The First Insight into Polyhydroxyalkanoates Accumulation in Multi-Extremophilic Rubrobacter xylanophilus and Rubrobacter spartanus
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA 19-20697S
Grantová Agentura České Republiky
LM2015062 Czech-BioImaging
MEYS CR
PubMed
33923216
PubMed Central
PMC8146576
DOI
10.3390/microorganisms9050909
PII: microorganisms9050909
Knihovny.cz E-zdroje
- Klíčová slova
- Rubrobacter spartanus, Rubrobacter xylanophilus, extremophiles, polyhydroxyalkanoates, stress conditions,
- Publikační typ
- časopisecké články MeSH
Actinobacteria belonging to the genus Rubrobacter are known for their multi-extremophilic growth conditions-they are highly radiation-resistant, halotolerant, thermotolerant or even thermophilic. This work demonstrates that the members of the genus are capable of accumulating polyhydroxyalkanoates (PHA) since PHA-related genes are widely distributed among Rubrobacter spp. whose complete genome sequences are available in public databases. Interestingly, all Rubrobacter strains possess both class I and class III synthases (PhaC). We have experimentally investigated the PHA accumulation in two thermophilic species, R. xylanophilus and R. spartanus. The PHA content in both strains reached up to 50% of the cell dry mass, both bacteria were able to accumulate PHA consisting of 3-hydroxybutyrate and 3-hydroxyvalerate monomeric units, none other monomers were incorporated into the polymer chain. The capability of PHA accumulation likely contributes to the multi-extremophilic characteristics since it is known that PHA substantially enhances the stress robustness of bacteria. Hence, PHA can be considered as extremolytes enabling adaptation to extreme conditions. Furthermore, due to the high PHA content in biomass, a wide range of utilizable substrates, Gram-stain positivity, and thermophilic features, the Rubrobacter species, in particular Rubrobacter xylanophilus, could be also interesting candidates for industrial production of PHA within the concept of Next-Generation Industrial Biotechnology.
Zobrazit více v PubMed
Castro J.F., Nouioui I., Asenjo J.A., Andrews B., Bull A.T., Goodfellow M. New genus-specific primers for PCR identification of Rubrobacter strains. Antonie van Leeuwenhoek. 2019;112:1863–1874. doi: 10.1007/s10482-019-01314-3. PubMed DOI PMC
Freed S., Ramaley R.F., Kyndt J.A. Whole-Genome Sequence of the Novel Rubrobacter taiwanensis Strain Yellowstone, Isolated from Yellowstone National Park. Microbiol. Resour. Announc. 2019;8:e00287-19. doi: 10.1128/MRA.00287-19. PubMed DOI PMC
Norman J.S., King G.M., Friesen M.L. Rubrobacter spartanus sp. nov., a moderately thermophilic oligotrophic bacterium isolated from volcanic soil. Int. J. Syst. Evol. Microbiol. 2017;67:3597–3602. doi: 10.1099/ijsem.0.002175. PubMed DOI
Chen R.-W., Li C., He Y.-Q., Cui L.-Q., Long L.-J., Tian X.-P. Rubrobacter tropicus sp. nov. and Rubrobacter marinus sp. nov., isolated from deep-sea sediment of the South China Sea. Int. J. Syst. Evol. Microbiol. 2020;70:5576–5585. doi: 10.1099/ijsem.0.004449. PubMed DOI
Terato H., Suzuki K., Nishioka N., Okamoto A., Shimazaki-Tokuyama Y., Inoue Y., Saito T. Characterization and ra-dio-resistant function of manganese superoxide dismutase of Rubrobacter radiotolerans. J. Radiat. Res. 2011;52:735–742. doi: 10.1269/jrr.11105. PubMed DOI
Asgarani E., Terato H., Asagoshi K., Shahmohammadi H.R., Ohyama Y., Saito T., Yamamoto O., Ide H. Purification and characterization of a novel DNA repair enzyme from the extremely radioresistant bacterium Rubrobacter radiotolerans. J. Radiat. Res. 2000;41:19–34. doi: 10.1269/jrr.41.19. PubMed DOI
Takahashi S., Furukawara M., Omae K., Tadokoro N., Saito Y., Abe K., Kera Y. A Highly Stable d-Amino Acid Oxidase of the Thermophilic Bacterium Rubrobacter xylanophilus. Appl. Environ. Microbiol. 2014;80:7219–7229. doi: 10.1128/AEM.02193-14. PubMed DOI PMC
Kovács K., Bánóczi G., Varga A., Szabó I., Holczinger A., Hornyánszky G., Zagyva I., Paizs C., Vértessy B.G., Poppe L. Expression and Properties of the Highly Alkalophilic Phenylalanine Ammonia-Lyase of Thermophilic Rubrobacter xylanophilus. PLoS ONE. 2014;9:e85943. doi: 10.1371/journal.pone.0085943. PubMed DOI PMC
Gabani P., Singh O.V. Radiation-resistant extremophiles and their potential in bio-technology and therapeutics. Appl. Microbiol. Biot. 2013;97:993–1004. doi: 10.1007/s00253-012-4642-7. PubMed DOI
Webb K.M., DiRuggiero J. Role of Mn2+and Compatible Solutes in the Radiation Resistance of Thermophilic Bacteria and Archaea. Archaea. 2012;2012:1–11. doi: 10.1155/2012/845756. PubMed DOI PMC
Johnson T., Newton G.L., Fahey R.C., Rawat M. Unusual production of glutathione in Actinobacteria. Arch. Microbiol. 2009;191:89–93. doi: 10.1007/s00203-008-0423-1. PubMed DOI PMC
Chen G.-Q., Jiang X.-R. Next generation industrial biotechnology based on extremophilic bacteria. Curr. Opin. Biotechnol. 2018;50:94–100. doi: 10.1016/j.copbio.2017.11.016. PubMed DOI
Koller M., Mukherjee A. Polyhydroxyalkanoates—Linking Properties, Applications and End-of-life Options. Chem. Biochem. Eng. Q. 2020;34:115–129. doi: 10.15255/CABEQ.2020.1819. DOI
Sedlacek P., Slaninova E., Koller M., Nebesarova J., Marova I., Krzyzanek V., Obruca S. PHA granules help bacterial cells to preserve cell integrity when exposed to sudden osmotic imbalances. N. Biotechnol. 2019;49:129–136. doi: 10.1016/j.nbt.2018.10.005. PubMed DOI
Alves L.P.S., Santana-Filho A.P., Sassaki G.L., Pedrosa F.D.O., de Souza E.M., Chubatsu L.S., Müller-Santos M. 3-Hydroxybutyrate Derived from Poly-3-Hydroxybutyrate Mobilization Alleviates Protein Aggregation in Heat-Stressed Herbaspirillum seropedicae SmR. Appl. Environ. Microbiol. 2020;86 doi: 10.1128/AEM.01265-20. PubMed DOI PMC
Obruca S., Sedlacek P., Krzyzanek V., Mravec F., Hrubanova K., Samek O., Kucera D., Benesova P., Marova I. Accu-mulation of poly(3-hydroxybutyrate) helps bacterial cells to survive freezing. PLoS ONE. 2016;11:e0157778. doi: 10.1371/journal.pone.0157778. PubMed DOI PMC
Slaninova E., Sedlacek P., Mravec F., Mullerova L., Samek O., Koller M., Hesko O., Kucera D., Marova I., Obruca S. Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation. Appl. Microbiol. Biotechnol. 2018;102:1923–1931. doi: 10.1007/s00253-018-8760-8. PubMed DOI
Batista M.B., Teixeira C.S., Sfeir M.Z.T., Alves L.P.S., Valdameri G., Pedrosa F.D.O., Sassaki G.L., Steffens M.B.R., De Souza E.M., Dixon R., et al. PHB Biosynthesis Counteracts Redox Stress in Herbaspirillum seropedicae. Front. Microbiol. 2018;9:472. doi: 10.3389/fmicb.2018.00472. PubMed DOI PMC
Müller-Santos M., Koskimäki J.J., Alves L.P.S., de Souza E.M., Jendrossek D., Pirttilä A.M. The protective role of PHB and its degradation products against stress situations in bacteria. FEMS Microbiol. Rev. 2020 doi: 10.1093/femsre/fuaa058. PubMed DOI
Obruca S., Sedlacek P., Koller M. The underexplored role of diverse stress factors in microbial biopolymer synthesis. Bioresour. Technol. 2021;326:124767. doi: 10.1016/j.biortech.2021.124767. PubMed DOI
Carreto L., Moore E., Nobre M.F., Wait R., Riley P.W., Sharp R.J., Da Costa M.S. Rubrobacter xylanophilus sp. nov., a New Thermophilic Species Isolated from a Thermally Polluted Effluent. Int. J. Syst. Bacteriol. 1996;46:460–465. doi: 10.1099/00207713-46-2-460. DOI
Obruca S., Benesova P., Oborna J., Marova I. Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate) production from oils by Cupriavidus necator. Biotechnol. Lett. 2014;36:775–781. doi: 10.1007/s10529-013-1407-z. PubMed DOI
Obruca S., Sedlacek P., Mravec F., Krzyzanek V., Nebesarova J., Samek O., Kucera D., Benesova P., Hrubanova K., Milerova M., et al. The presence of PHB granules in cytoplasm protects non-halophilic bacterial cells against the harmful impact of hypertonic environments. New Biotechnol. 2017;39:68–80. doi: 10.1016/j.nbt.2017.07.008. PubMed DOI
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Benson D.A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J., Sayers E.W. GenBank. Nucleic Acids Res. 2012;41:D36–D42. doi: 10.1093/nar/gks1195. PubMed DOI PMC
Bateman A., Martin M.J., Orchard S., Magrane M., Agivetova R., Ahmad S., Alpi E., Bowler-Barnett E.H., Britto R., Bursteinas B., et al. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49 doi: 10.1093/nar/gkaa1100. PubMed DOI PMC
Taboada B., Estrada K., Ciria R., Merino E. Operon-mapper: A web server for precise operon identification in bacterial and archaeal genomes. Bioinform. 2018;34:4118–4120. doi: 10.1093/bioinformatics/bty496. PubMed DOI PMC
Knoll M., Hamm T.M., Wagner F., Martinez V., Pleiss J. The PHA Depolymerase Engineering Database: A systematic analysis tool for the diverse family of polyhydroxyalkanoate (PHA) depolymerases. BMC Bioinform. 2009;10:89. doi: 10.1186/1471-2105-10-89. PubMed DOI PMC
Stothard P. The Sequence Manipulation Suite: JavaScript Programs for Analyzing and Formatting Protein and DNA Se-quences. BioTechniques. 2000;28:1102–1104. doi: 10.2144/00286ir01. PubMed DOI
Mravec F., Obruca S., Krzyzánek V., Sedlacek P., Hrubanova K., Samek O., Kucera D., Benesova P., Nebesářová J. Accumulation of PHA granules in Cupriavidus necator as seen by confocal fluorescence microscopy. FEMS Microbiol. Lett. 2016;363:363. doi: 10.1093/femsle/fnw094. PubMed DOI
Matias F., Bonatto D., Padilla G., Rodrigues M.F.D.A., Henriques J.A.P. Polyhydroxyalkanoates production by actinobacteria isolated from soil. Can. J. Microbiol. 2009;55:790–800. doi: 10.1139/W09-029. PubMed DOI
Kumar V., Thakur V., Ambika, Kumar S., Singh D. Bioplastic reservoir of diverse bacterial communities revealed along altitude gradient of Pangi-Chamba trans-Himalayan region. FEMS Microbiol. Lett. 2018;365:365. doi: 10.1093/femsle/fny144. PubMed DOI
Trakunjae C., Boondaeng A., Apiwatanapiwat W., Kosugi A., Arai T., Sudesh K., Vaithanomsat P. Enhanced polyhy-droxybutyrate (PHB) production by newly isolated rare actinomycetes Rhodococcus sp. strain BSRT1-1 using response surface methodology. Sci. Rep. UK. 2021;11:1–14. PubMed PMC
Altaee N., El-Hiti G.A., Fahdil A., Sudesh K., Yousif E. Screening and Evaluation of Poly(3-hydroxybutyrate) with Rho-dococcus equi Using Different Carbon Sources. Arab. J. Sci. Eng. 2017;42:2371–2379. doi: 10.1007/s13369-016-2327-8. DOI
Jia K., Cao R., Hua D.H., Li P. Study of Class i and Class III Polyhydroxyalkanoate (PHA) Synthases with Substrates Con-taining a Modified Side Chain. Biomacromolecules. 2016;17:1477–1485. doi: 10.1021/acs.biomac.6b00082. PubMed DOI PMC
Tsuge T., Hyakutake M., Mizuno K. Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus. Appl. Microbiol. Biotechnol. 2015;99:6231–6240. doi: 10.1007/s00253-015-6777-9. PubMed DOI
Obruca S., Sedlacek P., Slaninova E., Fritz I., Daffert C., Meixner K., Sedrlova Z., Koller M. Novel unexpected functions of PHA granules. Appl. Microbiol. Biotechnol. 2020;104:4795–4810. doi: 10.1007/s00253-020-10568-1. PubMed DOI
Obruca S., Sedlacek P., Koller M., Kucera D., Pernicova I. Involvement of poly-hydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnol. Adv. 2018;36:856–870. doi: 10.1016/j.biotechadv.2017.12.006. PubMed DOI
Soto G., Setten L., Lisi C., Maurelis C., Mozzicafreddo M., Cuccioloni M., Angeletti M., Ayub N.D. Hydroxybutyrate prevents protein aggregation in the halotolerant bacterium Pseudomonas sp. CT13 under abiotic stress. Extremophiles. 2012;16:455–462. doi: 10.1007/s00792-012-0445-0. PubMed DOI
Obruca S., Sedlacek P., Mravec F., Samek O., Marova I. Evaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of poly(3-hydroxybutyrate) accumulating cells. Appl. Microbiol. Biotechnol. 2015;100:1365–1376. doi: 10.1007/s00253-015-7162-4. PubMed DOI
De Almeida A., Catone M.V., Rhodius V.A., Gross C.A., Pettinari M.J. Unexpected Stress-Reducing Effect of PhaP, a Poly(3-Hydroxybutyrate) Granule-Associated Protein, in Escherichia coli. Appl. Environ. Microbiol. 2011;77:6622–6629. doi: 10.1128/AEM.05469-11. PubMed DOI PMC
Brojanigo S., Parro E., Cazzorla T., Favaro L., Basaglia M., Casella S. Conversion of Starchy Waste Streams into Polyhy-droxyalkanoates Using Cupriavidus necator DSM. Polymers. 2020;12:1496. doi: 10.3390/polym12071496. PubMed DOI PMC
Raposo R.S., de Almeida M.C.M., Oliveira M.D.C.M.D., da Fonseca M.M., Cesário M.T. A Burkholderia sacchari cell factory: Production of poly-3-hydroxybutyrate, xylitol and xylonic acid from xylose-rich sugar mixtures. New Biotechnol. 2017;34:12–22. doi: 10.1016/j.nbt.2016.10.001. PubMed DOI
Pernicova I., Kucera D., Nebesarova J., Kalina M., Novackova I., Koller M., Obruca S. Production of polyhydroxyalka-noates on waste frying oil employing selected Halomonas strains. Bioresource Technol. 2019;292:122028. doi: 10.1016/j.biortech.2019.122028. PubMed DOI
Singh A.K., Srivastava J.K., Chandel A.K., Sharma L., Mallick N., Singh S.P. Biomedical applications of microbially engi-neered polyhydroxyalkanoates: An insight into recent advances, bottlenecks, and solutions. Appl. Microbiol. Biotechnol. 2019;103:2007–2032. doi: 10.1007/s00253-018-09604-y. PubMed DOI
Schmid M.T., Song H., Raschbauer M., Emerstorfer F., Omann M., Stelzer F., Neureiter M. Utilization of desugarized sugar beet molasses for the production of poly(3-hydroxybutyrate) by halophilic Bacillus megaterium uyuni S29. Process Biochem. 2019;86:9–15. doi: 10.1016/j.procbio.2019.08.001. DOI
Sadykov M.R., Ahn J.-S., Widhelm T.J., Eckrich V.M., Endres J.L., Driks A., Rutkowski G.E., Wingerd K.L., Bayles K.W. Poly(3-hydroxybutyrate) fuels the tricarboxylic acid cycle and de novo lipid biosynthesis during Bacillus anthracis sporulation. Mol. Microbiol. 2017;104:793–803. doi: 10.1111/mmi.13665. PubMed DOI
Kourilova X., Pernicova I., Sedlar K., Musilova J., Sedlacek P., Kalina M., Koller M., Obruca S. Production of polyhy-droxyalkanoates (PHA) by a thermophilic strain of Schlegelella thermodepolymerans from xylose rich substrates. Bioresource Technol. 2020;315:123885. doi: 10.1016/j.biortech.2020.123885. PubMed DOI
Budde C.F., Riedel S.L., Willis L.B., Rha C., Sinskey A.J. Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) from Plant Oil by Engineered Ralstonia eutropha Strains. Appl. Environ. Microbiol. 2011;77:2847–2854. doi: 10.1128/AEM.02429-10. PubMed DOI PMC