomonas strains. Bioresour. Technol. 2019;292:122028. doi: 10.1016/j.biortech.2019.122028. PubMed DOI
Ibrahim M., Willems A., Steinbüchel A. Isolation and characterization of new poly(3HB)-accumulating star-shaped cell-aggregates-forming thermophilic bacteria. J. Appl. Microbiol. 2010;109:1579–1590. doi: 10.1111/j.1365-2672.2010.04786.x. PubMed DOI
Sheu D., Chen W., Yang J., Chang R. Thermophilic bacterium Caldimonas taiwanensis produces poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from starch and valerate as carbon sources. Enzym. Microb. Technol. 2009;44:289–294. doi: 10.1016/j.enzmictec.2009.01.004. DOI
Pernicova I., Novackova I., Sedlacek P., Kourilova X., Kalina M., Kovalcik A., Koller M., Nebesarova J., Krzyzanek V., Hrubanova K., et al. Introducing the Newly Isolated Bacterium Aneurinibacillus sp. H1 as an Auspicious Thermophilic Producer of Various Polyhydroxyalkanoates (PHA) Copolymers–1. Isolation and Characterization of the Bacterium. Polymers. 2020;12:1235. doi: 10.3390/polym12061235. PubMed DOI PMC
Kourilova X., Pernicova I., Sedlar K., Musilova J., Sedlacek P., Kalina M., Koller M., Obruca S. Production of polyhydroxyalkanoates (PHA) by a thermophilic strain of Schlegelella thermodepolymerans from xylose rich substrates. Bioresour. Technol. 2020;315:123885. doi: 10.1016/j.biortech.2020.123885. PubMed DOI
2019 Statistical Report on World Vitiviniculture, 1st ed.; International Organisation of Vine and Wine Intergovernmental Organisation: International Organisation of Vine and Wine Intergovernmental Organisation. 2020. [(accessed on 9 September 2021)]. Available online: http://oiv.int/public/medias/6782/oiv-2019-statistical-report-on-world-vitiviniculture.pdf.
Moreno A., Ballesteros M., Negro M. The Interaction of Food Industry and Environment. Academic Press; Cambridge, MA, USA: 2020. Biorefineries for the valorization of food processing waste; pp. 155–190.
Dávila I., Robles E., Egüés I., Labidi J., Gullón P. Handbook of Grape Processing By-Products. Academic Press; Cambridge, MA, USA: 2017. The Biorefinery Concept for the Industrial Valorization of Grape Processing By-Products; pp. 29–53.
Antonić B., Jančíková S., Dordević D., Tremlová B. Grape Pomace Valorization: A Systematic Review and Meta-Analysis. Foods. 2020;9:1627. doi: 10.3390/foods9111627. PubMed DOI PMC
González-Paramás A., Esteban-Ruano S., Santos-Buelga C., de Pascual-Teresa S., Rivas-Gonzalo J. Flavanol Content and Antioxidant Activity in Winery Byproducts. J. Agric. Food Chem. 2004;52:234–238. doi: 10.1021/jf0348727. PubMed DOI
Manios T. The composting potential of different organic solid wastes: Experience from the island of Crete. Environ. Int. 2004;29:1079–1089. doi: 10.1016/S0160-4120(03)00119-3. PubMed DOI
Sánchez A., Ysunza F., Beltrán-García M., Esqueda M. Biodegradation of Viticulture Wastes by Pleurotus: A Source of Microbial and Human Food and Its Potential Use in Animal Feeding. J. Agric. Food Chem. 2002;50:2537–2542. doi: 10.1021/jf011308s. PubMed DOI
Zacharof M. Grape Winery Waste as Feedstock for Bioconversions: Applying the Biorefinery Concept. Waste Biomass Valorization. 2017;8:1011–1025. doi: 10.1007/s12649-016-9674-2. DOI
Taurino R., Ferretti D., Cattani L., Bozzoli F., Bondioli F. Lightweight clay bricks manufactured by using locally available wine industry waste. J. Build. Eng. 2019;26:100892. doi: 10.1016/j.jobe.2019.100892. DOI
Kovalcik A., Pernicova I., Obruca S., Szotkowski M., Enev V., Kalina M., Marova I. Grape winery waste as a promising feedstock for the production of polyhydroxyalkanoates and other value-added products. Food Bioprod. Process. 2020;124:1–10. doi: 10.1016/j.fbp.2020.08.003. DOI
Follonier S. Pilot-scale Production of Functionalized mcl-PHA from Grape Pomace Supplemented with Fatty Acids. Chem. Biochem. Eng. Q. 2015;29:113–121. doi: 10.15255/CABEQ.2014.2251. DOI
Chen T., Chou Y., Chen W., Arun B., Young C. Tepidimonas taiwanensis sp. nov., a novel alkaline-protease-producing bacterium isolated from a hot spring. Extremophiles. 2006;10:35–40. doi: 10.1007/s00792-005-0469-9. PubMed DOI
Obruca S., Petrik S., Benesova P., Svoboda Z., Eremka L., Marova I. Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates. Appl. Microbiol. Biotechnol. 2014;98:5883–5890. doi: 10.1007/s00253-014-5653-3. PubMed DOI
Mravec F., Obruca S., Krzyzanek V., Sedlacek P., Hrubanova K., Samek O., Kucera D., Benesova P., Nebesarova J., Steinbüchel A. Accumulation of PHA granules in Cupriavidus necator as seen by confocal fluorescence microscopy. FEMS Microbiol. Lett. 2016;363:fnw094. doi: 10.1093/femsle/fnw094. PubMed DOI
Kouřilová X., Schwarzerová J., Pernicová I., Sedlář K., Mrázová K., Krzyžánek V., Nebesářová J., Obruča S. The First Insight into Polyhydroxyalkanoates Accumulation in Multi-Extremophilic Rubrobacter xylanophilus and Rubrobacter spartanus. Microorganisms. 2021;9:909. doi: 10.3390/microorganisms9050909. PubMed DOI PMC
Obruca S., Sedlacek P., Krzyzanek V., Mravec F., Hrubanova K., Samek O., Kucera D., Benesova P., Marova I., Chen G.-Q. Accumulation of Poly(3-hydroxybutyrate) Helps Bacterial Cells to Survive Freezing. PLoS ONE. 2016;11:e0157778. doi: 10.1371/journal.pone.0157778. PubMed DOI PMC
Singleton V., Rossi J. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Eiticulture. 1965;16:144–158.
Tan I., Foong C., Tan H., Lim H., Zain N., Tan Y., Hoh C., Sudesh K. Polyhydroxyalkanoate (PHA) synthase genes and PHA-associated gene clusters in Pseudomonas spp. and Janthinobacterium spp. isolated from Antarctica. J. Biotechnol. 2020;313:18–28. doi: 10.1016/j.jbiotec.2020.03.006. PubMed DOI
Pan W., Perrotta J., Stipanovic A., Nomura C., Nakas J. Production of polyhydroxyalkanoates by Burkholderia cepacia ATCC 17759 using a detoxified sugar maple hemicellulosic hydrolysate. J. Ind. Microbiol. Biotechnol. 2012;39:459–469. doi: 10.1007/s10295-011-1040-6. PubMed DOI
Kourmentza C., Costa J., Azevedo Z., Servin C., Grandfils C., De Freitas V., Reis M. Burkholderia thailandensis as a microbial cell factory for the bioconversion of used cooking oil to polyhydroxyalkanoates and rhamnolipids. Bioresour. Technol. 2018;247:829–837. doi: 10.1016/j.biortech.2017.09.138. PubMed DOI
Ibrahim M., Steinbüchel A. High-Cell-Density Cyclic Fed-Batch Fermentation of a Poly(3-Hydroxybutyrate)-Accumulating Thermophile, Chelatococcus sp. Strain MW10. Appl. Environ. Microbiol. 2010;76:7890–7895. doi: 10.1128/AEM.01488-10. PubMed DOI PMC
Keenan T., Nakas J., Tanenbaum S. Polyhydroxyalkanoate copolymers from forest biomass. J. Ind. Microbiol. Biotechnol. 2006;33:616–626. doi: 10.1007/s10295-006-0131-2. PubMed DOI
Norhafini H., Huong K., Amirul A. High PHA density fed-batch cultivation strategies for 4HB-rich P(3HB-co-4HB) copolymer production by transformant Cupriavidus malaysiensis USMAA1020. Int. J. Biol. Macromol. 2019;125:1024–1032. doi: 10.1016/j.ijbiomac.2018.12.121. PubMed DOI
Venkitasamy C., Zhao L., Zhang R., Pan Z. Integrated Processing Technologies for Food and Agricultural By-Products. Elsevier; Amsterdam, The Netherlands: 2019. Grapes; pp. 133–163.
Chowdhary P., Gupta A., Gnansounou E., Pandey A., Chaturvedi P. Current trends and possibilities for exploitation of Grape pomace as a potential source for value addition. Environ. Pollut. 2021;278:116796. doi: 10.1016/j.envpol.2021.116796. PubMed DOI
Hogan S., Zhang L., Li J., Sun S., Canning C., Zhou K. Antioxidant rich grape pomace extract suppresses postprandial hyperglycemia in diabetic mice by specifically inhibiting alpha-glucosidase. Nutr. Metab. 2010;7:71. doi: 10.1186/1743-7075-7-71. PubMed DOI PMC
Pinto D., Cádiz-Gurrea M., Silva A., Delerue-Matos C., Rodrigues F. Food Waste Recovery. Elsevier; Amsterdam, The Netherlands: 2021. Cosmetics—food waste recovery; pp. 503–528.
Luchian C., Cotea V., Vlase L., Toiu A., Colibaba L., Răschip I., Nadăş G., Gheldiu A., Tuchiluş C., Rotaru L., et al. Antioxidant and antimicrobial effects of grape pomace extracts. BIO Web Conf. 2019;15:04006. doi: 10.1051/bioconf/20191504006. DOI
Shang L., Jiang M., Chang H.N. P oly(3-hydroxybutyrate) synthesis in fed-batch culture of Ralstonia eutropha with phosphate limitation under different glucose concentrations. Biotechnol. Lett. 2003;25:1415–1419. doi: 10.1023/A:1025047410699. PubMed DOI