Poprvé v češtině ; 9
1. vydání 176 stran : ilustrace ; 27 cm
Publikace se zaměřuje na evoluci, lidskou genetiku, na DNA a její použití. Určeno široké veřejnosti.
- MeSH
- biologická evoluce MeSH
- DNA MeSH
- epigenomika MeSH
- genetické inženýrství MeSH
- genetický kód * MeSH
- genetika člověka MeSH
- Publikační typ
- monografie MeSH
- populární práce MeSH
- Konspekt
- Obecná genetika. Obecná cytogenetika. Evoluce
- NLK Obory
- genetika, lékařská genetika
PURPOSE: Subretinal (SR) injection in porcine models is a promising avenue for preclinical evaluation of cell and gene therapies. Targeting of the subretinal fluid compartment (bleb) is critical to the procedure, especially if treatment of the cone-rich area centralis is required (i.e., visual streak [VS] in pigs). To our knowledge, this study is the first to investigate the influence of injection site placement on VS involvement in the pig eye. METHODS: We performed 23-gauge pars plana vitrectomy followed by SR injection in 41 eyes of 21 animals (Sus scrofa domesticus). In 27 eyes (65.9%), the injection site was placed superior to the VS, and in 14 eyes (34.1%) it was placed inferior to it. Using intraoperative imaging, blebs were classified based on their propagation behavior relative to the VS. RESULTS: In 79% of cases, blebs from inferior injection sites developed away from the VS, exhibiting a mean ± SEM vertical anisotropy (AP) of 0.67 ± 0.11. In contrast, blebs from superior injection sites tended to develop toward the VS with an AP of 1.27 ± 0.18 (P = 0.0070). Blebs developed away from the VS in only 41% of injections (P = 0.0212). Inferior blebs were orientated close to 0° (horizontal), whereas superior blebs displayed varied orientations with a mean angle of 56° (P = 0.0008). CONCLUSIONS: Bleb propagation was anisotropic (i.e., directionally biased) and dependent on injection site placement. Superior injection sites led to superior VS detachment. Morphological analysis suggested increased adhesion forces at the VS and superior vascular arcades. This study will aid the planning of surgeries for targeted subretinal delivery in pig models.
Progress in cytokine engineering is driving therapeutic translation by overcoming these proteins' limitations as drugs. The IL-2 cytokine is a promising immune stimulant for cancer treatment but is limited by its concurrent activation of both pro-inflammatory immune effector cells and antiinflammatory regulatory T cells, toxicity at high doses, and short serum half-life. One approach to improve the selectivity, safety, and longevity of IL-2 is complexing with anti-IL-2 antibodies that bias the cytokine toward immune effector cell activation. Although this strategy shows potential in preclinical models, clinical translation of a cytokine/antibody complex is complicated by challenges in formulating a multiprotein drug and concerns regarding complex stability. Here, we introduced a versatile approach to designing intramolecularly assembled single-agent fusion proteins (immunocytokines, ICs) comprising IL-2 and a biasing anti-IL-2 antibody that directs the cytokine toward immune effector cells. We optimized IC construction and engineered the cytokine/antibody affinity to improve immune bias. We demonstrated that our IC preferentially activates and expands immune effector cells, leading to superior antitumor activity compared with natural IL-2, both alone and combined with immune checkpoint inhibitors. Moreover, therapeutic efficacy was observed without inducing toxicity. This work presents a roadmap for the design and translation of cytokine/antibody fusion proteins.
- MeSH
- cytokiny metabolismus MeSH
- interleukin-2 * imunologie MeSH
- lidé MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory imunologie terapie farmakoterapie MeSH
- proteinové inženýrství metody MeSH
- regulační T-lymfocyty imunologie účinky léků MeSH
- rekombinantní fúzní proteiny * farmakologie imunologie aplikace a dávkování MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by cognitive, motor, and psychiatric symptoms. Despite significant advances in understanding the underlying molecular mechanisms of HD, there is currently no cure or disease-modifying treatment available. Emerging pharmacological approaches offer promising strategies to alleviate symptoms and slow down disease progression. This comprehensive review aims to provide a critical appraisal of the latest developments in pharmacological interventions for HD. The review begins by discussing the pathogenesis of HD, focusing on the role of mutant huntingtin protein, mitochondrial dysfunction, excitotoxicity, and neuro-inflammation. It then explores emerging therapeutic targets, including the modulation of protein homeostasis, mitochondrial function, neuro-inflammation, and neurotransmitter systems. Pharmacological agents targeting these pathways are discussed, including small molecules, gene-based therapies, and neuroprotective agents. In recent years, several clinical trials have been conducted to evaluate the safety and efficiency of novel compounds for HD. This review presents an update on the outcomes of these trials, highlighting promising results and challenges encountered. Additionally, it discusses the potential of repurposing existing drugs approved for other indications as a cost-effective approach for HD treatment. The review concludes by summarizing the current state of pharmacological approaches for HD and outlining future directions in drug development. The integration of multiple therapeutic strategies, personalized medicine approaches, and combination therapies are highlighted as potential avenues to maximize treatment effectiveness.
- MeSH
- genetická terapie metody MeSH
- Huntingtonova nemoc * farmakoterapie MeSH
- lidé MeSH
- mitochondrie účinky léků metabolismus MeSH
- neuroprotektivní látky * terapeutické užití farmakologie MeSH
- protein huntingtin genetika antagonisté a inhibitory metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.
- MeSH
- genetické inženýrství MeSH
- indukované pluripotentní kmenové buňky metabolismus cytologie MeSH
- lidé MeSH
- přeprogramování buněk * MeSH
- regenerativní lékařství * MeSH
- tkáňové inženýrství MeSH
- vývojová biologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Maintenance of NAD pools is critical for neuronal survival. The capacity to maintain NAD pools declines in neurodegenerative disease. We identify that low NMNAT2, the critical neuronal NAD producing enzyme, drives retinal susceptibility to neurodegenerative insults. As proof of concept, gene therapy over-expressing full length human NMNAT2 is neuroprotective. To pharmacologically target NMNAT2, we identify that epigallocatechin gallate (EGCG) can drive NAD production in neurons through an NMNAT2 and NMN dependent mechanism. We confirm this by pharmacological and genetic inhibition of the NAD-salvage pathway. EGCG is neuroprotective in rodent (mixed sex) and human models of retinal neurodegeneration. As EGCG has poor drug-like qualities, we use it as a tool compound to generate novel small molecules which drive neuronal NAD production and provide neuroprotection. This class of NMNAT2 targeted small molecules could have an important therapeutic impact for neurodegenerative disease following further drug development.
- MeSH
- genetická terapie metody MeSH
- katechin * analogy a deriváty farmakologie MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- NAD * metabolismus MeSH
- neurodegenerativní nemoci farmakoterapie metabolismus genetika MeSH
- neurony * metabolismus účinky léků MeSH
- neuroprotektivní látky * farmakologie MeSH
- nikotinamidnukleotidadenylyltransferasa * metabolismus genetika MeSH
- retina metabolismus účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Among the non-traditional antibacterial agents in development, only a few targets critical Gram-negative bacteria such as carbapenem-resistant Pseudomonas aeruginosa, Acinetobacter baumannii or cephalosporin-resistant Enterobacteriaceae. Endolysins and their genetically modified versions meet the World Health Organization criteria for innovation, have a novel mode of antibacterial action, no known bacterial cross-resistance, and are being intensively studied for application against Gram-negative pathogens. METHODS: The study presents a multidisciplinary approach, including genetic engineering of LysECD7-SMAP and production of recombinant endolysin, its analysis by crystal structure solution following molecular dynamics simulations and evaluation of antibacterial properties. Two types of antimicrobial dosage forms were formulated, resulting in lyophilized powder for injection and hydroxyethylcellulose gel for topical administration. Their efficacy was estimated in the treatment of sepsis, and pneumonia models in BALB/c mice, diabetes-associated wound infection in the leptin receptor-deficient db/db mice and infected burn wounds in rats. RESULTS: In this work, we investigate the application strategies of the engineered endolysin LysECD7-SMAP and its dosage forms evaluated in preclinical studies. The catalytic domain of the enzyme shares the conserved structure of endopeptidases containing a putative antimicrobial peptide at the C-terminus of polypeptide chain. The activity of endolysins has been demonstrated against a range of pathogens, such as Klebsiella pneumoniae, A. baumannii, P. aeruginosa, Staphylococcus haemolyticus, Achromobacter spp, Burkholderia cepacia complex and Haemophylus influenzae, including those with multidrug resistance. The efficacy of candidate dosage forms has been confirmed in in vivo studies. Some aspects of the interaction of LysECD7-SMAP with cell wall molecular targets are also discussed. CONCLUSIONS: Our studies demonstrate the potential of LysECD7-SMAP therapeutics for the systemic or topical treatment of infectious diseases caused by susceptible Gram-negative bacterial species and are critical to proceed LysECD7-SMAP-based antimicrobials trials to advanced stages.
- MeSH
- antibakteriální látky farmakologie aplikace a dávkování MeSH
- endopeptidasy * farmakologie aplikace a dávkování MeSH
- gramnegativní bakteriální infekce * farmakoterapie MeSH
- gramnegativní bakterie * účinky léků MeSH
- krysa rodu rattus MeSH
- myši inbrední BALB C * MeSH
- myši MeSH
- proteinové inženýrství metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
CRISPR/Cas technology is a powerful tool for genome engineering in Aspergillus oryzae as an industrially important filamentous fungus. Previous study has reported the application of the CRISPR/Cpf1 system based on the Cpf1 (LbCpf1) from Lachnospiraceae bacterium in A. oryzae. However, multiplex gene editing have not been investigated using this system. Here, we presented a new CRISPR/Cpf1 multiplex gene editing system in A. oryzae, which contains the Cpf1 nuclease (FnCpf1) from Francisella tularensis subsp. novicida U112 and CRISPR-RNA expression cassette. The crRNA cassette consisted of direct repeats and guide sequences driven by the A. oryzae U6 promoter and U6 terminator. Using the constructed FnCpf1 gene editing system, the wA and pyrG genes were mutated successfully. Furthermore, simultaneous editing of wA and pyrG genes in A. oryzae was performed using two guide sequences targeting these gene loci in a single crRNA array. This promising CRISPR/Cpf1 genome-editing system provides a powerful tool for genetically engineering A. oryzae.
Genová terapie (GT) se postupně stává běžným způsobem léčby. Již není výsadou velkých univerzitních pracovišť, jejichž laboratoře zvládají analytické postupy zaměřené na nukleové kyseliny a jejichž klinické týmy zvládají aplikaci. Původně byla určena pro dědičné choroby, které vzhledem ke svému řídkému výskytu byly označovány jako vzácná onemocnění a GT se dosud uplatňovala jen u dětí, aby působila ještě před rozvojem onemocnění. Nové způsoby léčby začaly být používány i u chorob běžných, jakými jsou např. metabolické poruchy (diabetes), a dokonce u takových, které nás sužují stále častěji, jako nejrůznější malignity a nemoci centrální nervové soustavy (např. Alzheimerova choroba). Cílem genové terapie jsou geny, jejichž změny v podobě patogenních variant (dříve mutací) vyvolávají poruchy fenotypu. Naší snahou je buď jejich vyřazení z funkce (např. u hemoglobinopatií), nebo jejich nahrazení geny s normální funkcí. Ty lze do genomu vnést pomocí některého z vhodných přenašečů (tzv. vektorů), jakými jsou např. viry nebo lipozomy. Proces GT může probíhat přímo v těle pacienta (in vivo), nebo mimo něj na jeho izolovaných buňkách (ex vivo), kterými jsou obvykle indukované pluripotentní kmenové buňky (iPSC – induced pluripotent stem cell). Po úpravě se tyto buňky vracejí do pacientova těla, aby tak naplnily svůj „úděl“. V širším slova smyslu může být GT namířena i na produkt genové transkripce, kterým je messenger RNA (mRNA), nebo konečný produkt realizace genové funkce, jakým jsou funkční bílkoviny (např. u cystické fibrózy). U různých chorob se úspěšně používají uvedené přístupy v závislosti na jejich dostupnosti, která je mimo jiné dána i náklady s GT spojenými nebo přístupností cílové tkáně. Nejen ověřování účinnosti a bezpečnosti GT, ale i ekonomické důvody rozhodují o tom, proč se GT rozvíjí jen pozvolna a proč se jí ujímají většinou jen velké a bohaté instituce. Rozhodující je také to, že celý proces vývoje od výchozích experimentálních prací přes klinické zkoušky až ke konečnému přípravku běžně trvá i dekádu či déle.
Gene therapy is gradually becoming a mainstream treatment modality and is no longer the preserve of large university departments whose laboratories master nucleic acid analytical procedures and whose clinical teams manage its administration. It was originally designed for genetic diseases that, because of their prevalence, were a group known as rare diseases. Gene therapy has so far been applied in children to act before the disease development. These new treatments have also begun to be applied for common diseases such as metabolic disorders (e. g. diabetes) and even for those that are increasingly affecting us, such as various malignancies and diseases of the central nervous system (e. g. Alzheimer’s disease). The targets targeted by GT are genes, where pathogenic alterations in the form of pathogenic variants (formerly mutations) induce phenotypic disorders, and our aim is either to knock them out of function (e. g. haemoglobinopathies) or to replace them with genes with normal function, which we introduce into the genome using one of the appropriate vectors, such as viruses or liposomes. The process of GT can take place directly inside the patient's body (in vivo) or outside the body on isolated cells (ex vivo), which are usually stem cells (iPSCs, induced pluripotent stem cell). After treatment, these cells are returned to the patient's body to fulfil their "destiny". In a broader sense, GT can target the product of gene transcription, which is the messenger RNA, or the end product of gene function, such as functional proteins (eg. cystic fibrosis). Any of these approaches have been used successfully in various diseases, depending on their availability, which is determined, among other things, by the costs associated with GT or the accessibility of the target tissue. Ultimately, it is not only the validation of the efficacy and safety of GT, but also economic reasons that determine why GT has been slow to develop and is mostly undertaken only by large and wealthy institutions. Another decisive factor is that from initial experimental work through clinical trials, the whole process of its development normally takes up to a decade.
- MeSH
- cystická fibróza genetika terapie MeSH
- deficit alfa1-antitrypsinu genetika terapie MeSH
- Duchennova muskulární dystrofie genetika terapie MeSH
- genetická terapie * metody MeSH
- Huntingtonova nemoc genetika terapie MeSH
- krevní nemoci genetika terapie MeSH
- lidé MeSH
- myotonická dystrofie genetika terapie MeSH
- nádory genetika terapie MeSH
- retinopathia pigmentosa genetika terapie MeSH
- spinální svalová atrofie genetika terapie MeSH
- vzácné nemoci * genetika terapie MeSH
- Check Tag
- lidé MeSH