Cisplatin or LA-12 enhance killing effects of TRAIL in prostate cancer cells through Bid-dependent stimulation of mitochondrial apoptotic pathway but not caspase-10

. 2017 ; 12 (11) : e0188584. [epub] 20171128

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29182622

Searching for new strategies for effective elimination of human prostate cancer cells, we investigated the cooperative cytotoxic action of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and two platinum-based complexes, cisplatin or LA-12, and related molecular mechanisms. We demonstrated a notable ability of cisplatin or LA-12 to enhance the sensitivity of several human prostate cancer cell lines to TRAIL-induced cell death via an engagement of mitochondrial apoptotic pathway. This was accompanied by augmented Bid cleavage, Bak activation, loss of mitochondrial membrane potential, activation of caspase-8, -10, -9, and -3, and XIAP cleavage. RNAi-mediated silencing of Bid or Bak in Bax-deficient DU 145 cells suppressed the drug combination-induced cytotoxicity, further underscoring the involvement of mitochondrial signaling. The caspase-10 was dispensable for enhancement of cisplatin/LA-12 and TRAIL combination-induced cell death and stimulation of Bid cleavage. Importantly, we newly demonstrated LA-12-mediated enhancement of TRAIL-induced cell death in cancer cells derived from human patient prostate tumor specimens. Our results provide convincing evidence that employing TRAIL combined with cisplatin/LA-12 could contribute to more effective killing of prostate cancer cells compared to the individual action of the drugs, and offer new mechanistic insights into their cooperative anticancer action.

Zobrazit více v PubMed

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86. Epub 2014/09/16. doi: 10.1002/ijc.29210 . PubMed DOI

Santer FR, Erb HH, McNeill RV. Therapy escape mechanisms in the malignant prostate. Semin Cancer Biol. 2015;35:133–44. Epub 2015/08/25. doi: 10.1016/j.semcancer.2015.08.005 . PubMed DOI

Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem. 1996;271(22):12687–90. Epub 1996/05/31. . PubMed

Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med. 1999;5(2):157–63. Epub 1999/02/04. doi: 10.1038/5517 . PubMed DOI

Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity. 1995;3(6):673–82. Epub 1995/12/01. . PubMed

Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, et al. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol. 1999;144(5):891–901. Epub 1999/03/23. ; PubMed Central PMCID: PMC2148190. PubMed PMC

Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M, et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 2000;14(16):2060–71. Epub 2000/08/19. ; PubMed Central PMCID: PMC316859. PubMed PMC

van Roosmalen IA, Quax WJ, Kruyt FA. Two death-inducing human TRAIL receptors to target in cancer: similar or distinct regulation and function? Biochem Pharmacol. 2014;91(4):447–56. Epub 2014/08/26. doi: 10.1016/j.bcp.2014.08.010 . PubMed DOI

Lemke J, von Karstedt S, Zinngrebe J, Walczak H. Getting TRAIL back on track for cancer therapy. Cell Death Differ. 2014;21(9):1350–64. Epub 2014/06/21. doi: 10.1038/cdd.2014.81 ; PubMed Central PMCID: PMC4131183. PubMed DOI PMC

Anees M, Horak P, El-Gazzar A, Susani M, Heinze G, Perco P, et al. Recurrence-free survival in prostate cancer is related to increased stromal TRAIL expression. Cancer. 2011;117(6):1172–82. Epub 2011/03/08. doi: 10.1002/cncr.25504 . PubMed DOI

Lim B, Allen JE, Prabhu VV, Talekar MK, Finnberg NK, El-Deiry WS. Targeting TRAIL in the treatment of cancer: new developments. Expert Opin Ther Targets. 2015;19(9):1171–85. Epub 2015/05/26. doi: 10.1517/14728222.2015.1049838 . PubMed DOI

Aparicio AM, Harzstark AL, Corn PG, Wen S, Araujo JC, Tu SM, et al. Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin Cancer Res. 2013;19(13):3621–30. Epub 2013/05/08. doi: 10.1158/1078-0432.CCR-12-3791 ; PubMed Central PMCID: PMC3699964. PubMed DOI PMC

Mateo J, Boysen G, Barbieri CE, Bryant HE, Castro E, Nelson PS, et al. DNA Repair in Prostate Cancer: Biology and Clinical Implications. Eur Urol. 2017;71(3):417–25. Epub 2016/10/30. doi: 10.1016/j.eururo.2016.08.037 . PubMed DOI

Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–78. Epub 2014/07/25. doi: 10.1016/j.ejphar.2014.07.025 ; PubMed Central PMCID: PMC4146684. PubMed DOI PMC

Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G, Harel-Bellan A, et al. Systems biology of cisplatin resistance: past, present and future. Cell Death Dis. 2014;5:e1257 Epub 2014/05/31. doi: 10.1038/cddis.2013.428 ; PubMed Central PMCID: PMC4047912. PubMed DOI PMC

Zak F, Turanek J, Kroutil A, Sova P, Mistr A, Poulova A, et al. Platinum(IV) complex with adamantylamine as nonleaving amine group: synthesis, characterization, and in vitro antitumor activity against a panel of cisplatin-resistant cancer cell lines. J Med Chem. 2004;47(3):761–3. Epub 2004/01/23. doi: 10.1021/jm030858+ . PubMed DOI

Horvath V, Blanarova O, Svihalkova-Sindlerova L, Soucek K, Hofmanova J, Sova P, et al. Platinum(IV) complex with adamantylamine overcomes intrinsic resistance to cisplatin in ovarian cancer cells. Gynecol Oncol. 2006;102(1):32–40. Epub 2005/12/21. doi: 10.1016/j.ygyno.2005.11.016 . PubMed DOI

Kozubik A, Horvath V, Svihalkova-Sindlerova L, Soucek K, Hofmanova J, Sova P, et al. High effectiveness of platinum(IV) complex with adamantylamine in overcoming resistance to cisplatin and suppressing proliferation of ovarian cancer cells in vitro. Biochem Pharmacol. 2005;69(3):373–83. Epub 2005/01/18. doi: S0006-2952(04)00646-X [pii] doi: 10.1016/j.bcp.2004.09.005 . PubMed DOI

Laukova J, Kozubik A, Hofmanova J, Nekvindova J, Sova P, Moyer MP, et al. Loss of PTEN Facilitates Rosiglitazone-Mediated Enhancement of Platinum(IV) Complex LA-12-Induced Apoptosis in Colon Cancer Cells. PLoS One. 2015;10(10):e0141020 Epub 2015/10/23. doi: 10.1371/journal.pone.0141020 ; PubMed Central PMCID: PMC4619604. PubMed DOI PMC

Roubalova E, Kvardova V, Hrstka R, Borilova S, Michalova E, Dubska L, et al. The effect of cellular environment and p53 status on the mode of action of the platinum derivative LA-12. Invest New Drugs. 2010;28(4):445–53. Epub 2009/06/06. doi: 10.1007/s10637-009-9270-4 . PubMed DOI

Sova P, Mistr A, Kroutil A, Zak F, Pouckova P, Zadinova M. Preclinical anti-tumor activity of a new oral platinum(IV) drug LA-12. Anticancer Drugs. 2005;16(6):653–7. Epub 2005/06/03. doi: 00001813-200507000-00010 [pii]. . PubMed

Sova P, Mistr A, Kroutil A, Zak F, Pouckova P, Zadinova M. Comparative anti-tumor efficacy of two orally administered platinum(IV) drugs in nude mice bearing human tumor xenografts. Anticancer Drugs. 2006;17(2):201–6. Epub 2006/01/24. doi: 00001813-200602000-00012 [pii]. . PubMed

Svihalkova-Sindlerova L, Foltinova V, Vaculova A, Horvath V, Soucek K, Sova P, et al. LA-12 overcomes confluence-dependent resistance of HT-29 colon cancer cells to Pt (II) compounds. Anticancer Res. 2010;30(4):1183–8. Epub 2010/06/10. doi: 30/4/1183 [pii]. . PubMed

Vondalova Blanarova O, Jelinkova I, Hyrslova Vaculova A, Sova P, Hofmanova J, Kozubik A. Higher anti-tumour efficacy of platinum(IV) complex LA-12 is associated with its ability to bypass M-phase entry block induced in oxaliplatin-treated human colon cancer cells. Cell Prolif. 2013;46(6):665–76. Epub 2013/10/15. doi: 10.1111/cpr.12061 . PubMed DOI PMC

Vondalova Blanarova O, Jelinkova I, Szoor A, Skender B, Soucek K, Horvath V, et al. Cisplatin and a potent platinum(IV) complex-mediated enhancement of TRAIL-induced cancer cells killing is associated with modulation of upstream events in the extrinsic apoptotic pathway. Carcinogenesis. 2011;32(1):42–51. Epub 2010/11/03. doi: 10.1093/carcin/bgq220 . PubMed DOI

Munshi A, McDonnell TJ, Meyn RE. Chemotherapeutic agents enhance TRAIL-induced apoptosis in prostate cancer cells. Cancer Chemother Pharmacol. 2002;50(1):46–52. Epub 2002/07/12. doi: 10.1007/s00280-002-0465-z . PubMed DOI

Wu XX, Kakehi Y. Enhancement of lexatumumab-induced apoptosis in human solid cancer cells by Cisplatin in caspase-dependent manner. Clin Cancer Res. 2009;15(6):2039–47. Epub 2009/03/12. doi: 10.1158/1078-0432.CCR-08-2667 . PubMed DOI

Fedr R, Pernicova Z, Slabakova E, Strakova N, Bouchal J, Grepl M, et al. Automatic cell cloning assay for determining the clonogenic capacity of cancer and cancer stem-like cells. Cytometry A. 2013;83(5):472–82. Epub 2013/03/02. doi: 10.1002/cyto.a.22273 . PubMed DOI

Liu X, Ory V, Chapman S, Yuan H, Albanese C, Kallakury B, et al. ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am J Pathol. 2012;180(2):599–607. Epub 2011/12/23. doi: 10.1016/j.ajpath.2011.10.036 ; PubMed Central PMCID: PMC3349876. PubMed DOI PMC

Jelinkova I, Safarikova B, Vondalova Blanarova O, Skender B, Hofmanova J, Sova P, et al. Platinum(IV) complex LA-12 exerts higher ability than cisplatin to enhance TRAIL-induced cancer cell apoptosis via stimulation of mitochondrial pathway. Biochem Pharmacol. 2014;92(3):415–24. Epub 2014/10/07. doi: 10.1016/j.bcp.2014.09.013 . PubMed DOI

Takahashi K, Kawai T, Kumar H, Sato S, Yonehara S, Akira S. Roles of caspase-8 and caspase-10 in innate immune responses to double-stranded RNA. J Immunol. 2006;176(8):4520–4. Epub 2006/04/06. doi: 176/8/4520 [pii]. . PubMed

Tuschl T. Cotransfection of Luciferase Reporter Plasmids with siRNA Duplexes. CSH Protoc. 2006;2006(1). Epub 2006/01/01. doi: 10.1101/pdb.prot4342 . PubMed DOI

Gillissen B, Essmann F, Graupner V, Starck L, Radetzki S, Dorken B, et al. Induction of cell death by the BH3-only Bcl-2 homolog Nbk/Bik is mediated by an entirely Bax-dependent mitochondrial pathway. EMBO J. 2003;22(14):3580–90. Epub 2003/07/11. doi: 10.1093/emboj/cdg343 ; PubMed Central PMCID: PMC165613. PubMed DOI PMC

McStay GP, Salvesen GS, Green DR. Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death Differ. 2008;15(2):322–31. Epub 2007/11/03. doi: 4402260 [pii] doi: 10.1038/sj.cdd.4402260 . PubMed DOI

Westphal D, Dewson G, Czabotar PE, Kluck RM. Molecular biology of Bax and Bak activation and action. Biochim Biophys Acta. 2011;1813(4):521–31. Epub 2011/01/05. doi: 10.1016/j.bbamcr.2010.12.019 . PubMed DOI

Shamimi-Noori S, Yeow WS, Ziauddin MF, Xin H, Tran TL, Xie J, et al. Cisplatin enhances the antitumor effect of tumor necrosis factor-related apoptosis-inducing ligand gene therapy via recruitment of the mitochondria-dependent death signaling pathway. Cancer Gene Ther. 2008;15(6):356–70. Epub 2008/03/01. doi: 10.1038/sj.cgt.7701120 . PubMed DOI

Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, et al. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol. 1999;144(2):281–92. Epub 1999/01/29. ; PubMed Central PMCID: PMC2132895. PubMed PMC

Tsai WS, Yeow WS, Chua A, Reddy RM, Nguyen DM, Schrump DS. Enhancement of Apo2L/TRAIL-mediated cytotoxicity in esophageal cancer cells by cisplatin. Mol Cancer Ther. 2006;5(12):2977–90. Epub 2006/12/19. doi: 5/12/2977 [pii] doi: 10.1158/1535-7163.MCT-05-0514 . PubMed DOI

Cowling V, Downward J. Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain. Cell Death Differ. 2002;9(10):1046–56. Epub 2002/09/17. doi: 10.1038/sj.cdd.4401065 . PubMed DOI

Inoue S, Browne G, Melino G, Cohen GM. Ordering of caspases in cells undergoing apoptosis by the intrinsic pathway. Cell Death Differ. 2009;16(7):1053–61. Epub 2009/03/28. doi: 10.1038/cdd.2009.29 . PubMed DOI

Sohn D, Schulze-Osthoff K, Janicke RU. Caspase-8 can be activated by interchain proteolysis without receptor-triggered dimerization during drug-induced apoptosis. J Biol Chem. 2005;280(7):5267–73. Epub 2004/12/22. doi: M408585200 [pii] doi: 10.1074/jbc.M408585200 . PubMed DOI

Sheridan C, Brumatti G, Elgendy M, Brunet M, Martin SJ. An ERK-dependent pathway to Noxa expression regulates apoptosis by platinum-based chemotherapeutic drugs. Oncogene. 2010;29(49):6428–41. Epub 2010/08/31. doi: 10.1038/onc.2010.380 . PubMed DOI

Siervo-Sassi RR, Marrangoni AM, Feng X, Naoumova N, Winans M, Edwards RP, et al. Physiological and molecular effects of Apo2L/TRAIL and cisplatin in ovarian carcinoma cell lines. Cancer Lett. 2003;190(1):61–72. Epub 2003/01/22. doi: S0304383502005797 [pii]. . PubMed

Xu L, Yin S, Banerjee S, Sarkar F, Reddy KB. Enhanced anticancer effect of the combination of cisplatin and TRAIL in triple-negative breast tumor cells. Mol Cancer Ther. 2011;10(3):550–7. Epub 2011/01/22. doi: 10.1158/1535-7163.MCT-10-0571 ; PubMed Central PMCID: PMC3053434. PubMed DOI PMC

Sun XM, Bratton SB, Butterworth M, MacFarlane M, Cohen GM. Bcl-2 and Bcl-xL inhibit CD95-mediated apoptosis by preventing mitochondrial release of Smac/DIABLO and subsequent inactivation of X-linked inhibitor-of-apoptosis protein. J Biol Chem. 2002;277(13):11345–51. Epub 2002/01/22. doi: 10.1074/jbc.M109893200 . PubMed DOI

Obexer P, Ausserlechner MJ. X-linked inhibitor of apoptosis protein—a critical death resistance regulator and therapeutic target for personalized cancer therapy. Front Oncol. 2014;4:197 Epub 2014/08/15. doi: 10.3389/fonc.2014.00197 ; PubMed Central PMCID: PMC4112792. PubMed DOI PMC

Amantana A, London CA, Iversen PL, Devi GR. X-linked inhibitor of apoptosis protein inhibition induces apoptosis and enhances chemotherapy sensitivity in human prostate cancer cells. Mol Cancer Ther. 2004;3(6):699–707. Epub 2004/06/24. doi: 3/6/699 [pii]. . PubMed

Nomura T, Mimata H, Yamasaki M, Nomura Y. Cisplatin inhibits the expression of X-linked inhibitor of apoptosis protein in human LNCaP cells. Urol Oncol. 2004;22(6):453–60. Epub 2004/12/22. doi: S1078143904001097 [pii] doi: 10.1016/j.urolonc.2004.04.035 . PubMed DOI

Hornle M, Peters N, Thayaparasingham B, Vorsmann H, Kashkar H, Kulms D. Caspase-3 cleaves XIAP in a positive feedback loop to sensitize melanoma cells to TRAIL-induced apoptosis. Oncogene. 2011;30(5):575–87. Epub 2010/09/22. doi: 10.1038/onc.2010.434 . PubMed DOI

Engels IH, Totzke G, Fischer U, Schulze-Osthoff K, Janicke RU. Caspase-10 sensitizes breast carcinoma cells to TRAIL-induced but not tumor necrosis factor-induced apoptosis in a caspase-3-dependent manner. Mol Cell Biol. 2005;25(7):2808–18. Epub 2005/03/16. doi: 10.1128/MCB.25.7.2808-2818.2005 ; PubMed Central PMCID: PMC1061657. PubMed DOI PMC

Kischkel FC, Lawrence DA, Tinel A, LeBlanc H, Virmani A, Schow P, et al. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem. 2001;276(49):46639–46. Epub 2001/10/05. doi: 10.1074/jbc.M105102200 . PubMed DOI

Vincenz C, Dixit VM. Fas-associated death domain protein interleukin-1beta-converting enzyme 2 (FLICE2), an ICE/Ced-3 homologue, is proximally involved in CD95- and p55-mediated death signaling. J Biol Chem. 1997;272(10):6578–83. Epub 1997/03/07. . PubMed

Seol DW, Li J, Seol MH, Park SY, Talanian RV, Billiar TR. Signaling events triggered by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL): caspase-8 is required for TRAIL-induced apoptosis. Cancer Res. 2001;61(3):1138–43. Epub 2001/02/28. . PubMed

Sprick MR, Rieser E, Stahl H, Grosse-Wilde A, Weigand MA, Walczak H. Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8. EMBO J. 2002;21(17):4520–30. Epub 2002/08/29. doi: 10.1093/emboj/cdf441 ; PubMed Central PMCID: PMC126181. PubMed DOI PMC

Milhas D, Cuvillier O, Therville N, Clave P, Thomsen M, Levade T, et al. Caspase-10 triggers Bid cleavage and caspase cascade activation in FasL-induced apoptosis. J Biol Chem. 2005;280(20):19836–42. Epub 2005/03/18. doi: M414358200 [pii] doi: 10.1074/jbc.M414358200 . PubMed DOI

Horn S, Hughes MA, Schilling R, Sticht C, Tenev T, Ploesser M, et al. Caspase-10 Negatively Regulates Caspase-8-Mediated Cell Death, Switching the Response to CD95L in Favor of NF-kappaB Activation and Cell Survival. Cell Rep. 2017;19(4):785–97. Epub 2017/04/27. doi: S2211-1247(17)30485-0 [pii] doi: 10.1016/j.celrep.2017.04.010 ; PubMed Central PMCID: PMC5413585. PubMed DOI PMC

Mandic A, Viktorsson K, Strandberg L, Heiden T, Hansson J, Linder S, et al. Calpain-mediated Bid cleavage and calpain-independent Bak modulation: two separate pathways in cisplatin-induced apoptosis. Mol Cell Biol. 2002;22(9):3003–13. Epub 2002/04/10. doi: 10.1128/MCB.22.9.3003-3013.2002 ; PubMed Central PMCID: PMC133754. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Human Embryonic Stem Cells Acquire Responsiveness to TRAIL upon Exposure to Cisplatin

. 2019 ; 2019 () : 4279481. [epub] 20190121

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...