Omega-3 polyunsatuarted fatty acids (PUFA) are associated with hypolipidemic and anti-inflammatory effects. However, omega-3 PUFA, usually administered as triacylglycerols or ethyl esters, could also compromise glucose metabolism, especially in obese type 2 diabetics. Phospholipids represent an alternative source of omega-3 PUFA, but their impact on glucose homeostasis is poorly explored. Male C57BL/6N mice were fed for 8 weeks a corn oil-based high-fat diet (cHF) alone or cHF-based diets containing eicosapentaenoic acid and docosahexaenoic acid (~3%; wt/wt), admixed either as a concentrate of re-esterified triacylglycerols (ω3TG) or Krill oil containing mainly phospholipids (ω3PL). Lean controls were fed a low-fat diet. Insulin sensitivity (hyperinsulinemic-euglycemic clamps), parameters of glucose homeostasis, adipose tissue function, and plasma levels of N-acylethanolamines, monoacylglycerols and fatty acids were determined. Feeding cHF induced obesity and worsened (~4.3-fold) insulin sensitivity as determined by clamp. Insulin sensitivity was almost preserved in ω3PL but not ω3TG mice. Compared with cHF mice, endogenous glucose production was reduced to 47%, whereas whole-body and muscle glycogen synthesis increased ~3-fold in ω3PL mice that showed improved adipose tissue function and elevated plasma adiponectin levels. Besides eicosapentaenoic and docosapentaenoic acids, principal component analysis of plasma fatty acids identified palmitoleic acid (C16:1n-7) as the most discriminating analyte whose levels were increased in ω3PL mice and correlated negatively with the degree of cHF-induced glucose intolerance. While palmitoleic acid from Krill oil may help improve glucose homeostasis, our findings provide a general rationale for using omega-3 PUFA-containing phospholipids as nutritional supplements with potent insulin-sensitizing effects.
- MeSH
- dieta s vysokým obsahem tuků MeSH
- fosfolipidy aplikace a dávkování metabolismus MeSH
- glukosa metabolismus MeSH
- homeostáza * MeSH
- inzulinová rezistence MeSH
- kyseliny mastné mononenasycené krev MeSH
- myši inbrední C57BL MeSH
- myši obézní MeSH
- myši MeSH
- oleje rostlin metabolismus MeSH
- potravní doplňky MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system. In addition to the genetic, epigenetic and immunological components, various other factors, e.g. unhealthy dietary habits, play a role in the MS pathogenesis. Dietary intervention is a highly appealing approach, as it presents a simple and relatively low risk method to potentially improve outcomes in patients with brain disorders in order to achieve remission and improvement of clinical status, well-being and life expectancy of patients with MS. The importance of saturated fat intake restriction for the clinical status improvement of MS patients was pointed for the first time in 1950s. Recently, decreased risk of first clinical diagnosis of CNS demyelination associated with higher intake of omega-3 polyunsaturated fatty acids particularly originating from fish was reported. Only few clinical trials have been performed to address the question of the role of dietary intervention, such is e.g. low saturated fat diet in MS treatment. This review summarizes current knowledge about the effect of different dietary approaches (diets low in saturated fat and dietary supplements such as fish oil, lipoic acid, omega-3 polyunsaturated fatty acids, seeds oils, high fiber diet, vitamin D, etc.) on neurological signs, patient's well-being, physical and inflammatory status. So far the results are not conclusive, therefore much more research is needed to confirm and to understand the effectiveness of these dietary interventions in the long term and well defined studies.
- MeSH
- chování snižující riziko * MeSH
- kyseliny mastné omega-3 aplikace a dávkování metabolismus MeSH
- lidé MeSH
- oleje rostlin aplikace a dávkování metabolismus MeSH
- potravní doplňky MeSH
- roztroušená skleróza diagnóza dietoterapie metabolismus MeSH
- rybí oleje aplikace a dávkování metabolismus MeSH
- stravovací zvyklosti fyziologie MeSH
- výsledek terapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Tiger nut (Cyperus esculentus L.) is a crop traditionally grown in Valencia Region (Spain) and other temperate and tropical regions in the world, where its tubers are commonly consumed as tiger nut milk (horchata). Because of their nutritive potential and original taste, these products are beginning to spread internationally and, as consequence, analytical procedures to assess nutritional profiles, quality control issues are acquiring increasing relevance. The main objective of this study was to use an advance analytical method and chemometrics tools to determine if the ultra-high temperature (UHT) treatment necessary to extend the shelf life of tiger nut milk would affect the profile of nutrients when compared to fresh product. A cold solvent extraction followed by liquid chromatography coupled with high resolution mass spectrometry (UHPLC-HRMS) was used. Datasets obtained from UHT and fresh tiger nut milk data were analyzed through an untargeted metabolomics approach to compare chemical patterns, highlighting differences in citric acid esters of mono- diglycerides (CITREM) and monoacylglycerol (MAG) used as emulsifiers of UHT products, and a remarkably higher abundance of biotin, phosphatidic acid (PA) and L-arginine in fresh products. These results showed that untargeted metabolomics through high resolution tandem mass spectrometry allowed fine differences between food products to be found, therefore, the nutrient lost caused by UHT treatment was clearly discerned.
- MeSH
- aminokyseliny analýza MeSH
- analýza hlavních komponent MeSH
- cukry analýza chemie MeSH
- Cyperus chemie metabolismus MeSH
- diglyceridy chemie MeSH
- emulgační látky chemie MeSH
- kvalita jídla * MeSH
- mastné kyseliny analýza chemie MeSH
- metabolomika * MeSH
- monoglyceridy chemie MeSH
- oleje rostlin analýza chemie metabolismus MeSH
- shluková analýza MeSH
- tandemová hmotnostní spektrometrie MeSH
- vitaminy analýza MeSH
- vysoká teplota MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
The chicken feather hydrolysate (FH) has been tested as a potential complex nitrogen source for the production of polyhydroxyalkanoates by Cupriavidus necator H16 when waste frying oil was used as a carbon source. The addition of FH into the mineral salt media with decreased inorganic nitrogen source concentration improved the yields of biomass and polyhydrohyalkanoates. The highest yields were achieved when 10 vol.% of FH prepared by microwave-assisted alkaline hydrolysis of 60 g l-1 feather was added. In this case, the poly(3-hydroxybutyrate) (PHB) yields were improved by more than about 50% as compared with control cultivation. A positive impact of FH was also observed for accumulation of copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) when sodium propionate was used as a precursor. The copolymer has superior processing and mechanical properties in comparison with PHB homopolymer. The application of FH eliminated the inhibitory effect of propionate and resulted in altered content of 3-hydroxyvalerate (3HV) in copolymer. Therefore, the hydrolysed feather can serve as an excellent complex source of nitrogen for the polyhydroxyalkanoates (PHA) production. Moreover, by the combination of two inexpensive types of waste, such as waste frying oil and feather hydrolysate, it is possible to produce PHA with substantially improved efficiency and sustainability. SIGNIFICANCE AND IMPACT THE STUDY: Millions of tons of feathers, important waste product of poultry-processing industry, are disposed off annually without any further benefits. Thus, there is an inevitable need for new technologies that enable ecologically and economically sensible processing of this waste. Herein, we report that alkali-hydrolysed feathers can be used as a complex nitrogen source considerably improving polyhydroxyalkanoates production on waste frying oil employing Cupriavidus necator.
- MeSH
- aminokyseliny analýza MeSH
- biomasa MeSH
- Cupriavidus necator metabolismus MeSH
- dusík metabolismus MeSH
- hydrolýza MeSH
- hydroxybutyráty metabolismus MeSH
- kur domácí MeSH
- kyseliny pentanové metabolismus MeSH
- odpad tekutý - odstraňování MeSH
- oleje rostlin metabolismus MeSH
- peří chemie MeSH
- polyestery metabolismus MeSH
- polyhydroxyalkanoáty biosyntéza MeSH
- uhlík metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Recently, a growing number of plant essential oils (EOs) have been tested against a wide range of arthropod pests with promising results. EOs showed high effectiveness, multiple mechanisms of action, low toxicity on non-target vertebrates and potential for the use of byproducts as reducing and stabilizing agents for the synthesis of nanopesticides. However, the number of commercial biopesticides based on EOs remains low. We analyze the main strengths and weaknesses arising from the use of EO-based biopesticides. Key challenges for future research include: (i) development of efficient stabilization processes (e.g., microencapsulation); (ii) simplification of the complex and costly biopesticide authorization requirements; and (iii) optimization of plant growing conditions and extraction processes leading to EOs of homogeneous chemical composition.
- Klíčová slova
- vepřové sádlo - nejstabilnější, řepkový olej, oxidační produkty, polymerační produkty,
- MeSH
- Brassica napus * chemie metabolismus škodlivé účinky MeSH
- chromatografie * metody využití MeSH
- Helianthus * chemie metabolismus škodlivé účinky MeSH
- kvalita jídla * MeSH
- lidé MeSH
- nenasycené mastné kyseliny * MeSH
- oleje rostlin * analýza chemie metabolismus škodlivé účinky MeSH
- oxidace-redukce * MeSH
- refraktometrie * metody normy využití MeSH
- slunečnicový olej MeSH
- statistika jako téma MeSH
- tokoferoly * analýza metabolismus MeSH
- triglyceridy * analýza chemie metabolismus škodlivé účinky MeSH
- tuky * analýza chemie metabolismus škodlivé účinky MeSH
- vysoká teplota * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
Spent coffee grounds (SCG), an important waste product of the coffee industry, contain approximately 15 wt% of coffee oil. The aim of this work was to investigate the utilization of oil extracted from SCG as a substrate for the production of poly(3-hydroxybutyrate) (PHB) by Cupriavidus necator H16. When compared to other waste/inexpensive oils, the utilization of coffee oil resulted in the highest biomass as well as PHB yields. Since the correlation of PHB yields and the acid value of oil indicated a positive effect of the presence of free fatty acids in oil on PHB production (correlation coefficient R (2) = 0.9058), superior properties of coffee oil can be probably attributed to the high content of free fatty acids which can be simply utilized by the bacteria culture. Employing the fed-batch mode of cultivation, the PHB yields, the PHB content in biomass, the volumetric productivity, and the Y P/S yield coefficient reached 49.4 g/l, 89.1 wt%, 1.33 g/(l h), and 0.82 g per g of oil, respectively. SCG are annually produced worldwide in extensive amounts and are disposed as solid waste. Hence, the utilization of coffee oil extracted from SCG is likely to improve significantly the economic aspects of PHB production. Moreover, since oil extraction decreased the calorific value of SCG by only about 9 % (from 19.61 to 17.86 MJ/kg), residual SCG after oil extraction can be used as fuel to at least partially cover heat and energy demands of fermentation, which should even improve the economic feasibility of the process.
Using random chemical mutagenesis we obtained the mutant of Cupriavidus necator H16 which was capable of improved (about 35 %) production of poly(3-hydroxybuytrate) (PHB) compared to the wild-type strain. The mutant exhibited significantly enhanced specific activities of enzymes involved in oxidative stress response such as malic enzyme, NADP-dependent isocitrate dehydrogenase, glucose-6-phosphate dehydrogenase and glutamate dehydrogenase. Probably, due to the activation of these enzymes, we also observed an increase of NADPH/NADP⁺ ratio. It is likely that as a side effect of the increase of NADPH/NADP⁺ ratio the activity of PHB biosynthetic pathway was enhanced, which supported the accumulation of PHB. Furthermore, the mutant was also able to incorporate propionate into copolymer poly(3-hydroxybuytyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] more efficiently than the wild-type strain (Y3HV/prec = 0.17 and 0.29 for the wild-type strain and the mutant, respectively)). We assume that it may be caused by lower availability of oxaloacetate for the utilization of propionyl-CoA in 2-methylcitrate cycle due to increased action of malic enzyme. Therefore, propionyl-CoA was incorporated into copolymer rather than transformed to pyruvate via 2-methylcitrate cycle. Thus, the mutant was capable of the utilization of waste frying oils and the production of P(3HB-co-3HV) with better yields and improved content of 3HV resulting in better mechanical properties of copolymer than the wild-type strain. The results of this work may be used for the development of innovative fermentation strategies for the production of PHA and also it might help to define novel targets for the genetic manipulations of PHA producing bacteria.
- MeSH
- acylkoenzym A metabolismus MeSH
- bakteriální proteiny genetika metabolismus MeSH
- bioreaktory MeSH
- biosyntetické dráhy MeSH
- Brassica rapa MeSH
- Cupriavidus necator účinky léků genetika metabolismus MeSH
- fermentace MeSH
- hydroxybutyráty metabolismus MeSH
- mutageneze * MeSH
- oleje rostlin chemie metabolismus MeSH
- oxidační stres MeSH
- polyestery metabolismus MeSH
- polyhydroxyalkanoáty metabolismus MeSH
- průmyslový odpad MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Klíčová slova
- PinnoThin,
- MeSH
- borovice MeSH
- cholecystokinin sekrece účinky léků MeSH
- chuť k jídlu účinky léků MeSH
- glukagonu podobný peptid 1 sekrece účinky léků MeSH
- lidé MeSH
- nadváha farmakoterapie MeSH
- nenasycené mastné kyseliny metabolismus terapeutické užití MeSH
- obezita MeSH
- oleje rostlin farmakologie metabolismus terapeutické užití MeSH
- ořechy chemie MeSH
- přijímání potravy účinky léků MeSH
- stravovací zvyklosti účinky léků MeSH
- Check Tag
- lidé MeSH