Biotechnological Production of Poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate-co-3-Hydroxyvalerate) Terpolymer by Cupriavidus sp. DSM 19379

. 2019 Aug 26 ; 6 (3) : . [epub] 20190826

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31455023

Grantová podpora
GA19-20697S Grantová Agentura České Republiky

Odkazy

PubMed 31455023
PubMed Central PMC6783845
DOI 10.3390/bioengineering6030074
PII: bioengineering6030074
Knihovny.cz E-zdroje

The terpolymer of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), and 4-hydroxybutyrate (4HB) was produced employing Cupriavidus sp. DSM 19379. Growth in the presence of γ-butyrolactone, ε-caprolactone, 1,4-butanediol, and 1,6-hexanediol resulted in the synthesis of a polymer consisting of 3HB and 4HB monomers. Single and two-stage terpolymer production strategies were utilized to incorporate the 3HV subunit into the polymer structure. At the single-stage cultivation mode, γ-butyrolactone or 1,4-butanediol served as the primary substrate and propionic and valeric acid as the precursor of 3HV. In the two-stage production, glycerol was used in the growth phase, and precursors for the formation of the terpolymer in combination with the nitrogen limitation in the medium were used in the second phase. The aim of this work was to maximize the Polyhydroxyalkanoates (PHA) yields with a high proportion of 3HV and 4HB using different culture strategies. The obtained polymers contained 0-29 mol% of 3HV and 16-32 mol% of 4HB. Selected polymers were subjected to a material properties analysis such as differential scanning calorimetry (DSC), thermogravimetry, and size exclusion chromatography coupled with multi angle light scattering (SEC-MALS) for determination of the molecular weight. The number of polymers in the biomass, as well as the monomer composition of the polymer were determined by gas chromatography.

Zobrazit více v PubMed

Kourmentza C., Plácido J., Venetsaneas N., Burniol-Figols A., Varrone C., Gavala H.N., Reis M.A. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering. 2017;4:55. doi: 10.3390/bioengineering4020055. PubMed DOI PMC

Obruca S., Sedlacek P., Koller M., Kucera D., Pernicova I. Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnol. Adv. 2018;36:856–870. doi: 10.1016/j.biotechadv.2017.12.006. PubMed DOI

Slaninova E., Sedlacek P., Mravec F., Mullerova L., Samek O., Koller M., Hesko O., Kucera D., Marova I., Obruca S. Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation. Appl. Microbiol. Biotechnol. 2018;102:1923–1931. doi: 10.1007/s00253-018-8760-8. PubMed DOI

Haas C., Steinwandter V., De Apodaca E.D., Madurga B.M., Smerilli M., Dietrich T., Neureiter M. Production of PHB from chicory roots - Comparison of three Cupriavidus necator strains. Chem. Biochem. Eng. Q. 2015;29:99–112. doi: 10.15255/CABEQ.2014.2250. DOI

Verlinden R.A.J., Hill D.J., Kenward M.A., Williams C.D., Piotrowska-Seget Z., Radecka I.K. Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. Amb Express. 2011;1:1–8. doi: 10.1186/2191-0855-1-11. PubMed DOI PMC

Ciesielski S., Mozejko J., Pisutpaisal N. Plant oils as promising substrates for polyhydroxyalkanoates production. J. Clean. Prod. 2015;106:408–421. doi: 10.1016/j.jclepro.2014.09.040. DOI

Jiang G., Hill D.J., Kowalczuk M., Johnston B., Adamus G., Irorere V., Radecka I. Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int. J. Mol. Sci. 2016;17:1157. doi: 10.3390/ijms17071157. PubMed DOI PMC

Moita R., Freches A., Lemos P.C. Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures. Water Res. 2014;58:9–20. doi: 10.1016/j.watres.2014.03.066. PubMed DOI

Obruca S., Benesova P., Marsalek L., Marova I. Use of lignocellulosic materials for PHA production. Chem. Biochem. Eng. Q. 2015;29:135–144. doi: 10.15255/CABEQ.2014.2253. DOI

Meixner K., Kovalcik A., Sykacek E., Gruber-Brunhumer M., Zeilinger W., Markl K., Haas C., Fritz I., Mundigler N., Stelzer F., et al. Cyanobacteria Biorefinery—Production of poly(3-hydroxybutyrate) with Synechocystis salina and utilisation of residual biomass. J. Biotechnol. 2018;265:46–53. doi: 10.1016/j.jbiotec.2017.10.020. PubMed DOI

Troschl C., Meixner K., Drosg B. Cyanobacterial PHA Production—Review of Recent Advances and a Summary of Three Years’ Working Experience Running a Pilot Plant. Bioengineering. 2017;4:26. doi: 10.3390/bioengineering4020026. PubMed DOI PMC

Sedlacek P., Slaninova E., Enev V., Koller M., Nebesarova J., Marova I., Hrubanova K., Krzyzanek V., Samek O., Obruca S. What keeps polyhydroxyalkanoates in bacterial cells amorphous? A derivation from stress exposure experiments. Appl. Microbiol. Biotechnol. 2019;103:1905–1917. doi: 10.1007/s00253-018-09584-z. PubMed DOI

Koller M. Chemical and biochemical engineering approaches in manufacturing polyhydroxyalkanoate (PHA) biopolyesters of tailored structure with focus on the diversity of building blocks. Chem. Biochem. Eng. Q. 2018;32:413–438. doi: 10.15255/CABEQ.2018.1385. DOI

Lee W.H., Azizan M.N.M., Sudesh K. Effects of culture conditions on the composition of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) synthesized by Comamonas acidovorans. Polym Degrad Stab. 2004;84:129–134. doi: 10.1016/j.polymdegradstab.2003.10.003. DOI

Rodríguez-Contreras A., Calafell-Monfort M., Marqués-Calvo M.S. Enzymatic degradation of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by commercial lipases. Polym. Degrad. Stabil. 2012;97:597–604. doi: 10.1016/j.polymdegradstab.2012.01.007. DOI

Saito Y., Nakamura S., Hiramitsu M., Doi Y. Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) Polym. Int. 1996;39:167–174. doi: 10.1002/(SICI)1097-0126(199603)39:3<169::AID-PI453>3.0.CO;2-Z. DOI

Singh A.K., Srivastava J.K., Chandel A.K., Sharma L., Mallick N., Singh S.P. Biomedical applications of microbially engineered polyhydroxyalkanoates: an insight into recent advances, bottlenecks, and solutions. Appl. Microbiol. Biotechnol. 2019;103:2007–2032. doi: 10.1007/s00253-018-09604-y. PubMed DOI

Chanprateep S., Kulpreecha S. Production and characterization of biodegradable terpolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) by Alcaligenes sp. A-04. J. Biosci. Bioeng. 2006;101:51–56. doi: 10.1263/jbb.101.51. PubMed DOI

Lee Y.H., Kang M.S., Jung Y.M. Regulating the molar fraction of 4-hydroxybutyrate in poly(3-hydroxybutyrate-4-hydroxybutyrate) biosynthesis by Ralstonia eutropha using propionate as a stimulator. J. Biosci. Bioeng. 2000;89:380. doi: 10.1016/S1389-1723(00)88963-X. PubMed DOI

Cavalheiro J.M., Raposo R.S., de Almeida M.C.M., Cesário M.T., Sevrin C., Grandfils C., Da Fonseca M.M.R. Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Biores. Technol. 2012;111:391. doi: 10.1016/j.biortech.2012.01.176. PubMed DOI

Hermann-Krauss C., Koller M., Muhr A., Fasl H., Stelzer F., Braunegg G. Archaeal production of polyhydroxyalkanoate (PHA) co-and terpolyesters from biodiesel industry-derived by-products. Archaea. 2013;2013:129268. doi: 10.1155/2013/129268. PubMed DOI PMC

Ramachandran H., Iqbal N.M., Sipaut C.S., Abdullah A.A.A. Biosynthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate). Terpolymer with various monomer compositions by Cupriavidus sp. USMAA2-4. Appl. Biochem. Biotechnol. 2011;164:867–877. doi: 10.1007/s12010-011-9180-8. PubMed DOI

Obruca S., Marova I., Melusova S., Mravcova L. Production of polyhydroxyalkanoates from cheese whey employing Bacillus megaterium CCM 2037. Ann. Microbiol. 2011;61:947–953. doi: 10.1007/s13213-011-0218-5. DOI

Brandl H., Gross R.A., Lenz R.W., Fuller R.C. Pseudomonas oleovorans as a source of poly(beta-hydroxyalkanoates) for potential application as a biodegradable polyester. Appl. Environ. Microb. 1988;54:1977–1982. PubMed PMC

Kucera D., Pernicová I., Kovalcik A., Koller M., Mullerova L., Sedlacek P., Mravec F., Nebesarova J., Kalina M., Marova I., et al. Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. Biores. Technol. 2018;256:552–556. doi: 10.1016/j.biortech.2018.02.062. PubMed DOI

Amirul A.A., Yahya A.R.M., Sudesh K., Azizan M.N.M., Majid M.I.A. Biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by Cupriavidus sp. USMAA1020 isolated from Lake Kulim, Malaysia. Biores. Technol. 2008;99:4903–4909. PubMed

Rahayu A., Zaleha Z., Yahya A.R.M., Majid M.I.A., Amirul A. A Production of copolymer poly(3-hydroxybutyrate-co-4-hydroxybutyrate) through a one-step cultivation process. World J. Microbiol. Biotechnol. 2008;24:2403–2409. doi: 10.1007/s11274-008-9764-9. DOI

Lopar M., Špoljarić I.V., Cepanec N., Koller M., Braunegg G., Horvat P. Study of metabolic network of Cupriavidus necator DSM 545 growing on glycerol by applying elementary flux modes and yield space analysis. J. Ind. Microbiol. Biotechnol. 2014;41:913–930. doi: 10.1007/s10295-014-1439-y. PubMed DOI

Lindenkamp N., Peplinski K., Volodina E., Ehrenreich A., Steinbuchel A. Impact of multiple beta-ketothiolase deletion mutations in Ralstonia eutropha H16 on the composition of 3-mercaptopropionic acid-containing copolymers. Appl. Environ. Microbiol. 2010;76:5373–5382. doi: 10.1128/AEM.01058-10. PubMed DOI PMC

Fahima Azira T.M., Nursolehah A.A., Norhayati Y., Majid M.I.A., Amirul A.A. Biosynthesis of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) terpolymer by Cupriavidus sp. USMAA2-4 through two-step cultivation process. World J. Microbiol. Biotechnol. 2011;27:2287–2295. doi: 10.1007/s11274-011-0693-7. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...