Combination of Hypotonic Lysis and Application of Detergent for Isolation of Polyhydroxyalkanoates from Extremophiles

. 2022 Apr 26 ; 14 (9) : . [epub] 20220426

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35566928

Grantová podpora
FCH-K-21-6952 KiNG BUT
CZ.02.2.69/ 0.0/0.0/19_073/0016948 OP RDE
LM2018127 Ministry of Education Youth and Sports

Production of polyhydroxyalkanoates (PHA), microbial biopolyesters, employing extremophilic microorganisms is a very promising concept relying on robustness of such organisms against microbial contamination, which provides numerous economic and technological benefits. In this work, we took advantage of the natural susceptibility of halophilic and thermophilic PHA producers to hypotonic lysis and we developed a simple and robust approach enabling effective isolation of PHA materials from microbial cells. The method is based on the exposition of microbial cells to hypotonic conditions induced by the diluted solution of sodium dodecyl sulfate (SDS) at elevated temperatures. Such conditions lead to disruption of the cells and release of PHA granules. Moreover, SDS, apart from its cell-disruptive function, also solubilizes hydrophobic components, which would otherwise contaminate PHA materials. The purity of obtained materials, as well as the yields of recovery, reach high values (values of purity higher than 99 wt.%, yields close to 1). Furthermore, we also focused on the removal of SDS from wastewater. The simple, inexpensive, and safe technique is based on the precipitation of SDS in the presence of KCl. The precipitate can be simply removed by decantation or centrifugation. Moreover, there is also the possibility to regenerate the SDS, which would substantially improve the economic feasibility of the process.

Zobrazit více v PubMed

Obruca S., Sedlacek P., Koller M., Kucera D., Pernicova I. Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnol. Adv. 2018;36:856–870. doi: 10.1016/j.biotechadv.2017.12.006. PubMed DOI

Obruca S., Dvorak P., Sedlacek P., Koller M., Sedlar K., Pernicova I., Safranek D. Polyhydroxyalkanoates synthesis by halophiles and thermophiles: Towards sustainable production of microbial bioplastics. Biotechnol. Adv. 2022;59:107906. doi: 10.1016/j.biotechadv.2022.107906. PubMed DOI

Kourmentza C., Plácido J., Venetsaneas N., Burniol-Figols A., Varrone C., Gavala H.N., Reis M.A.M. Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production. Bioengineering. 2017;4:55. doi: 10.3390/bioengineering4020055. PubMed DOI PMC

Chen G.-Q., Jiang X.-R. Next generation industrial biotechnology based on extremophilic bacteria. Curr. Opin. Biotechnol. 2018;50:94–100. doi: 10.1016/j.copbio.2017.11.016. PubMed DOI

Quillaguamán J., Hashim S., Bento F., Mattiasson B., Hatti-Kaul R. Poly(β-hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1 using starch hydrolysate as substrate. J. Appl. Microbiol. 2005;99:151–157. doi: 10.1111/j.1365-2672.2005.02589.x. PubMed DOI

Pernicova I., Kucera D., Nebesarova J., Kalina M., Novackova I., Koller M., Obruca S. Production of polyhydroxyalkanoates on waste frying oil employing selected Halomonas strains. Bioresour. Technol. 2019;292:122028. doi: 10.1016/j.biortech.2019.122028. PubMed DOI

Ren Y., Ling C., Hajnal I., Wu Q., Chen G.-Q. Construction of Halomonas bluephagenesis capable of high cell density growth for efficient PHA production. Appl. Microbiol. Biotechnol. 2018;102:4499–4510. doi: 10.1007/s00253-018-8931-7. PubMed DOI

Kucera D., Pernicová I., Kovalcik A., Koller M., Mullerova L., Sedlacek P., Mravec F., Nebesarova J., Kalina M., Marova I., et al. Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. Bioresour. Technol. 2018;256:552–556. doi: 10.1016/j.biortech.2018.02.062. PubMed DOI

Alsafadi D., Al-Mashaqbeh O. A one-stage cultivation process for the production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) from olive mill wastewater by Haloferax mediterranei. New Biotechnol. 2017;34:47–53. doi: 10.1016/j.nbt.2016.05.003. PubMed DOI

Shivanand P., Mugeraya G. Halophilic Bacteria and Their Compatible Solutes—Osmoregulation and Potential Applications. Curr. Sci. 2011;100:1516–1521.

Hsiao L.-J., Lee M.-C., Chuang P.-J., Kuo Y.-Y., Lin J.-H., Wu T.-M., Li S.-Y. The production of poly(3-hydroxybutyrate) by thermophilic Caldimonas manganoxidans from glycerol. J. Polym. Res. 2018;25:85. doi: 10.1007/s10965-018-1486-6. DOI

Kourilova X., Pernicova I., Vidlakova M., Krejcirik R., Mrazova K., Hrubanova K., Krzyzanek V., Nebesarova J., Obruca S. Biotechnological conversion of grape pomace to poly(3-hydroxybutyrate) by moderately thermophilic bacterium Tepidimonas taiwanensis. Bioengineering. 2021;8:141. doi: 10.3390/bioengineering8100141. PubMed DOI PMC

Kourilova X., Pernicova I., Sedlar K., Musilova J., Sedlacek P., Kalina M., Koller M., Obruca S. Production of polyhydroxyalkanoates (PHA) by a thermophilic strain of Schlegelella thermodepolymerans from xylose rich substrates. Bioresour. Technol. 2020;315:123885. doi: 10.1016/j.biortech.2020.123885. PubMed DOI

Urbieta M.S., Donati E.R., Chan K.-G., Shahar S., Sin L.L., Goh M.M. Thermophiles in the genomic era: Biodiversity, science, and applications. Biotechnol. Adv. 2015;33:633–647. doi: 10.1016/j.biotechadv.2015.04.007. PubMed DOI

Koller M., Bona R., Chiellini E., Braunegg G. Extraction of short-chain-length poly-[(R)-hydroxyalkanoates] (scl-PHA) by the “anti-solvent” acetone under elevated temperature and pressure. Biotechnol. Lett. 2013;35:1023–1028. doi: 10.1007/s10529-013-1185-7. PubMed DOI

Ramsay J.A., Berger E., Voyer R., Chavarie C., Ramsay B.A. Extraction of poly-3-hydroxybutyrate using chlorinated solvents. Biotechnol. Tech. 1994;8:589–594. doi: 10.1007/BF00152152. DOI

Khosravi-Darani K., Vasheghani-Farahani E., Shojaosadati S.A., Yamini Y. Effect of process variables on supercritical fluid disruption of Ralstonia eutropha cells for poly(R-hydroxybutyrate) recovery. Biotechnol. Prog. 2004;20:1757–1765. doi: 10.1021/bp0498037. PubMed DOI

Hejazi P., Vasheghani-Farahani E., Yamini Y. Supercritical fluid disruption of Ralstonia eutropha for poly(β-hydroxybutyrate) recovery. Biotechnol. Prog. 2003;19:1519–1523. doi: 10.1021/bp034010q. PubMed DOI

Holmes P.A., Lim G.B. Separation Process. 4910145. U.S. Patent. 1990 March 20;

Choi J.I., Lee S.Y. Efficient and economical recovery of poly(3-hydroxybutyrate) from recombinant Escherichia coli by simple digestion with chemicals. Biotechnol. Bioeng. 2000;62:546–553. doi: 10.1002/(SICI)1097-0290(19990305)62:5<546::AID-BIT6>3.0.CO;2-0. PubMed DOI

Berger E., Ramsay B.A., Ramsay J.A., Chavarie C., Braunegg G. PHB recovery by hypochlorite digestion of non-PHB biomass. Biotechnol. Tech. 1989;3:227–232. doi: 10.1007/BF01876053. DOI

Marudkla J., Patjawit A., Chuensangjun C., Sirisansaneeyakul S. Optimization of poly(3-hydroxybutyrate) extraction from Cupriavidus necator DSM 545 using sodium dodecyl sulfate and sodium hypochlorite. Agric. Nat. Resour. 2018;52:266–273. doi: 10.1016/j.anres.2018.09.009. DOI

Mannina G., Presti D., Montiel-Jarillo G., Suárez-Ojeda M.E. Bioplastic recovery from wastewater: A new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures. Bioresour. Technol. 2019;282:361–369. doi: 10.1016/j.biortech.2019.03.037. PubMed DOI

Kathiraser Y., Aroua M.K., Ramachandran K.B., Tan I.K.P. Chemical characterization of medium-chain-length polyhydroxyalkanoates (PHAs) recovered by enzymatic treatment and ultrafiltration. J. Chem. Technol. Biotechnol. 2007;82:847–855. doi: 10.1002/jctb.1751. DOI

Rodriguez-Valera F. Halobacteria as producers of polyhydroxyalkanoates. FEMS Microbiol. Lett. 1992;103:181–186. doi: 10.1111/j.1574-6968.1992.tb05836.x. DOI

Bhattacharyya A., Pramanik A., Maji S.K., Haldar S., Mukhopadhyay U.K., Mukherjee J. Utilization of vinasse for production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei. AMB Express. 2012;2:34. doi: 10.1186/2191-0855-2-34. PubMed DOI PMC

Brandl H., Gross R.A., Lenz R.W., Clinton Fuller A. Pseudomonas oleovorans as a Source of Poly(β-Hydroxyalkanoates) for Potential Applications as Biodegradable Polyesters. Appl. Environ. Microbiol. 1988;54:1977–1982. doi: 10.1128/aem.54.8.1977-1982.1988. PubMed DOI PMC

Kourilova X., Schwarzerova J., Pernicova I., Sedlar K., Mrazova K., Krzyzanek V., Nebesarova J., Obruca S. The first insight into polyhydroxyalkanoates accumulation in multi-extremophilic Rubrobacter xylanophilus and Rubrobacter spartanus. Microorganisms. 2021;9:909. doi: 10.3390/microorganisms9050909. PubMed DOI PMC

Rupprecht K.R., Lang E.Z., Gregory S.D., Bergsma J.M., Rae T.D., Fishpaugh J.R. A precise spectrophotometric method for measuring sodium dodecyl sulfate concentration. Anal. Biochem. 2015;486:78–80. doi: 10.1016/j.ab.2015.06.013. PubMed DOI

Arikawa H., Sato S., Fujiki T., Matsumoto K. Simple and rapid method for isolation and quantitation of polyhydroxyalkanoate by SDS-sonication treatment. J. Biosci. Bioeng. 2017;124:250–254. doi: 10.1016/j.jbiosc.2017.03.003. PubMed DOI

Middelberg A.P.J. Process-scale disruption of microorganisms. Biotechnol. Adv. 1995;13:491–551. doi: 10.1016/0734-9750(95)02007-P. PubMed DOI

Katsui N., Tsuchido T., Takano M., Shibasaki I. Effect of preincubation temperature on the heat resistance of Escherichia coli having different fatty acid compositions. J. Gen. Microbiol. 1981;122:357–361. doi: 10.1099/00221287-122-2-357. PubMed DOI

Rees P., Cumming R.H., Watson J.S. Rheology of heated bacterial DNA; Proceedings of the 1994 ICheme Research Event; London, UK. 5–6 January 1994; pp. 183–185.

Koller M., Marsalek L., Miranda de Sousa Dias M., Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol. 2017;37:24–38. doi: 10.1016/j.nbt.2016.05.001. PubMed DOI

Sedlacek P., Slaninova E., Enev V., Koller M., Nebesarova J., Marova I., Hrubanova K., Krzyzanek V., Samek O., Obruca S. What keeps polyhydroxyalkanoates in bacterial cells amorphous? A derivation from stress exposure experiments. Appl. Microbiol. Biotechnol. 2019;103:1905–1917. doi: 10.1007/s00253-018-09584-z. PubMed DOI

Shen R., Ning Z.Y., Lan Y.X., Chem J.C., Chen C.G. Manipulation of polyhydroxyalkanoate granular sizes in Halomonas bluephagenesis. Metab. Eng. 2019;54:117–126. doi: 10.1016/j.ymben.2019.03.011. PubMed DOI

Samorì C., Basaglie M., Casella S., Favaro L., Galletti P., Giorgini L., Marchi D., Mazzocchetti L., Torri C., Tagliavini E. Dimethyl carbonate and switchable anionic surfactants: Two effective tools for the extraction of polyhydroxyalkanoates from microbial biomass. Green Chem. 2015;17:1047–1056. doi: 10.1039/C4GC01821D. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...