The First Insight into Polyhydroxyalkanoates Accumulation in Multi-Extremophilic Rubrobacter xylanophilus and Rubrobacter spartanus

. 2021 Apr 24 ; 9 (5) : . [epub] 20210424

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33923216

Grantová podpora
GA 19-20697S Grantová Agentura České Republiky
LM2015062 Czech-BioImaging MEYS CR

Odkazy

PubMed 33923216
PubMed Central PMC8146576
DOI 10.3390/microorganisms9050909
PII: microorganisms9050909
Knihovny.cz E-zdroje

Actinobacteria belonging to the genus Rubrobacter are known for their multi-extremophilic growth conditions-they are highly radiation-resistant, halotolerant, thermotolerant or even thermophilic. This work demonstrates that the members of the genus are capable of accumulating polyhydroxyalkanoates (PHA) since PHA-related genes are widely distributed among Rubrobacter spp. whose complete genome sequences are available in public databases. Interestingly, all Rubrobacter strains possess both class I and class III synthases (PhaC). We have experimentally investigated the PHA accumulation in two thermophilic species, R. xylanophilus and R. spartanus. The PHA content in both strains reached up to 50% of the cell dry mass, both bacteria were able to accumulate PHA consisting of 3-hydroxybutyrate and 3-hydroxyvalerate monomeric units, none other monomers were incorporated into the polymer chain. The capability of PHA accumulation likely contributes to the multi-extremophilic characteristics since it is known that PHA substantially enhances the stress robustness of bacteria. Hence, PHA can be considered as extremolytes enabling adaptation to extreme conditions. Furthermore, due to the high PHA content in biomass, a wide range of utilizable substrates, Gram-stain positivity, and thermophilic features, the Rubrobacter species, in particular Rubrobacter xylanophilus, could be also interesting candidates for industrial production of PHA within the concept of Next-Generation Industrial Biotechnology.

Zobrazit více v PubMed

Castro J.F., Nouioui I., Asenjo J.A., Andrews B., Bull A.T., Goodfellow M. New genus-specific primers for PCR identification of Rubrobacter strains. Antonie van Leeuwenhoek. 2019;112:1863–1874. doi: 10.1007/s10482-019-01314-3. PubMed DOI PMC

Freed S., Ramaley R.F., Kyndt J.A. Whole-Genome Sequence of the Novel Rubrobacter taiwanensis Strain Yellowstone, Isolated from Yellowstone National Park. Microbiol. Resour. Announc. 2019;8:e00287-19. doi: 10.1128/MRA.00287-19. PubMed DOI PMC

Norman J.S., King G.M., Friesen M.L. Rubrobacter spartanus sp. nov., a moderately thermophilic oligotrophic bacterium isolated from volcanic soil. Int. J. Syst. Evol. Microbiol. 2017;67:3597–3602. doi: 10.1099/ijsem.0.002175. PubMed DOI

Chen R.-W., Li C., He Y.-Q., Cui L.-Q., Long L.-J., Tian X.-P. Rubrobacter tropicus sp. nov. and Rubrobacter marinus sp. nov., isolated from deep-sea sediment of the South China Sea. Int. J. Syst. Evol. Microbiol. 2020;70:5576–5585. doi: 10.1099/ijsem.0.004449. PubMed DOI

Terato H., Suzuki K., Nishioka N., Okamoto A., Shimazaki-Tokuyama Y., Inoue Y., Saito T. Characterization and ra-dio-resistant function of manganese superoxide dismutase of Rubrobacter radiotolerans. J. Radiat. Res. 2011;52:735–742. doi: 10.1269/jrr.11105. PubMed DOI

Asgarani E., Terato H., Asagoshi K., Shahmohammadi H.R., Ohyama Y., Saito T., Yamamoto O., Ide H. Purification and characterization of a novel DNA repair enzyme from the extremely radioresistant bacterium Rubrobacter radiotolerans. J. Radiat. Res. 2000;41:19–34. doi: 10.1269/jrr.41.19. PubMed DOI

Takahashi S., Furukawara M., Omae K., Tadokoro N., Saito Y., Abe K., Kera Y. A Highly Stable d-Amino Acid Oxidase of the Thermophilic Bacterium Rubrobacter xylanophilus. Appl. Environ. Microbiol. 2014;80:7219–7229. doi: 10.1128/AEM.02193-14. PubMed DOI PMC

Kovács K., Bánóczi G., Varga A., Szabó I., Holczinger A., Hornyánszky G., Zagyva I., Paizs C., Vértessy B.G., Poppe L. Expression and Properties of the Highly Alkalophilic Phenylalanine Ammonia-Lyase of Thermophilic Rubrobacter xylanophilus. PLoS ONE. 2014;9:e85943. doi: 10.1371/journal.pone.0085943. PubMed DOI PMC

Gabani P., Singh O.V. Radiation-resistant extremophiles and their potential in bio-technology and therapeutics. Appl. Microbiol. Biot. 2013;97:993–1004. doi: 10.1007/s00253-012-4642-7. PubMed DOI

Webb K.M., DiRuggiero J. Role of Mn2+and Compatible Solutes in the Radiation Resistance of Thermophilic Bacteria and Archaea. Archaea. 2012;2012:1–11. doi: 10.1155/2012/845756. PubMed DOI PMC

Johnson T., Newton G.L., Fahey R.C., Rawat M. Unusual production of glutathione in Actinobacteria. Arch. Microbiol. 2009;191:89–93. doi: 10.1007/s00203-008-0423-1. PubMed DOI PMC

Chen G.-Q., Jiang X.-R. Next generation industrial biotechnology based on extremophilic bacteria. Curr. Opin. Biotechnol. 2018;50:94–100. doi: 10.1016/j.copbio.2017.11.016. PubMed DOI

Koller M., Mukherjee A. Polyhydroxyalkanoates—Linking Properties, Applications and End-of-life Options. Chem. Biochem. Eng. Q. 2020;34:115–129. doi: 10.15255/CABEQ.2020.1819. DOI

Sedlacek P., Slaninova E., Koller M., Nebesarova J., Marova I., Krzyzanek V., Obruca S. PHA granules help bacterial cells to preserve cell integrity when exposed to sudden osmotic imbalances. N. Biotechnol. 2019;49:129–136. doi: 10.1016/j.nbt.2018.10.005. PubMed DOI

Alves L.P.S., Santana-Filho A.P., Sassaki G.L., Pedrosa F.D.O., de Souza E.M., Chubatsu L.S., Müller-Santos M. 3-Hydroxybutyrate Derived from Poly-3-Hydroxybutyrate Mobilization Alleviates Protein Aggregation in Heat-Stressed Herbaspirillum seropedicae SmR. Appl. Environ. Microbiol. 2020;86 doi: 10.1128/AEM.01265-20. PubMed DOI PMC

Obruca S., Sedlacek P., Krzyzanek V., Mravec F., Hrubanova K., Samek O., Kucera D., Benesova P., Marova I. Accu-mulation of poly(3-hydroxybutyrate) helps bacterial cells to survive freezing. PLoS ONE. 2016;11:e0157778. doi: 10.1371/journal.pone.0157778. PubMed DOI PMC

Slaninova E., Sedlacek P., Mravec F., Mullerova L., Samek O., Koller M., Hesko O., Kucera D., Marova I., Obruca S. Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation. Appl. Microbiol. Biotechnol. 2018;102:1923–1931. doi: 10.1007/s00253-018-8760-8. PubMed DOI

Batista M.B., Teixeira C.S., Sfeir M.Z.T., Alves L.P.S., Valdameri G., Pedrosa F.D.O., Sassaki G.L., Steffens M.B.R., De Souza E.M., Dixon R., et al. PHB Biosynthesis Counteracts Redox Stress in Herbaspirillum seropedicae. Front. Microbiol. 2018;9:472. doi: 10.3389/fmicb.2018.00472. PubMed DOI PMC

Müller-Santos M., Koskimäki J.J., Alves L.P.S., de Souza E.M., Jendrossek D., Pirttilä A.M. The protective role of PHB and its degradation products against stress situations in bacteria. FEMS Microbiol. Rev. 2020 doi: 10.1093/femsre/fuaa058. PubMed DOI

Obruca S., Sedlacek P., Koller M. The underexplored role of diverse stress factors in microbial biopolymer synthesis. Bioresour. Technol. 2021;326:124767. doi: 10.1016/j.biortech.2021.124767. PubMed DOI

Carreto L., Moore E., Nobre M.F., Wait R., Riley P.W., Sharp R.J., Da Costa M.S. Rubrobacter xylanophilus sp. nov., a New Thermophilic Species Isolated from a Thermally Polluted Effluent. Int. J. Syst. Bacteriol. 1996;46:460–465. doi: 10.1099/00207713-46-2-460. DOI

Obruca S., Benesova P., Oborna J., Marova I. Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate) production from oils by Cupriavidus necator. Biotechnol. Lett. 2014;36:775–781. doi: 10.1007/s10529-013-1407-z. PubMed DOI

Obruca S., Sedlacek P., Mravec F., Krzyzanek V., Nebesarova J., Samek O., Kucera D., Benesova P., Hrubanova K., Milerova M., et al. The presence of PHB granules in cytoplasm protects non-halophilic bacterial cells against the harmful impact of hypertonic environments. New Biotechnol. 2017;39:68–80. doi: 10.1016/j.nbt.2017.07.008. PubMed DOI

Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Benson D.A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J., Sayers E.W. GenBank. Nucleic Acids Res. 2012;41:D36–D42. doi: 10.1093/nar/gks1195. PubMed DOI PMC

Bateman A., Martin M.J., Orchard S., Magrane M., Agivetova R., Ahmad S., Alpi E., Bowler-Barnett E.H., Britto R., Bursteinas B., et al. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49 doi: 10.1093/nar/gkaa1100. PubMed DOI PMC

Taboada B., Estrada K., Ciria R., Merino E. Operon-mapper: A web server for precise operon identification in bacterial and archaeal genomes. Bioinform. 2018;34:4118–4120. doi: 10.1093/bioinformatics/bty496. PubMed DOI PMC

Knoll M., Hamm T.M., Wagner F., Martinez V., Pleiss J. The PHA Depolymerase Engineering Database: A systematic analysis tool for the diverse family of polyhydroxyalkanoate (PHA) depolymerases. BMC Bioinform. 2009;10:89. doi: 10.1186/1471-2105-10-89. PubMed DOI PMC

Stothard P. The Sequence Manipulation Suite: JavaScript Programs for Analyzing and Formatting Protein and DNA Se-quences. BioTechniques. 2000;28:1102–1104. doi: 10.2144/00286ir01. PubMed DOI

Mravec F., Obruca S., Krzyzánek V., Sedlacek P., Hrubanova K., Samek O., Kucera D., Benesova P., Nebesářová J. Accumulation of PHA granules in Cupriavidus necator as seen by confocal fluorescence microscopy. FEMS Microbiol. Lett. 2016;363:363. doi: 10.1093/femsle/fnw094. PubMed DOI

Matias F., Bonatto D., Padilla G., Rodrigues M.F.D.A., Henriques J.A.P. Polyhydroxyalkanoates production by actinobacteria isolated from soil. Can. J. Microbiol. 2009;55:790–800. doi: 10.1139/W09-029. PubMed DOI

Kumar V., Thakur V., Ambika, Kumar S., Singh D. Bioplastic reservoir of diverse bacterial communities revealed along altitude gradient of Pangi-Chamba trans-Himalayan region. FEMS Microbiol. Lett. 2018;365:365. doi: 10.1093/femsle/fny144. PubMed DOI

Trakunjae C., Boondaeng A., Apiwatanapiwat W., Kosugi A., Arai T., Sudesh K., Vaithanomsat P. Enhanced polyhy-droxybutyrate (PHB) production by newly isolated rare actinomycetes Rhodococcus sp. strain BSRT1-1 using response surface methodology. Sci. Rep. UK. 2021;11:1–14. PubMed PMC

Altaee N., El-Hiti G.A., Fahdil A., Sudesh K., Yousif E. Screening and Evaluation of Poly(3-hydroxybutyrate) with Rho-dococcus equi Using Different Carbon Sources. Arab. J. Sci. Eng. 2017;42:2371–2379. doi: 10.1007/s13369-016-2327-8. DOI

Jia K., Cao R., Hua D.H., Li P. Study of Class i and Class III Polyhydroxyalkanoate (PHA) Synthases with Substrates Con-taining a Modified Side Chain. Biomacromolecules. 2016;17:1477–1485. doi: 10.1021/acs.biomac.6b00082. PubMed DOI PMC

Tsuge T., Hyakutake M., Mizuno K. Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus. Appl. Microbiol. Biotechnol. 2015;99:6231–6240. doi: 10.1007/s00253-015-6777-9. PubMed DOI

Obruca S., Sedlacek P., Slaninova E., Fritz I., Daffert C., Meixner K., Sedrlova Z., Koller M. Novel unexpected functions of PHA granules. Appl. Microbiol. Biotechnol. 2020;104:4795–4810. doi: 10.1007/s00253-020-10568-1. PubMed DOI

Obruca S., Sedlacek P., Koller M., Kucera D., Pernicova I. Involvement of poly-hydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnol. Adv. 2018;36:856–870. doi: 10.1016/j.biotechadv.2017.12.006. PubMed DOI

Soto G., Setten L., Lisi C., Maurelis C., Mozzicafreddo M., Cuccioloni M., Angeletti M., Ayub N.D. Hydroxybutyrate prevents protein aggregation in the halotolerant bacterium Pseudomonas sp. CT13 under abiotic stress. Extremophiles. 2012;16:455–462. doi: 10.1007/s00792-012-0445-0. PubMed DOI

Obruca S., Sedlacek P., Mravec F., Samek O., Marova I. Evaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of poly(3-hydroxybutyrate) accumulating cells. Appl. Microbiol. Biotechnol. 2015;100:1365–1376. doi: 10.1007/s00253-015-7162-4. PubMed DOI

De Almeida A., Catone M.V., Rhodius V.A., Gross C.A., Pettinari M.J. Unexpected Stress-Reducing Effect of PhaP, a Poly(3-Hydroxybutyrate) Granule-Associated Protein, in Escherichia coli. Appl. Environ. Microbiol. 2011;77:6622–6629. doi: 10.1128/AEM.05469-11. PubMed DOI PMC

Brojanigo S., Parro E., Cazzorla T., Favaro L., Basaglia M., Casella S. Conversion of Starchy Waste Streams into Polyhy-droxyalkanoates Using Cupriavidus necator DSM. Polymers. 2020;12:1496. doi: 10.3390/polym12071496. PubMed DOI PMC

Raposo R.S., de Almeida M.C.M., Oliveira M.D.C.M.D., da Fonseca M.M., Cesário M.T. A Burkholderia sacchari cell factory: Production of poly-3-hydroxybutyrate, xylitol and xylonic acid from xylose-rich sugar mixtures. New Biotechnol. 2017;34:12–22. doi: 10.1016/j.nbt.2016.10.001. PubMed DOI

Pernicova I., Kucera D., Nebesarova J., Kalina M., Novackova I., Koller M., Obruca S. Production of polyhydroxyalka-noates on waste frying oil employing selected Halomonas strains. Bioresource Technol. 2019;292:122028. doi: 10.1016/j.biortech.2019.122028. PubMed DOI

Singh A.K., Srivastava J.K., Chandel A.K., Sharma L., Mallick N., Singh S.P. Biomedical applications of microbially engi-neered polyhydroxyalkanoates: An insight into recent advances, bottlenecks, and solutions. Appl. Microbiol. Biotechnol. 2019;103:2007–2032. doi: 10.1007/s00253-018-09604-y. PubMed DOI

Schmid M.T., Song H., Raschbauer M., Emerstorfer F., Omann M., Stelzer F., Neureiter M. Utilization of desugarized sugar beet molasses for the production of poly(3-hydroxybutyrate) by halophilic Bacillus megaterium uyuni S29. Process Biochem. 2019;86:9–15. doi: 10.1016/j.procbio.2019.08.001. DOI

Sadykov M.R., Ahn J.-S., Widhelm T.J., Eckrich V.M., Endres J.L., Driks A., Rutkowski G.E., Wingerd K.L., Bayles K.W. Poly(3-hydroxybutyrate) fuels the tricarboxylic acid cycle and de novo lipid biosynthesis during Bacillus anthracis sporulation. Mol. Microbiol. 2017;104:793–803. doi: 10.1111/mmi.13665. PubMed DOI

Kourilova X., Pernicova I., Sedlar K., Musilova J., Sedlacek P., Kalina M., Koller M., Obruca S. Production of polyhy-droxyalkanoates (PHA) by a thermophilic strain of Schlegelella thermodepolymerans from xylose rich substrates. Bioresource Technol. 2020;315:123885. doi: 10.1016/j.biortech.2020.123885. PubMed DOI

Budde C.F., Riedel S.L., Willis L.B., Rha C., Sinskey A.J. Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) from Plant Oil by Engineered Ralstonia eutropha Strains. Appl. Environ. Microbiol. 2011;77:2847–2854. doi: 10.1128/AEM.02429-10. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Evaluating stress resilience of cyanobacteria through flow cytometry and fluorescent viability assessment

. 2025 Feb ; 70 (1) : 205-223. [epub] 20241106

Cultivation driven transcriptomic changes in the wild-type and mutant strains of Rhodospirillum rubrum

. 2024 Dec ; 23 () : 2681-2694. [epub] 20240620

Genetic engineering of low-temperature polyhydroxyalkanoate production by Acidovorax sp. A1169, a psychrophile isolated from a subglacial outflow

. 2023 Sep 14 ; 27 (3) : 25. [epub] 20230914

Urany-Less Low Voltage Transmission Electron Microscopy: A Powerful Tool for Ultrastructural Studying of Cyanobacterial Cells

. 2023 Mar 29 ; 11 (4) : . [epub] 20230329

Combination of Hypotonic Lysis and Application of Detergent for Isolation of Polyhydroxyalkanoates from Extremophiles

. 2022 Apr 26 ; 14 (9) : . [epub] 20220426

Glycogen, poly(3-hydroxybutyrate) and pigment accumulation in three Synechocystis strains when exposed to a stepwise increasing salt stress

. 2022 ; 34 (3) : 1227-1241. [epub] 20220330

Biotechnological Conversion of Grape Pomace to Poly(3-hydroxybutyrate) by Moderately Thermophilic Bacterium Tepidimonas taiwanensis

. 2021 Oct 14 ; 8 (10) : . [epub] 20211014

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...