Apple pomace as food fortification ingredient: A systematic review and meta-analysis

. 2020 Oct ; 85 (10) : 2977-2985. [epub] 20200923

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, metaanalýza, systematický přehled

Perzistentní odkaz   https://www.medvik.cz/link/pmid32966605

Grantová podpora
228/2020/FVHE Internal Grant Agency IGA VFU Brno

The present review aimed to investigate and analyze the use of byproduct apple pomace as a fortification ingredient in different types of foods. The data obtained from English published articles found on Web of Science, Scopus, and Google Scholar in the period from 2007 to 2019 were used for making the table overview and meta-analysis of results described in those studies. The systematic review confirmed the importance of apple pomace use in the food industry due to the beneficial nutritional profile and ecological issue (waste management). The main attributes of apple pomace are high content of antioxidant compounds and dietary fibers. Dietary fibers from apple pomace significantly increased total fiber content in enriched products-meaning that the transfer of the fortification can be declared health beneficial. The conducted meta-analysis showed unambiguously the different influence of apple pomace addition according to fortified food commodity. The fortification drawbacks were noticeable in plant food products because darker and brownish color was not evaluated positively by panelists. Oppositely, color, as one of the main sensory characteristics, was beneficially affected in animal origin food. The sensory properties, including color, play an important role in product acceptance by consumers. Besides color, animal origin products fortified by apple pomace showed the most acceptable textural properties and oxidative stability.

Zobrazit více v PubMed

Almeida-Trasvina, F., Medina-González, S., Ortega-Rivas, E., Salmerón-Ochoa, I., & Pérez-Vega, S. (2014). Vacuum drying optimization and simulation as a preservation method of antioxidants in apple pomace. Journal of Food Process Engineering, 37, 575-587.

Alongi, M., Melchior, S., & Anese, M. (2019). Reducing the glycemic index of short dough biscuits by using apple pomace as a functional ingredient. LWT-Food Science and Technology, 100, 300-305.

Bchir, B., Rabetafika, H. N., Paquot, M., & Blecker, C. (2014). Effect of pear, apple and date fibres from cooked fruit by-products on dough performance and bread quality. Food and Bioprocess Technology, 7, 1114-1127.

Bellou, S., Triantaphyllidou, I. E., Aggeli, D., Elazzazy, A. M., Baeshen, M. N., & Aggelis, G. (2016). Microbial oils as food additives: Recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Current Opinion in Biotechnology, 37, 24-35.

Bhushan, S., Kalia, K., Sharma, M., Singh, B., & Ahuja, P. S. (2008). Processing of apple pomace for bioactive molecules. Critical Reviews in Biotechnology, 28, 285-296.

Bolarinwa, I. F., Orfila, C., & Morgan, M. R. (2015). Determination of amygdalin in apple seeds, fresh apples and processed apple juices. Food Chemistry, 170, 437-442.

Brushlyanova, B., Petrova, T., Penov, N., Karabadzhov, O., & Katsharova, S. (2013). Drying kinetics of different fruit pomaces in a heat pump dryer. Bulgarian Journal of Agricultural Science, 19, 780-782.

Cao, X., Wang, C., Pei, H., & Sun, B. (2009). Separation and identification of polyphenols in apple pomace by high-speed counter-current chromatography and high-performance liquid chromatography coupled with mass spectrometry. Journal of Chromatography A, 1216(19), 4268-4274.

Catană, M., Catană, L., Iorga, E., Lazăr, M. A., Lazăr, A. G., Teodorescu, R. I., … Belc, N. (2018). Achieving of functional ingredient from apple wastes resulting from the apple juice industry. AgroLife Scientific Journal, 7(1), 9-17.

Cerda-Tapia, A., de Lourdes Pérez-Chabela, M., Pérez-Álvarez, J. Á., Fernández-López, J., & Viuda-Martos, M. (2015). Valorization of pomace powder obtained from native Mexican apple (Malus domestica var. rayada): Chemical, techno-functional and antioxidant properties. Plant Foods for Human Nutrition, 70(3), 310-316.

Ćetković, G., Čanadanović-Brunet, J., Djilas, S., Savatović, S., Mandić, A., & Tumbas, V. (2008). Assessment of polyphenolic content and in vitro antiradical characteristics of apple pomace. Food Chemistry, 109(2), 340-347.

da Silva, L. C., Souza, M. C., Sumere, B. R., Silva, L. G., da Cunha, D. T., Barbero, G. F., … Rostagno, M. A. (2020). Simultaneous extraction and separation of bioactive compounds from apple pomace using pressurized liquids coupled on-line with solid-phase extraction. Food Chemistry, 318, 126450.

de Toledo, N. M. V., Nunes, L. P., da Silva, P. P. M., Spoto, M. H. F., & Canniatti-Brazaca, S. G. (2017). Influence of pineapple, apple and melon by-products on cookies: physicochemical and sensory aspects. International journal of food science & technology, 52(5), 1185-1192.

Dhillon, G. S., Kaur, S., & Brar, S. K. (2013). Perspective of apple processing wastes as low-cost substrates for bioproduction of high value products: A review. Renewable and Sustainable Energy Reviews, 27, 789-805

Drożdż, W., Tomaszewska-Ciosk, E., Zdybel, E., Boruczkowska, H., Boruczkowski, T., & Regiec, P. (2014). Effect of apple and rosehip pomaces on colour, total phenolics and antioxidant activity of corn extruded snacks. Polish Journal of Chemical Technology, 16, 7-11.

Ehrenkranz, J. R., Lewis, N. G., Ronald Kahn, C., & Roth, J. (2005). Phlorizin: A review. Diabetes/Metabolism Research and Reviews, 21, 31-38.

Fernandes, P. A., Le Bourvellec, C., Renard, C. M., Nunes, F. M., Bastos, R., Coelho, E., … Cardoso, S. M. (2019). Revisiting the chemistry of apple pomace polyphenols. Food Chemistry, 294, 9-18.

Fernandes, P. A., Ferreira, S. S., Bastos, R., Ferreira, I., Cruz, M. T., Pinto, A., … , Wessel, D. F. (2019). Apple pomace extract as a sustainable food ingredient. Antioxidants, 8, 189.

Fidelis, M., de Moura, C., Kabbas Junior, T., Pap, N., Mattila, P., Mäkinen, S., … Granato, D. (2019). Fruit seeds as sources of bioactive compounds: Sustainable production of high value-added ingredients from by-products within circular economy. Molecules, 24(21), 3854.

Food and Agriculture Organization of the United Nations. (2017). FAOSTAT database. Rome, Italy: FAO. Retrieved from http://faostat3.fao.org/home/E

Fromm, M., Bayha, S., Carle, R. and Kammerer, D.R., (2012). Comparison of fatty acid profiles and contents of seed oils recovered from dessert and cider apples and further Rosaceous plants. European Food Research and Technology, 234, 1033-1041.

Fromm, M., Loos, H. M., Bayha, S., Carle, R., & Kammerer, D. R. (2013). Recovery and characterisation of coloured phenolic preparations from apple seeds. Food Chemistry, 136, 1277-1287.

García, Y. D., Valles, B. S., & Lobo, A. P. (2009). Phenolic and antioxidant composition of by-products from the cider industry: Apple pomace. Food Chemistry, 117(4), 731-738.

Gazalli, H., Malik, A. H., Jalal, H., Afshan, S., & Mir, A. (2013). Proximate composition of carrot powder and apple pomace powder. International Journal of Food Nutrition and Safety, 3, 25-28.

Gorinstein, S., Zachwieja, Z., Folta, M., Barton, H., Piotrowicz, J., Zemser, M., … Màrtín-Belloso, O. (2001). Comparative contents of dietary fiber, total phenolics, and minerals in persimmons and apples. Journal of Agricultural and Food Chemistry, 49, 952-957.

Górnaś, P. (2015). Unique variability of tocopherol composition in various seed oils recovered from by-products of apple industry: Rapid and simple determination of all four homologues (α, β, γ and δ) by RP-HPLC/FLD. Food Chemistry, 172, 129-134.

Górnaś, P., Mišina, I., Olšteine, A., Krasnova, I., Pugajeva, I., Lācis, G., … Segliņa, D. (2015). Phenolic compounds in different fruit parts of crab apple: Dihydrochalcones as promising quality markers of industrial apple pomace by-products. Industrial Crops and Products, 74, 607-612.

Górnaś, P., & Rudzińska, M. (2016). Seeds recovered from industry by-products of nine fruit species with a high potential utility as a source of unconventional oil for biodiesel and cosmetic and pharmaceutical sectors. Industrial Crops and Products, 83, 329-338.

Górnaś, P., Rudzińska, M., & Segliņa, D. (2014a). Lipophilic composition of eleven apple seed oils: A promising source of unconventional oil from industry by-products. Industrial Crops and Products, 60, 86-91.

Górnaś, P., Segliņa, D., Lācis, G., & Pugajeva, I. (2014b). Dessert and crab apple seeds as a promising and rich source of all four homologues of tocopherol (α, β, γ and δ). LWT-Food Science and Technology, 59(1), 211-214.

Gullon, B., Yánez, R., Alonso, J. L., & Parajó, J. C. L. (2008). L-Lactic acid production from apple pomace by sequential hydrolysis and fermentation. Bioresource Technology, 99, 308-319.

Hallfrisch, J. (1990). Metabolic effects of dietary fructose. The FASEB Journal, 4, 2652-2660.

Hossain, M. F., Akhtar, S., & Anwar, M. (2015). Nutritional value and medicinal benefits of pineapple. International Journal of Nutrition and Food Sciences, 4, 84-88.

Issar, K., Sharma, P. C., & Gupta, A. (2017). Utilization of apple pomace in the preparation of fiber-enriched acidophilus yoghurt. Journal of Food Processing and Preservation, 41, e13098.

Jannati, N., Hojjatoleslamy, M., Hosseini, E., Mozafari, H. R., & Siavoshi, M. (2018). Effect of apple pomace powder on rheological properties of dough and sangak bread texture. Carpathian Journal of Food Science & Technology, 10(2).

Jung, J., Cavender, G., & Zhao, Y. (2015). Impingement drying for preparing dried apple pomace flour and its fortification in bakery and meat products. Journal of Food Science and Technology, 52, 5568-5578.

Kammerer, D. R., Kammerer, J., Valet, R., & Carle, R. (2014). Recovery of polyphenols from the by-products of plant food processing and application as valuable food ingredients. Food Research International, 65, 2-12.

Kırbas, Z., Kumcuoglu, S., & Tavman, S. (2019). Effects of apple, orange and carrot pomace powders on gluten-free batter rheology and cake properties. Journal of Food Science and Technology, 56, 914-926.

Kohajdová, Z., Karovičová, J., Magala, M., & Kuchtová, V. (2014). Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality. Chemical Papers, 68, 1059-1065.

Konrade, D., Klava, D., & Gramatina, I. (2017). Cereal crispbread improvement with dietary fibre from apple by-products. CBU International Conference Proceedings, 5, 1143-1148.

Krawitzky, M., Arias, E., Peiro, J. M., Negueruela, A. I., Val, J., & Oria, R. (2014). Determination of color, antioxidant activity, and phenolic profile of different fruit tissue of Spanish ‘Verde Doncella’ apple cultivar. International Journal of Food Properties, 17(10), 2298-2311.

Kruczek, M., Gumul, D., Kačániová, M., Ivanišhová, E., Mareček, J., & Gambuś, H. (2017). Industrial apple pomace by-products as a potential source of pro-health compounds in functional food. The Journal of Microbiology, Biotechnology and Food Sciences, 7, 22-26.

Lavelli, V., & Corti, S. (2011). Phloridzin and other phytochemicals in apple pomace: Stability evaluation upon dehydration and storage of dried product. Food Chemistry, 129, 1578-1583.

Lavelli, V., & Kerr, W. (2012). Apple pomace is a good matrix for phytochemical retention. Journal of Agricultural and Food Chemistry, 60, 5660-5666.

Leyva-Corral, J., Quintero-Ramos, A., Camacho-Dávila, A., de Jesús Zazueta-Morales, J., Aguilar-Palazuelos, E., Ruiz-Gutiérrez, M. G., … de Jesús Ruiz-Anchondo, T. (2016). Polyphenolic compound stability and antioxidant capacity of apple pomace in an extruded cereal. LWT-Food Science and Technology, 65, 228-236.

Li, W., Yang, R., Ying, D., Yu, J., Sanguansri, L., & Augustin, M. A. (2020). Analysis of polyphenols in apple pomace: A comparative study of different extraction and hydrolysis procedures. Industrial Crops and Products, 147, 112250.

Li, Y., Zhang, X., Nie, J., Bacha, S. A. S., Yan, Z., & Gao, G. (2020). Occurrence and co-occurrence of mycotoxins in apple and apple products from China. Food Control, 118, 107354.

Liu, L., You, Y., Deng, H., Guo, Y., & Meng, Y. (2019). Promoting hydrolysis of apple pomace by pectinase and cellulase to produce microbial oils using engineered Yarrowia lipolytica. Biomass and Bioenergy, 126, 62-69.

Lu, Y., & Foo, L. Y. (2000). Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chemistry, 68, 81-85.

Lu, Z., Ye, F., Zhou, G., Gao, R., Qin, D., & Zhao, G. (2020). Micronized apple pomace as a novel emulsifier for food O/W Pickering emulsion. Food Chemistry, 330, 127325.

Makarova, E., Górnaś, P., Konrade, I., Tirzite, D., Cirule, H., Gulbe, A., … Dambrova, M. (2015). Acute anti-hyperglycaemic effects of an unripe apple preparation containing phlorizin in healthy volunteers: A preliminary study. Journal of the Science of Food and Agriculture, 95(3), 560-568.

Marcon, M. V., Vriesmann, L. C., Wosiacki, G., Beleski-Carneiro, E., & Petkowicz, C. L. (2005). Pectins from apple pomace. Polímeros, 15, 127-129.

Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M. C., & Lerici, C. R. (2000). Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends in Food Science & Technology, 11, 340-346.

Meng, S., Cao, J., Feng, Q., Peng, J., & Hu, Y. (2013). Roles of chlorogenic acid on regulating glucose and lipids metabolism: A review. Evidence-Based Complementary and Alternative Medicine, 2013, 801457.

Mir, S. A., Bosco, S. J. D., Shah, M. A., Santhalakshmy, S., & Mir, M. M. (2017). Effect of apple pomace on quality characteristics of brown rice based cracker. Journal of the Saudi Society of Agricultural Sciences, 16, 25-32.

Morales-Contreras, B. E., Wicker, L., Rosas-Flores, W., Contreras-Esquivel, J. C., Gallegos-Infante, J. A., Reyes-Jaquez, D., & Morales-Castro, J. (2020). Apple pomace from variety “Blanca de Asturias” as sustainable source of pectin: Composition, rheological, and thermal properties. LWT-Food Science and Technology, 117, 108641.

Oleszek, M., Pecio, Ł., Kozachok, S., Lachowska-Filipiuk, Ż., Oszust, K., & Frąc, M. (2019). Phytochemicals of apple pomace as prospect bio-fungicide agents against mycotoxigenic fungal species-in vitro experiments. Toxins, 11(6), 361.

Persic, M., Mikulic-Petkovsek, M., Slatnar, A., & Veberic, R. (2017). Chemical composition of apple fruit, juice and pomace and the correlation between phenolic content, enzymatic activity and browning. LWT-Food Science and Technology, 82, 23-31.

Pieszka, M., Gogol, P., Pietras, M., & Pieszka, M. (2015). Valuable components of dried pomaces of chokeberry, black currant, strawberry, apple and carrot as a source of natural antioxidants and nutraceuticals in the animal diet. Annals of Animal Science, 15, 475-491.

Queji, M. D., Wosiacki, G., Cordeiro, G. A., Peralta-Zamora, P. G., & Nagata, N. (2010). Determination of simple sugars, malic acid and total phenolic compounds in apple pomace by infrared spectroscopy and PLSR. International Journal of Food Science & Technology, 45, 602-609.

Reis, S. F., Rai, D. K., & Abu-Ghannam, N. (2014). Apple pomace as a potential ingredient for the development of new functional foods. International Journal of Food Science & Technology, 49, 1743-1750.

Rocha Parra, A. F., Ribotta, P. D., & Ferrero, C. (2015). Apple pomace in gluten-free formulations: Effect on rheology and product quality. International Journal of Food Science & Technology, 50, 682-690.

Parra, A. F. R., Sahagún, M., Ribotta, P. D., Ferrero, C., & Gómez, M. (2019). Particle size and hydration properties of dried apple pomace: Effect on dough viscoelasticity and quality of sugar-snap cookies. Food and Bioprocess Technology, 12(7), 1083-1092.

Rupasinghe, H. V., Wang, L., Huber, G. M., & Pitts, N. L. (2008). Effect of baking on dietary fibre and phenolics of muffins incorporated with apple skin powder. Food Chemistry, 107, 1217-1224.

Sánchez-Rabaneda, F., Jauregui, O., Lamuela-Raventós, R. M., Viladomat, F., Bastida, J., & Codina, C. (2004). Qualitative analysis of phenolic compounds in apple pomace using liquid chromatography coupled to mass spectrometry in tandem mode. Rapid Communications in Mass Spectrometry, 18(5), 553-563.

Sato, M. F., Vieira, R. G., Zardo, D. M., Falcão, L. D., Nogueira, A., & Wosiacki, G. (2010). Apple pomace from eleven cultivars: An approach to identify sources of bioactive compounds. Acta Scientiarum. Agronomy, 32, 29-35.

Skinner, R. C., Gigliotti, J. C., Ku, K. M., & Tou, J. C. (2018). A comprehensive analysis of the composition, health benefits, and safety of apple pomace. Nutrition Reviews, 76, 893-909.

Skinner, R. C., Warren, D. C., Naveed, M., Agarwal, G., Benedito, V. A., & Tou, J. C. (2019). Apple pomace improves liver and adipose inflammatory and antioxidant status in young female rats consuming a Western diet. Journal of Functional Foods, 61, 103471.

Suárez, B., Álvarez, Á. L., García, Y. D., del Barrio, G., Lobo, A. P., & Parra, F. (2010). Phenolic profiles, antioxidant activity and in vitro antiviral properties of apple pomace. Food Chemistry, 120(1), 339-342.

Sudha, M. L., Baskaran, V., & Leelavathi, K. (2007). Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chemistry, 104, 686-692.

Sudha, M. L., Dharmesh, S. M., Pynam, H., Bhimangouder, S. V., Eipson, S. W., Somasundaram, R., & Nanjarajurs, S. M. (2016). Antioxidant and cyto/DNA protective properties of apple pomace enriched bakery products. Journal of Food Science and Technology, 53, 1909-1918.

Tsao, R., Yang, R., Young, J. C., & Zhu, H. (2003). Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). Journal of Agricultural and Food Chemistry, 51, 6347-6353.

van der Sluis, A. A., Dekker, M., Skrede, G., & Jongen, W. M. (2002). Activity and concentration of polyphenolic antioxidants in apple juice. 1. Effect of existing production methods. Journal of agricultural and food chemistry, 50(25), 7211-7219.

Vasantha Rupasinghe, H. P., & Kean, C. (2008). Polyphenol concentrations in apple processing by-products determined using electrospray ionization mass spectrometry. Canadian Journal of Plant Science, 88(4), 759-762.

Waldbauer, K., McKinnon, R., & Kopp, B. (2017). Apple pomace as potential source of natural active compounds. Planta Medica, 83, 994-1010.

Wang, X., Kristo, E., & LaPointe, G. (2019). Adding apple pomace as a functional ingredient in stirred-type yogurt and yogurt drinks. Food Hydrocolloids, 100, 105453.

Yadav, S., & Gupta, R. K. (2015). Formulation of noodles using apple pomace and evaluation of its phytochemicals and antioxidant activity. Journal of Pharmacognosy and Phytochemistry, 4(1).

Yadav, S., Malik, A., Pathera, A., Islam, R. U., & Sharma, D. (2016a). Development of dietary fibre enriched chicken sausages by incorporating corn bran, dried apple pomace and dried tomato pomace. Nutrition & Food Science, 46, 16-29.

Yadav, S., Malik, A. K., Pathera, A. K., Islam, R. U., & Sharma, D. P. (2016b). Development of fibre enriched chicken nuggets by incorporating wheat bran and dried apple pomace. Indian Journal of Poultry Science, 51, 312-316.

Younis, K., & Ahmad, S. (2018). Quality evaluation of buffalo meat patties incorporated with apple pomace powder. Buffalo Bulletin, 37, 389-401.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Grape Pomace Valorization: A Systematic Review and Meta-Analysis

. 2020 Nov 07 ; 9 (11) : . [epub] 20201107

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...