The role of the glucose-sensing transcription factor carbohydrate-responsive element-binding protein pathway in termite queen fertility
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27249798
PubMed Central
PMC4892437
DOI
10.1098/rsob.160080
PII: rsob.160080
Knihovny.cz E-zdroje
- Klíčová slova
- carbohydrate-responsive element-binding protein, lipogenesis, phenotypic plasticity, reproduction, social insects, transcription factor,
- MeSH
- fertilita MeSH
- fylogeneze MeSH
- glukosa metabolismus MeSH
- hmyzí proteiny metabolismus MeSH
- Isoptera klasifikace fyziologie MeSH
- lipogeneze MeSH
- mapy interakcí proteinů MeSH
- signální transdukce MeSH
- tkáňová distribuce MeSH
- transkripční faktory metabolismus MeSH
- upregulace * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glukosa MeSH
- hmyzí proteiny MeSH
- transkripční faktory MeSH
Termites are among the few animals that themselves can digest the most abundant organic polymer, cellulose, into glucose. In mice and Drosophila, glucose can activate genes via the transcription factor carbohydrate-responsive element-binding protein (ChREBP) to induce glucose utilization and de novo lipogenesis. Here, we identify a termite orthologue of ChREBP and its downstream lipogenic targets, including acetyl-CoA carboxylase and fatty acid synthase. We show that all of these genes, including ChREBP, are upregulated in mature queens compared with kings, sterile workers and soldiers in eight different termite species. ChREBP is expressed in several tissues, including ovaries and fat bodies, and increases in expression in totipotent workers during their differentiation into neotenic mature queens. We further show that ChREBP is regulated by a carbohydrate diet in termite queens. Suppression of the lipogenic pathway by a pharmacological agent in queens elicits the same behavioural alterations in sterile workers as observed in queenless colonies, supporting that the ChREBP pathway partakes in the biosynthesis of semiochemicals that convey the signal of the presence of a fertile queen. Our results highlight ChREBP as a likely key factor for the regulation and signalling of queen fertility.
Zobrazit více v PubMed
Vaulont S, Vasseur-Cognet M, Kahn A. 2000. Glucose regulation of gene transcription. J. Biol. Chem. 275, 31 555–31 558. (doi:10.1074/jbc.R000016200) PubMed DOI
Filhoulaud G, Guilmeau S, Dentin R, Girard J, Postic C. 2013. Novel insights into ChREBP regulation and function. Trends Endocrinol. Metab. 24, 257–268. (doi:10.1016/j.tem.2013.01.003) PubMed DOI
Havula E, Hietakangas V. 2012. Glucose sensing by ChREBP/MondoA-Mlx transcription factors. Semin. Cell Dev. Biol. 23, 640–647. (doi:10.1016/j.semcdb.2012.02.007) PubMed DOI
Ma L, Robinson LN, Towle HC. 2006. ChREBP*Mlx is the principal mediator of glucose-induced gene expression in the liver. J. Biol. Chem. 281, 28 721–28 730. (doi:10.1074/jbc.M601576200) PubMed DOI
Stoltzman CA, et al. 2008. Glucose sensing by MondoA:Mlx complexes: a role for hexokinases and direct regulation of thioredoxin-interacting protein expression. Proc. Natl Acad. Sci. USA 105, 6912–6917. (doi:10.1073/pnas.0712199105) PubMed DOI PMC
Li MV, et al. 2010. Glucose-6-phosphate mediates activation of the carbohydrate responsive binding protein (ChREBP). Biochem. Biophys. Res. Commun. 395, 395–400. (doi:10.1016/j.bbrc.2010.04.028) PubMed DOI PMC
Dentin R, et al. 2005. Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation. J. Clin. Invest. 115, 2843–2854. (doi:10.1172/JCI25256) PubMed DOI PMC
Stoltzman CA, Kaadige MR, Peterson CW, Ayer DE. 2011. MondoA senses non-glucose sugars: regulation of thioredoxin-interacting protein (TXNIP) and the hexose transport curb. J. Biol. Chem. 286, 38 027–38 034. (doi:10.1074/jbc.M111.275503) PubMed DOI PMC
Sans CL, Satterwhite DJ, Stoltzman CA, Breen KT, Ayer DE. 2006. MondoA-Mlx heterodimers are candidate sensors of cellular energy status: mitochondrial localization and direct regulation of glycolysis. Mol. Cell Biol. 26, 4863–4871. (doi:10.1128/MCB.00657-05) PubMed DOI PMC
Dentin R, et al. 2006. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes 55, 2159–2170. (doi:10.2337/db06-0200) PubMed DOI
Yamashita H, et al. 2001. A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc. Natl Acad. Sci. USA 98, 9116–9121. (doi:10.1073/pnas.161284298) PubMed DOI PMC
Wang H, Wollheim CB. 2002. ChREBP rather than USF2 regulates glucose stimulation of endogenous L-pyruvate kinase expression in insulin-secreting cells. J. Biol. Chem. 277, 32 746–32 752. (doi:10.1074/jbc.M201635200) PubMed DOI
Herman MA, et al. 2012. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 484, 333–338. (doi:10.1038/nature10986) PubMed DOI PMC
Iizuka K, Bruick RK, Liang G, Horton JD, Uyeda K. 2004. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc. Natl Acad. Sci. USA 101, 7281–7286. (doi:10.1073/pnas.0401516101) PubMed DOI PMC
Billin AN, Eilers AL, Coulter KL, Logan JS, Ayer DE. 2000. MondoA, a novel basic helix-loop-helix-leucine zipper transcriptional activator that constitutes a positive branch of a Max-like network. Mol. Cell Biol. 20, 8845–8854. (doi:10.1128/MCB.20.23.8845-8854.2000) PubMed DOI PMC
Havula E, et al. 2013. Mondo/ChREBP-Mlx-regulated transcriptional network is essential for dietary sugar tolerance in Drosophila. PLoS Genet. 9, e1003438 (doi:10.1371/journal.pgen.1003438) PubMed DOI PMC
Sassu ED, McDermott JE, Keys BJ, Esmaeili M, Keene AC, Birnbaum MJ, DiAngelo JR. 2012. Mio/dChREBP coordinately increases fat mass by regulating lipid synthesis and feeding behavior in Drosophila. Biochem. Biophys. Res. Commun. 426, 43–48. (doi:10.1016/j.bbrc.2012.08.028) PubMed DOI PMC
Prins RA, Kreulen DA. 1991. Comparative aspects of plant cell wall digestion in insects. Anim. Feed Sci. Tech. 32, 101–118. (doi:10.1016/0377-8401(91)90013-I) DOI
Hamilton WD. 1964. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16. (doi:10.1016/0022-5193(64)90038-4) PubMed DOI
Watanabe D, Gotoh H, Miura T, Maekawa K. 2014. Social interactions affecting caste development through physiological actions in termites. Front. Physiol. 5, 127 (doi:10.3389/fphys.2014.00127) PubMed DOI PMC
Alibert J. 1963. Echanges trophallactiques chez un termite supérieur. Contamination par le phosphore radio-actif de la population d'un nid de Cubitermes fungifaber. Insectes Soc. 10, 1–12. (doi:10.1007/bf02223519) DOI
Grassé PP. 1982. Termitologia. Tome 1. Anatomie, physiologie, reproduction des termites. Paris, France: Masson.
Spannhoff A, et al. 2011. Histone deacetylase inhibitor activity in royal jelly might facilitate caste switching in bees. EMBO Rep. 12, 238–243. (doi:10.1038/embor.2011.9) PubMed DOI PMC
Kamakura M. 2011. Royalactin induces queen differentiation in honeybees. Nature 473, 478–483. (doi:10.1038/nature10093) PubMed DOI
Hayashi Y, Lo N, Miyata H, Kitade O. 2007. Sex-linked genetic influence on caste determination in a termite. Science 318, 985–987. (doi:10.1126/science.1146711) PubMed DOI
Crozier RH, Schlüns H. 2008. Genetic caste determination in termites: out of the shade but not from Mars. Bioessays 30, 299–302. (doi:10.1002/bies.20732) PubMed DOI
Korb J, Schmidinger S. 2004. Help or disperse? Cooperation in termites influenced by food conditions. Behav. Ecol. Sociobiol. 56, 89–95. (doi:10.1007/s00265-004-0757-x) DOI
Van Oystaeyen A, et al. 2014. Conserved class of queen pheromones stops social insect workers from reproducing. Science 343, 287–290. (doi:10.1126/science.1244899) PubMed DOI
Hoffmann K, Gowin J, Hartfelder K, Korb J. 2014. The scent of royalty: a P450 gene signals reproductive status in a social insect. Mol. Biol. Evol. 31, 2689–2696. (doi:10.1093/molbev/msu214) PubMed DOI
Terrapon N, et al. 2014. Molecular traces of alternative social organization in a termite genome. Nat. Commun. 5, 3636 (doi:10.1038/ncomms4636) PubMed DOI
Poulsen M, et al. 2014. Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proc. Natl Acad. Sci. USA 111, 14 500–14 505. (doi:10.1073/pnas.1319718111) PubMed DOI PMC
Li MV, Chang B, Imamura M, Poungvarin N, Chan L. 2006. Glucose-dependent transcriptional regulation by an evolutionarily conserved glucose-sensing module. Diabetes 55, 1179–1189. (doi:10.2337/db05-0822) PubMed DOI
Mao M, Gibson T, Dowton M. 2015. Higher-level phylogeny of the Hymenoptera inferred from mitochondrial genomes. Mol. Phylogenet. Evol. 84, 34–43. (doi:10.1016/j.ympev.2014.12.009) PubMed DOI
Misof B, et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767. (doi:10.1126/science.1257570) PubMed DOI
Kindl J, Hrdý I. 2005. Development of neotenics induced by a temporary absence of functional reproductives in Kalotermes flavicollis (Isoptera: Kalotermitidae). Eur. J. Entomol. 102, 307–311. (doi:10.14411/eje.2005.046) DOI
Costa-Leonardo AM, Laranjo LT, Janei V, Haifig I. 2013. The fat body of termites: functions and stored materials. J. Insect Physiol. 59, 577–587. (doi:10.1016/j.jinsphys.2013.03.009) PubMed DOI
Grandi G. 1990. Oogenesis in Kalotermes flavicollis III. Choriogenesis and corpus luteum formation in female supplementary reproductives. Boll. Zool. 57, 97–107. (doi:10.1080/11250009009355683) DOI
Grandi G, Barbieri R, Colombo G. 1988. Oogenesis in Kalotermes flavicollis. I Differentiation and maturation of oocytes in female supplementary reproductives. Boll. Zool. 55, 103–122. (doi:10.1080/11250008809386606) DOI
Brune A. 2014. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12, 168–180. (doi:10.1038/nrmicro3182) PubMed DOI
Arrese EL, Soulages JL. 2010. Insect fat body: energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225. (doi:10.1146/annurev-ento-112408-085356) PubMed DOI PMC
Nozaki T, Matsuura K. 2016. Termite queens have disproportionately more DNA in their fat body cells: reproductive division of labor and endoreduplication. Entomol. Sci. 19, 67–71. (doi:10.1111/ens.12156) DOI
Han SH, Bordereau C. 1982. Origin and formation of the royal fat body of the Termitidae termite queens. J. Morphol. 173, 17–28. (doi:10.1002/jmor.1051730103) PubMed DOI
Peyrefitte S, Kahn D, Haenlin M. 2011. New members of the Drosophila Myc transcription factor subfamily revealed by a genome-wide examination for basic helix-loop-helix genes. Mech. Dev. 104, 99–104. (doi:10.1016/S0925-4773(01)00360-4) PubMed DOI
Kawaguchi T, Osatomi K, Yamashita H, Kabashima T, Uyeda K. 2002. Mechanism for fatty acid ‘sparing’ effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. J. Biol. Chem. 277, 3829–3835. (doi:10.1074/jbc.M107895200) PubMed DOI
He Z, Jiang T, Wang Z, Levi M, Li J. 2004. Modulation of carbohydrate response element-binding protein gene expression in 3T3-L1 adipocytes and rat adipose tissue. Am. J. Physiol. Endocrinol. Metab. 287, E424–E430. (doi:10.1152/ajpendo.00568.2003) PubMed DOI
Zinke I, Schütz CS, Katzenberger JD, Bauer M, Pankratz MJ. 2002. Nutrient control of gene expression in Drosophila: microarray analysis of starvation and sugar-dependent response. EMBO J. 21, 6162–6173. (doi:10.1093/emboj/cdf600) PubMed DOI PMC
Penick CA, Trobaugh B, Brent CS, Liebig J. 2013. Head-butting as an early indicator of reproductive disinhibition in the termite Zootermopsis nevadensis. J. Insect Behav. 26, 23–34. (doi:10.1007/s10905-012-9332-x) DOI
Halvorson DL, McCune SA. 1984. Inhibition of fatty acid synthesis in isolated adipocytes by 5-(tetradecyloxy)-2-furoic acid. Lipids 19, 851–856. (doi:10.1007/BF02534514) PubMed DOI
McCune SA, Harris RA. 1979. Mechanism responsible for 5-(tetradecyloxy)-2-furoic acid inhibition of hepatic lipogenesis. J. Biol. Chem. 254, 10 095–10 101. PubMed
Boggs CL, Ross CL. 1993. The effect of adult food limitation on life history traits in Speyeria mormonia (Lepidoptera: Nymphalidae). Ecology 74, 433–441. (doi:10.2307/1939305) DOI
Wheeler D. 1996. The role of nourishment in oogenesis. Annu. Rev. Entomol. 41, 407–431. (doi:10.1146/annurev.en.41.010196.002203) PubMed DOI
Foster SP, Anderson KG, Harmon JP. 2013. Increased allocation of adult-acquired carbohydrate to egg production results in its decreased allocation to sex pheromone production in mated females of the moth Heliothis virescens. J. Exp. Biol. 217, 499–506. (doi:10.1242/jeb.095406) PubMed DOI
Parvy J-P, Napal L, Rubin T, Poidevin M, Perrin L, Wicker-Thomas C, Montagne J. 2012. Drosophila melanogaster acetyl-CoA-carboxylase sustains a fatty acid-dependent remote signal to waterproof the respiratory system. PLoS Genet. 8, e1002925 (doi:10.1371/journal.pgen.1002925) PubMed DOI PMC
Wicker-Thomas C, Garrido D, Bontonou G, Napal L, Mazuras N, Denis B, Rubin T, Parvy JP, Montagne J. 2015. Flexible origin of hydrocarbon/pheromone precursors in Drosophila melanogaster. J. Lipid Res. 56, 2094–2101. (doi:10.1194/jlr.M060368) PubMed DOI PMC
Cornette R, Gotoh H, Koshikawa S, Miura T. 2008. Juvenile hormone titers and caste differentiation in the damp-wood termite Hodotermopsis sjostedti (Isoptera, Termopsidae). J. Insect Physiol. 54, 922–930. (doi:10.1016/j.jinsphys.2008.04.017) PubMed DOI
Korb J, Hoffmann K, Hartfelder K. 2009. Endocrine signatures underlying plasticity in postembryonic development of a lower termite, Cryptotermes secundus (Kalotermitidae). Evol. Dev. 11, 269–277. (doi:10.1111/j.1525-142X.2009.00329.x.) PubMed DOI
Saiki R, Gotoh H, Toga K, Miura T, Maekawa K. 2015. High juvenile hormone titre and abdominal activation of JH signalling may induce reproduction of termite neotenics. Insect Mol. Biol. 24, 432–441. (doi:10.1111/imb.12169) PubMed DOI
Toga K, Hanmoto S, Suzuki R, Watanabe D, Miura T, Maekawa K. 2016. Sexual difference in juvenile-hormone titer in workers leads to sex-biased soldier differentiation in termites. J. Insect Physiol. 87, 63–70. (doi:10.1016/j.jinsphys.2016.02.005) PubMed DOI
Brent CS, Schal C, Vargo EL. 2005. Endocrine changes in maturing primary queens of Zootermopsis angusticollis. J. Insect Physiol. 51, 1200–1209. (doi:10.1016/j.jinsphys.2005.06.009) PubMed DOI
Brent CS, Schal C, Vargo EL. 2007. Endocrine effects of social stimuli on maturing queens of the dampwood termite Zootermopsis angusticollis. Physiol. Entomol. 32, 26–33. (doi:10.1111/j.1365-3032.2006.00536.x) DOI
Noriega FG. 2004. Nutritional regulation of JH synthesis: a mechanism to control reproductive maturation in mosquitoes? Insect Biochem. Mol. Biol. 34, 687–693. (doi:10.1016/j.ibmb.2004.03.021) PubMed DOI
Mutti NS, Dolezal AG, Wolschin F, Mutti JS, Gill KS, Amdam GV. 2011. IRS and TOR nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate. J. Exp. Biol. 214, 3977–3984. (doi:10.1242/jeb.061499) PubMed DOI PMC
Tu MP, Yin CM, Tatar M. 2005. Mutations in insulin signaling pathway alter juvenile hormone synthesis in Drosophila melanogaster. Gen. Comp. Endocrinol. 142, 347–356. (doi:10.1016/j.ygcen.2005.02.009) PubMed DOI
Bownes M, Dübendorfer A, Smith T. 1984. Ecdysteroids in adult males and females of Drosophila melanogaster. J. Insect Physiol. 30, 823–830. (doi:10.1016/0022-1910(84)90019-2) DOI
Birnbaum MJ, Kelly TJ, Woods CW, Imberski RB. 1984. Hormonal regulation of ovarian ecdysteroid production in the autogenous mosquito, Aedes atropalpus. Gen. Comp. Endocrinol. 56, 9–18. (doi:10.1016/0016-6480(84)90055-8) PubMed DOI
Blomquist G, Vogt R. 2003. Insect pheromone biochemistry and molecular biology: the biosynthesis and detection of pheromones and plant volatiles. Amsterdam, The Netherlands: Elsevier Academic Press.
Dentin R, Girard J, Postic C. 2005. Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie 87, 81–86. (doi:10.1016/j.biochi.2004.11.008) PubMed DOI
Sieber MH, Spradling AC. 2015. Steroid signaling establishes a female metabolic state and regulates SREBP to control oocyte lipid accumulation. Curr. Biol. 25, 993–1004. (doi:10.1016/j.cub.2015.02.019) PubMed DOI PMC
Gouy M, Guindon S, Gascuel O. 2010. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224. (doi:10.1093/molbev/msp259) PubMed DOI
Darriba D, Taboada GL, Doallo R, Posada D. 2011. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27, 1164–1165. (doi:10.1093/bioinformatics/btr088) PubMed DOI PMC
Jones DT, Taylor WR, Thornton JM. 1992. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8, 275–282. (doi:10.1093/bioinformatics/8.3.275) PubMed DOI
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321. (doi:10.1093/sysbio/syq010) PubMed DOI
Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755. (doi:10.1093/bioinformatics/17.8.754) PubMed DOI
Rambaut A, Drummond AJ. 2009. Tracer 1.5: MCMC trace analysis tool. See http.ac.uk/Tracer/ (accessed 10 April 2014). PubMed
Zhou X, Oi FM, Scharf ME. 2006. Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. Proc. Natl Acad. Sci. USA 103, 4499–4504. (doi:10.1073/pnas.0508866103) PubMed DOI PMC
Perilhou A, et al. 2008. The transcription factor COUP-TFII is negatively regulated by insulin and glucose via Foxo1- and ChREBP-controlled pathways. Mol. Cell. Biol. 28, 6568–6579. (doi:10.1128/MCB.02211-07) PubMed DOI PMC
Korb J, Weil T, Hoffmann K, Foster KR, Rehli M. 2009. A gene necessary for reproductive suppression in termites. Science 324, 758 (doi:10.1126/science.1170660) PubMed DOI
Sillam-Dussès D, et al. 2009. Identification by GC-EAD of the two-component trail-following pheromone of Prorhinotermes simplex (Isoptera, Rhinotermitidae, Prorhinotermitinae). J. Insect Physiol. 55, 751–757. (doi:10.1016/j.jinsphys.2009.04.007) PubMed DOI