Grape Pomace Valorization: A Systematic Review and Meta-Analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
FVHE/Tremlová/ITA2020
Veterinární a Farmaceutická Univerzita Brno
PubMed
33171832
PubMed Central
PMC7695143
DOI
10.3390/foods9111627
PII: foods9111627
Knihovny.cz E-zdroje
- Klíčová slova
- byproduct, food fortification, grape pomace, polyphenolic content, total dietary fiber, waste management,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This systematic review aimed to collect data and analyze the possible use of grape pomace, a winemaking industry byproduct, in the production of fortified foods. The English articles found in Web of Science, Scopus, and Google Scholar, from January 2006 until May 2020, were used for the conduction of overview tables and meta-analysis. The systematic review emphasized the two main issues concerning grape pomace application to other food products: (i) grape pomace contains high amounts of health promoting compounds; and (ii) the use of grape pomace is influencing the waste management. The grape pomace has been used in the fortification of plant origin food, meat, fish, and dairy products, mainly due to higher polyphenols and dietary fiber contents. The fortification was declared as successful in all studied food types. The change of color, caused by polyphenolic compounds, was mainly observed as an adverse effect of the fortification. Higher levels of fortification also caused notable undesirable changes in texture. The most valuable influence of the grape pomace addition according to included papers and meta-analysis is certainly a higher nutritional quality and oxidative stability of fortified products, reflected as higher polyphenol and total dietary fiber content.
Zobrazit více v PubMed
Food and Agriculture Organization of the United Nations; 2018. [(accessed on 31 July 2020)]. FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC.
Sousa E.C., Uchôa-Thomaz A.M.A., Carioca J.O.B., Morais S.M.D., Lima A.D., Martins C.G., Alexandrino C.D., Ferreira P.A.T., Rodrigues A.L.M., Rodrigues S.P., et al. Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L.), Benitaka variety, grown in the semiarid region of Northeast Brazil. Food Sci. Technol. 2014;34:135–142. doi: 10.1590/S0101-20612014000100020. DOI
García-Lomillo J., González-SanJosé M.L. Applications of wine pomace in the food industry: Approaches and functions. Compr. Rev. Food Sci. Food Saf. 2017;16:3–22. doi: 10.1111/1541-4337.12238. PubMed DOI
Bender A.B., Speroni C.S., Salvador P.R., Loureiro B.B., Lovatto N.M., Goulart F.R., Lovatto M.T., Miranda M.Z., Silva L.P., Penna N.G. Grape pomace skins and the effects of its inclusion in the technological properties of muffins. J. Culin. Sci. Technol. 2017;15:143–157. doi: 10.1080/15428052.2016.1225535. DOI
Balbinoti T.C.V., Stafussa A.P., Haminiuk C.W.I., Maciel G.M., Sassaki G.L., Jorge L.M.D.M., Jorge R.M.M. Addition of grape pomace in the hydration step of parboiling increases the antioxidant properties of rice. Int. J. Food Sci. Technol. 2020;55:2370–2380. doi: 10.1111/ijfs.14481. DOI
Dwyer K., Hosseinian F., Rod M.R. The market potential of grape waste alternatives. J. Food Res. 2014;3:91. doi: 10.5539/jfr.v3n2p91. DOI
Bustamante M.A., Moral R., Paredes C., Pérez-Espinosa A., Moreno-Caselles J., Pérez-Murcia M.D. Agrochemical characterisation of the solid by-products and residues from the winery and distillery industry. Waste Manag. 2008;28:372–380. doi: 10.1016/j.wasman.2007.01.013. PubMed DOI
Eleonora N., Dobrei A., Alina D., Bampidis V., Valeria C. Grape pomace in sheep and dairy cows feeding. J. Hortic. For. Biotechnol. 2014;18:146–150.
Bender A.B.B., Speroni C.S., Moro K.I.B., Morisso F.D.P., dos Santos D.R., da Silva L.P., Penna N.G. Effects of micronization on dietary fiber composition, physicochemical properties, phenolic compounds, and antioxidant capacity of grape pomace and its dietary fiber concentrate. LWT. 2020;117:108652. doi: 10.1016/j.lwt.2019.108652. DOI
Bennato F., Di Luca A., Martino C., Ianni A., Marone E., Grotta L., Ramazzotti S., Cichelli A., Martino G. Influence of Grape Pomace Intake on Nutritional Value, Lipid Oxidation and Volatile Profile of Poultry Meat. Foods. 2020;9:508. doi: 10.3390/foods9040508. PubMed DOI PMC
Acun S., Gül H. Effects of grape pomace and grape seed flours on cookie quality. Qual. Assur. Saf. Crop. Food. 2014;6:81–88. doi: 10.3920/QAS2013.0264. DOI
Beres C., Costa G.N., Cabezudo I., da Silva-James N.K., Teles A.S., Cruz A.P., Mellinger-Silva C., Tonon R.V., Cabral L.M., Freitas S.P. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manag. 2017;68:581–594. doi: 10.1016/j.wasman.2017.07.017. PubMed DOI
Garrido M.D., Auqui M., Martí N., Linares M.B. Effect of two different red grape pomace extracts obtained under different extraction systems on meat quality of pork burgers. Lwt-Food Sci. Technol. 2011;44:2238–2243. doi: 10.1016/j.lwt.2011.07.003. DOI
Ianni A., Di Maio G., Pittia P., Grotta L., Perpetuini G., Tofalo R., Cichelli A., Martino G. Chemical–nutritional quality and oxidative stability of milk and dairy products obtained from Friesian cows fed with a dietary supplementation of dried grape pomace. J. Sci. Food Agric. 2019;99:3635–3643. doi: 10.1002/jsfa.9584. PubMed DOI
Bekhit A.E.D.A., Cheng V.J., McConnell M., Zhao J.H., Sedcole R., Harrison R. Antioxidant activities, sensory and anti-influenza activity of grape skin tea infusion. Food Chem. 2011;129:837–845. doi: 10.1016/j.foodchem.2011.05.032. PubMed DOI
Milinčić D.D., Kostić A.Ž., Špirović-Trifunović B.D., Tešić Ž.L., Tosti T.B., Dramićanin A.M., Barać M.B., Pešić M.B. Grape seed flour of different grape pomaces: Fatty acid profile, soluble sugar profile and nutritional value. J. Serb. Chem. Soc. 2020;85:305–319. doi: 10.2298/JSC190713117M. DOI
Jin Q., O’Hair J., Stewart A.C., O’Keefe S.F., Neilson A.P., Kim Y.-T., McGuire M., Lee A., Wilder G., Huang H. Compositional Characterization of Different Industrial White and Red Grape Pomaces in Virginia and the Potential Valorization of the Major Components. Foods. 2019;8:667. doi: 10.3390/foods8120667. PubMed DOI PMC
Mohamed Ahmed I.A., Özcan M.M., Al Juhaimi F., Babiker E.F.E., Ghafoor K., Banjanin T., Osman M.A., Gassem M.A., Alqah H.A. Chemical composition, bioactive compounds, mineral contents, and fatty acid composition of pomace powder of different grape varieties. J. Food Process. Preserv. 2020;44:e14539. doi: 10.1111/jfpp.14539. DOI
Cilli L.P., Contini L.R.F., Sinnecker P., Lopes P.S., Andreo M.A., Neiva C.R.P., Nascimento M.S., Yoshida C.M., Venturini A.C. Effects of grape pomace flour on quality parameters of salmon burger. J. Food Process. Preserv. 2019;44:e14329. doi: 10.1111/jfpp.14329. DOI
Theagarajan R., Malur Narayanaswamy L., Dutta S., Moses J.A., Chinnaswamy A. Valorisation of grape pomace (cv. Muscat) for development of functional cookies. Int. J. Food Sci. Technol. 2019;54:1299–1305. doi: 10.1111/ijfs.14119. DOI
Šporin M., Avbelj M., Kovač B., Možina S.S. Quality characteristics of wheat flour dough and bread containing grape pomace flour. Food Sci. Technol. Int. 2018;24:251–263. doi: 10.1177/1082013217745398. PubMed DOI
Tseng A., Zhao Y. Wine grape pomace as antioxidant dietary fibre for enhancing nutritional value and improving storability of yogurt and salad dressing. Food Chem. 2013;138:356–365. doi: 10.1016/j.foodchem.2012.09.148. PubMed DOI
Mildner-Szkudlarz S., Bajerska J., Zawirska-Wojtasiak R., Górecka D. White grape pomace as a source of dietary fibre and polyphenols and its effect on physical and nutraceutical characteristics of wheat biscuits. J. Sci. Food Agric. 2013;93:389–395. doi: 10.1002/jsfa.5774. PubMed DOI
Nagarajaiah S.B., Prakash J. Chemical composition and bioactivity of pomace from selected fruits. Int. J. Fruit Sci. 2016;16:423–443. doi: 10.1080/15538362.2016.1143433. DOI
Deng Q., Penner M.H., Zhao Y. Chemical composition of dietary fiber and polyphenols of five different varieties of wine grape pomace skins. Food Res. Int. 2011;44:2712–2720. doi: 10.1016/j.foodres.2011.05.026. DOI
Llobera A., Cañellas J. Antioxidant activity and dietary fibre of Prensal Blanc white grape (Vitis vinifera) by-products. Int. J. Food Sci. Technol. 2008;43:1953–1959. doi: 10.1111/j.1365-2621.2008.01798.x. DOI
Winkler A., Weber F., Ringseis R., Eder K., Dusel G. Determination of polyphenol and crude nutrient content and nutrient digestibility of dried and ensiled white and red grape pomace cultivars. Arch. Anim. Nutr. 2015;69:187–200. doi: 10.1080/1745039X.2015.1039751. PubMed DOI
Anđelković M., Radovanović B., Milenković-Anđelković A., Radovanović V., Zarubica A., Stojković N., Nikolić V. The determination of bioactive ingredients of grape pomace (Vranac variety) for potential use in food and pharmaceutical industries. Adv. Technol. 2015;4:32–36. doi: 10.5937/savteh1502032A. DOI
Rondeau P., Gambier F., Jolibert F., Brosse N. Compositions and chemical variability of grape pomaces from French vineyard. Ind. Crop. Prod. 2013;43:251–254. doi: 10.1016/j.indcrop.2012.06.053. DOI
Javier H., Ángel S.J., Aida G., del Carmen G.M., de los Ángeles M.M. Revalorization of grape marc waste from liqueur wine: Biomethanization. J. Chem. Technol. Biotechnol. 2019;94:1499–1508. doi: 10.1002/jctb.5909. DOI
Kammerer D., Claus A., Carle R., Schieber A. Polyphenol screening of pomace from red and white grape varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS. J. Agric. Food Chem. 2004;52:4360–4367. doi: 10.1021/jf049613b. PubMed DOI
Averilla J.N., Oh J., Kim H.J., Kim J.S., Kim J.S. Potential health benefits of phenolic compounds in grape processing by-products. Food Sci. Biotechnol. 2019;28:1607–1615. doi: 10.1007/s10068-019-00628-2. PubMed DOI PMC
Peixoto C.M., Dias M.I., Alves M.J., Calhelha R.C., Barros L., Pinho S.P., Ferreira I.C. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chem. 2018;253:132–138. doi: 10.1016/j.foodchem.2018.01.163. PubMed DOI
Vital A.C.P., Santos N.W., Matumoto-Pintro P.T., da Silva Scapim M.R., Madrona G.S. Ice cream supplemented with grape juice residue as a source of antioxidants. Int. J. Dairy Technol. 2018;71:183–189. doi: 10.1111/1471-0307.12412. DOI
Antonic B., Jancikova S., Dordevic D., Tremlova B. Apple pomace as food fortification ingredient: A systematic review and meta-analysis. J. Food Sci. 2020;85:2977–2985. doi: 10.1111/1750-3841.15449. PubMed DOI
Zhao B., Gong H., Li H., Zhang Y., Lan T., Chen Z. Characterization of Chinese grape seed oil by physicochemical properties, fatty acid composition, triacylglycerol profiles, and sterols and squalene composition. Int. J. Food Eng. 2019;15:15. doi: 10.1515/ijfe-2019-0031. DOI
Wen X., Zhu M., Hu R., Zhao J., Chen Z., Li J., Ni Y. Characterisation of seed oils from different grape cultivars grown in China. J. Food Sci. Technol. 2016;53:3129–3136. doi: 10.1007/s13197-016-2286-9. PubMed DOI PMC
Messina C.M., Manuguerra S., Catalano G., Arena R., Cocchi M., Morghese M., Montenegro L., Santulli A. Green biotechnology for valorisation of residual biomasses in nutraceutic sector: Characterization and extraction of bioactive compounds from grape pomace and evaluation of the protective effects in vitro. Nat. Prod. Res. 2019:1–6. doi: 10.1080/14786419.2019.1619727. PubMed DOI
Visconti A., Perrone G., Cozzi G., Solfrizzo M. Managing ochratoxin A risk in the grape-wine food chain. Food Addit. Contam. 2008;25:193–202. doi: 10.1080/02652030701744546. PubMed DOI
Dachery B., Hernandes K.C., Veras F.F., Schmidt L., Augusti P.R., Manfroi V., Zini C.A., Welke J.E. Effect of Aspergillus carbonarius on ochratoxin a levels, volatile profile and antioxidant activity of the grapes and respective wines. Food Res. Int. 2019;126:108687. doi: 10.1016/j.foodres.2019.108687. PubMed DOI
Khan S.A., Venancio E.J., Fernandes E.V., Hirooka E.Y., Oba A., Flaiban K.K., Itano E.N. Low Doses of Ochratoxin-A Decrease IgY and IgA Production in Broiler Chicks. Toxins. 2018;10:316. doi: 10.3390/toxins10080316. PubMed DOI PMC
Ribeiro E., Alves A. Comparative study of screening methodologies for ochratoxin A detection in winery by-products. Anal. Bioanal. Chem. 2008;391:1443–1450. doi: 10.1007/s00216-008-1861-y. PubMed DOI
Ortega-Heras M., Gómez I., de Pablos-Alcalde S., González-Sanjosé M.L. Application of the Just-About-Right Scales in the Development of New Healthy Whole-Wheat Muffins by the Addition of a Product Obtained from White and Red Grape Pomace. Foods. 2019;8:419. doi: 10.3390/foods8090419. PubMed DOI PMC
Walker R., Tseng A., Cavender G., Ross A., Zhao Y. Physicochemical, nutritional, and sensory qualities of wine grape pomace fortified baked goods. J. Food Sci. 2014;79:S1811–S1822. doi: 10.1111/1750-3841.12554. PubMed DOI
Mildner-Szkudlarz S., Zawirska-Wojtasiak R., Szwengiel A., Pacyński M. Use of grape by-product as a source of dietary fibre and phenolic compounds in sourdough mixed rye bread. Int. J. Food Sci. Technol. 2011;46:1485–1493. doi: 10.1111/j.1365-2621.2011.02643.x. DOI
Hayta M., Özuğur G., Etgü H., Şeker İ.T. Effect of Grape (Vitis Vinifera L.) Pomace on the Quality, Total Phenolic Content and Anti-Radical Activity of Bread. J. Food Process. Preserv. 2014;38:980–986. doi: 10.1111/jfpp.12054. DOI
Meral R., Doğan İ.S. Grape seed as a functional food ingredient in bread-making. Int. J. Food Sci. Nutr. 2013;64:372–379. doi: 10.3109/09637486.2012.738650. PubMed DOI
Smith I.N., Yu J. Nutritional and sensory quality of bread containing different quantities of grape pomace from different grape cultivars. Ec Nutr. 2015;2:291–301.
Aksoylu Z., Çağindi Ö., Köse E. Effects of blueberry, grape seed powder and poppy seed incorporation on physicochemical and sensory properties of biscuit. J. Food Qual. 2015;38:164–174. doi: 10.1111/jfq.12133. DOI
Oliveira D.M., Marques D.R., Kwiatkowski A., Monteiro A.R.G., Clemente E. Sensory analysis and chemical characterization of cereal enriched with grape peel and seed flour. Acta Sci. Technol. 2013;35:427–431. doi: 10.4025/actascitechnol.v35i3.13176. DOI
Rosales Soto M.U., Brown K., Ross C.F. Antioxidant activity and consumer acceptance of grape seed flour-containing food products. Int. J. Food Sci. Technol. 2012;47:592–602. doi: 10.1111/j.1365-2621.2011.02882.x. DOI
Marinelli V., Padalino L., Nardiello D., Del Nobile M.A., Conte A. New approach to enrich pasta with polyphenols from grape marc. J. Chem. 2015;2015:1–8. doi: 10.1155/2015/734578. DOI
Sant’Anna V., Christiano F.D.P., Marczak L.D.F., Tessaro I.C., Thys R.C.S. The effect of the incorporation of grape marc powder in fettuccini pasta properties. Lwt-Food Sci. Technol. 2014;58:497–501. doi: 10.1016/j.lwt.2014.04.008. DOI
Lavelli V., Harsha P.S., Torri L., Zeppa G. Use of winemaking by-products as an ingredient for tomato puree: The effect of particle size on product quality. Food Chem. 2014;152:162–168. doi: 10.1016/j.foodchem.2013.11.103. PubMed DOI
Gaita C., Alexa E., Moigradean D., Poiana A. Designing of high value-added pasta formulas by incorporation of grape pomace skins. Rom. Biotechnol. Lett. 2018;25:1607–1614. doi: 10.25083/rbl/25.3/1607.1614. DOI
Ferreira V., Fernandes F., Pinto-Carnide O., Valentão P., Falco V., Martín J.P., Ortiz J.M., Arroyo-García R., Andrade P.B., Castro I. Identification of Vitis vinifera L. grape berry skin color mutants and polyphenolic profile. Food Chem. 2016;194:117–127. doi: 10.1016/j.foodchem.2015.07.142. PubMed DOI
Castillo-Muñoz N., Gómez-Alonso S., García-Romero E., Hermosín-Gutiérrez I. Flavonol profiles of Vitis vinifera white grape cultivars. J. Food Compos. Anal. 2018;23:699–705. doi: 10.1016/j.jfca.2010.03.017. PubMed DOI
Jung J., Cavender G., Zhao Y. Impingement drying for preparing dried apple pomace flour and its fortification in bakery and meat products. J. Food Sci. Technol. 2015;52:5568–5578. doi: 10.1007/s13197-014-1680-4. PubMed DOI PMC
Ross C.F., Hoye C., Jr., Fernandez-Plotka V.C. Influence of heating on the polyphenolic content and antioxidant activity of grape seed flour. J. Food Sci. 2011;76:C884–C890. doi: 10.1111/j.1750-3841.2011.02280.x. PubMed DOI
Lee H.J., Lee J.J., Jung M.O., Choi J.S., Jung J.T., Choi Y.I., Lee J.K. Meat Quality and Storage Characteristics of Pork Loin Marinated in Grape Pomace. Korean J. Food Sci. Anim. Resour. 2017;37:726. doi: 10.5851/kosfa.2017.37.5.726. PubMed DOI PMC
Özvural E.B., Vural H. Grape seed flour is a viable ingredient to improve the nutritional profile and reduce lipid oxidation of frankfurters. Meat Sci. 2011;88:179–183. doi: 10.1016/j.meatsci.2010.12.022. PubMed DOI
Ryu K.S., Shim K.S., Shin D. Effect of grape pomace powder addition on TBARS and color of cooked pork sausages during storage. Korean J. Food Sci. Anim. Resour. 2014;34:200. doi: 10.5851/kosfa.2014.34.2.200. PubMed DOI PMC
Selani M.M., Contreras-Castillo C.J., Shirahigue L.D., Gallo C.R., Plata-Oviedo M., Montes-Villanueva N.D. Wine industry residues extracts as natural antioxidants in raw and cooked chicken meat during frozen storage. Meat Sci. 2011;88:397–403. doi: 10.1016/j.meatsci.2011.01.017. PubMed DOI
Özalp Özen B., Eren M., Pala A., Özmen İ., Soyer A. Effect of plant extracts on lipid oxidation during frozen storage of minced fish muscle. Int. J. Food Sci. Technol. 2011;46:724–731. doi: 10.1111/j.1365-2621.2010.02541.x. DOI
Shirahigue L.D., Plata-Oviedo M., De Alencar S.M., D’Arce M.A.B.R., De Souza Vieira T.M.F., Oldoni T.L.C., Contreras-Castillo C.J. Wine industry residue as antioxidant in cooked chicken meat. Int. J. Food Sci. Technol. 2010;45:863–870. doi: 10.1111/j.1365-2621.2010.02201.x. DOI
Rababah T.M., Ereifej K.I., Al-Mahasneh M.A., Al-Rababah M.A. Effect of plant extracts on physicochemical properties of chicken breast meat cooked using conventional electric oven or microwave. Poult. Sci. 2006;85:148–154. doi: 10.1093/ps/85.1.148. PubMed DOI
Sánchez-Alonso I., Jiménez-Escrig A., Saura-Calixto F., Borderías A.J. Effect of grape antioxidant dietary fibre on the prevention of lipid oxidation in minced fish: Evaluation by different methodologies. Food Chem. 2007;101:372–378. doi: 10.1016/j.foodchem.2005.12.058. DOI
Frumento D., do Espirito Santo A.P., Aliakbarian B., Casazza A.A., Gallo M., Converti A., Perego P. Development of milk fermented with Lactobacillus acidophilus fortified with Vitis vinifera marc flour. Food Technol. Biotechnol. 2013;51:370.
Chouchouli V., Kalogeropoulos N., Konteles S.J., Karvela E., Makris D.P., Karathanos V.T. Fortification of yoghurts with grape (Vitis vinifera) seed extracts. LWT-Food Sci. Technol. 2013;53:522–529. doi: 10.1016/j.lwt.2013.03.008. DOI
Karaaslan M., Ozden M., Vardin H., Turkoglu H. Phenolic fortification of yogurt using grape and callus extracts. Lwt-Food Sci. Technol. 2011;44:1065–1072. doi: 10.1016/j.lwt.2010.12.009. DOI
Marchiani R., Bertolino M., Belviso S., Giordano M., Ghirardello D., Torri L., Piochi M., Zeppa G. Yogurt enrichment with grape pomace: Effect of grape cultivar on physicochemical, microbiological and sensory properties. J. Food Qual. 2016;39:77–89. doi: 10.1111/jfq.12181. DOI
Demirkol M., Tarakci Z. Effect of grape (Vitis labrusca L.) pomace dried by different methods on physicochemical, microbiological and bioactive properties of yoghurt. LWT. 2018;97:770–777. doi: 10.1016/j.lwt.2018.07.058. DOI
Yadav K., Bajaj R.K., Mandal S., Saha P., Mann B. Evaluation of total phenol content and antioxidant properties of encapsulated grape seed extract in yoghurt. Int. J. Dairy Technol. 2018;71:96–104. doi: 10.1111/1471-0307.12464. DOI
Marchiani R., Bertolino M., Ghirardello D., McSweeney P.L., Zeppa G. Physicochemical and nutritional qualities of grape pomace powder-fortified semi-hard cheeses. J. Food Sci. Technol. 2016;53:1585–1596. doi: 10.1007/s13197-015-2105-8. PubMed DOI PMC
Effects of Grape Seed Powder as a Functional Ingredient on Flour Physicochemical Characteristics and Dough Rheological Properties. [(accessed on 20 February 2018)]; Available online: http://ir.jkuat.ac.ke/handle/123456789/4234.