Biotechnological Production of Poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate-co-3-Hydroxyvalerate) Terpolymer by Cupriavidus sp. DSM 19379
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA19-20697S
Grantová Agentura České Republiky
PubMed
31455023
PubMed Central
PMC6783845
DOI
10.3390/bioengineering6030074
PII: bioengineering6030074
Knihovny.cz E-zdroje
- Klíčová slova
- Cupriavidus malaysiensis, P(3HB-co-3HV-co-4HB), polyhydroxyalkanoates, terpolymer,
- Publikační typ
- časopisecké články MeSH
The terpolymer of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), and 4-hydroxybutyrate (4HB) was produced employing Cupriavidus sp. DSM 19379. Growth in the presence of γ-butyrolactone, ε-caprolactone, 1,4-butanediol, and 1,6-hexanediol resulted in the synthesis of a polymer consisting of 3HB and 4HB monomers. Single and two-stage terpolymer production strategies were utilized to incorporate the 3HV subunit into the polymer structure. At the single-stage cultivation mode, γ-butyrolactone or 1,4-butanediol served as the primary substrate and propionic and valeric acid as the precursor of 3HV. In the two-stage production, glycerol was used in the growth phase, and precursors for the formation of the terpolymer in combination with the nitrogen limitation in the medium were used in the second phase. The aim of this work was to maximize the Polyhydroxyalkanoates (PHA) yields with a high proportion of 3HV and 4HB using different culture strategies. The obtained polymers contained 0-29 mol% of 3HV and 16-32 mol% of 4HB. Selected polymers were subjected to a material properties analysis such as differential scanning calorimetry (DSC), thermogravimetry, and size exclusion chromatography coupled with multi angle light scattering (SEC-MALS) for determination of the molecular weight. The number of polymers in the biomass, as well as the monomer composition of the polymer were determined by gas chromatography.
Zobrazit více v PubMed
Kourmentza C., Plácido J., Venetsaneas N., Burniol-Figols A., Varrone C., Gavala H.N., Reis M.A. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering. 2017;4:55. doi: 10.3390/bioengineering4020055. PubMed DOI PMC
Obruca S., Sedlacek P., Koller M., Kucera D., Pernicova I. Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnol. Adv. 2018;36:856–870. doi: 10.1016/j.biotechadv.2017.12.006. PubMed DOI
Slaninova E., Sedlacek P., Mravec F., Mullerova L., Samek O., Koller M., Hesko O., Kucera D., Marova I., Obruca S. Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation. Appl. Microbiol. Biotechnol. 2018;102:1923–1931. doi: 10.1007/s00253-018-8760-8. PubMed DOI
Haas C., Steinwandter V., De Apodaca E.D., Madurga B.M., Smerilli M., Dietrich T., Neureiter M. Production of PHB from chicory roots - Comparison of three Cupriavidus necator strains. Chem. Biochem. Eng. Q. 2015;29:99–112. doi: 10.15255/CABEQ.2014.2250. DOI
Verlinden R.A.J., Hill D.J., Kenward M.A., Williams C.D., Piotrowska-Seget Z., Radecka I.K. Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. Amb Express. 2011;1:1–8. doi: 10.1186/2191-0855-1-11. PubMed DOI PMC
Ciesielski S., Mozejko J., Pisutpaisal N. Plant oils as promising substrates for polyhydroxyalkanoates production. J. Clean. Prod. 2015;106:408–421. doi: 10.1016/j.jclepro.2014.09.040. DOI
Jiang G., Hill D.J., Kowalczuk M., Johnston B., Adamus G., Irorere V., Radecka I. Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int. J. Mol. Sci. 2016;17:1157. doi: 10.3390/ijms17071157. PubMed DOI PMC
Moita R., Freches A., Lemos P.C. Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures. Water Res. 2014;58:9–20. doi: 10.1016/j.watres.2014.03.066. PubMed DOI
Obruca S., Benesova P., Marsalek L., Marova I. Use of lignocellulosic materials for PHA production. Chem. Biochem. Eng. Q. 2015;29:135–144. doi: 10.15255/CABEQ.2014.2253. DOI
Meixner K., Kovalcik A., Sykacek E., Gruber-Brunhumer M., Zeilinger W., Markl K., Haas C., Fritz I., Mundigler N., Stelzer F., et al. Cyanobacteria Biorefinery—Production of poly(3-hydroxybutyrate) with Synechocystis salina and utilisation of residual biomass. J. Biotechnol. 2018;265:46–53. doi: 10.1016/j.jbiotec.2017.10.020. PubMed DOI
Troschl C., Meixner K., Drosg B. Cyanobacterial PHA Production—Review of Recent Advances and a Summary of Three Years’ Working Experience Running a Pilot Plant. Bioengineering. 2017;4:26. doi: 10.3390/bioengineering4020026. PubMed DOI PMC
Sedlacek P., Slaninova E., Enev V., Koller M., Nebesarova J., Marova I., Hrubanova K., Krzyzanek V., Samek O., Obruca S. What keeps polyhydroxyalkanoates in bacterial cells amorphous? A derivation from stress exposure experiments. Appl. Microbiol. Biotechnol. 2019;103:1905–1917. doi: 10.1007/s00253-018-09584-z. PubMed DOI
Koller M. Chemical and biochemical engineering approaches in manufacturing polyhydroxyalkanoate (PHA) biopolyesters of tailored structure with focus on the diversity of building blocks. Chem. Biochem. Eng. Q. 2018;32:413–438. doi: 10.15255/CABEQ.2018.1385. DOI
Lee W.H., Azizan M.N.M., Sudesh K. Effects of culture conditions on the composition of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) synthesized by Comamonas acidovorans. Polym Degrad Stab. 2004;84:129–134. doi: 10.1016/j.polymdegradstab.2003.10.003. DOI
Rodríguez-Contreras A., Calafell-Monfort M., Marqués-Calvo M.S. Enzymatic degradation of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by commercial lipases. Polym. Degrad. Stabil. 2012;97:597–604. doi: 10.1016/j.polymdegradstab.2012.01.007. DOI
Saito Y., Nakamura S., Hiramitsu M., Doi Y. Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) Polym. Int. 1996;39:167–174. doi: 10.1002/(SICI)1097-0126(199603)39:3<169::AID-PI453>3.0.CO;2-Z. DOI
Singh A.K., Srivastava J.K., Chandel A.K., Sharma L., Mallick N., Singh S.P. Biomedical applications of microbially engineered polyhydroxyalkanoates: an insight into recent advances, bottlenecks, and solutions. Appl. Microbiol. Biotechnol. 2019;103:2007–2032. doi: 10.1007/s00253-018-09604-y. PubMed DOI
Chanprateep S., Kulpreecha S. Production and characterization of biodegradable terpolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) by Alcaligenes sp. A-04. J. Biosci. Bioeng. 2006;101:51–56. doi: 10.1263/jbb.101.51. PubMed DOI
Lee Y.H., Kang M.S., Jung Y.M. Regulating the molar fraction of 4-hydroxybutyrate in poly(3-hydroxybutyrate-4-hydroxybutyrate) biosynthesis by Ralstonia eutropha using propionate as a stimulator. J. Biosci. Bioeng. 2000;89:380. doi: 10.1016/S1389-1723(00)88963-X. PubMed DOI
Cavalheiro J.M., Raposo R.S., de Almeida M.C.M., Cesário M.T., Sevrin C., Grandfils C., Da Fonseca M.M.R. Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Biores. Technol. 2012;111:391. doi: 10.1016/j.biortech.2012.01.176. PubMed DOI
Hermann-Krauss C., Koller M., Muhr A., Fasl H., Stelzer F., Braunegg G. Archaeal production of polyhydroxyalkanoate (PHA) co-and terpolyesters from biodiesel industry-derived by-products. Archaea. 2013;2013:129268. doi: 10.1155/2013/129268. PubMed DOI PMC
Ramachandran H., Iqbal N.M., Sipaut C.S., Abdullah A.A.A. Biosynthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate). Terpolymer with various monomer compositions by Cupriavidus sp. USMAA2-4. Appl. Biochem. Biotechnol. 2011;164:867–877. doi: 10.1007/s12010-011-9180-8. PubMed DOI
Obruca S., Marova I., Melusova S., Mravcova L. Production of polyhydroxyalkanoates from cheese whey employing Bacillus megaterium CCM 2037. Ann. Microbiol. 2011;61:947–953. doi: 10.1007/s13213-011-0218-5. DOI
Brandl H., Gross R.A., Lenz R.W., Fuller R.C. Pseudomonas oleovorans as a source of poly(beta-hydroxyalkanoates) for potential application as a biodegradable polyester. Appl. Environ. Microb. 1988;54:1977–1982. PubMed PMC
Kucera D., Pernicová I., Kovalcik A., Koller M., Mullerova L., Sedlacek P., Mravec F., Nebesarova J., Kalina M., Marova I., et al. Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. Biores. Technol. 2018;256:552–556. doi: 10.1016/j.biortech.2018.02.062. PubMed DOI
Amirul A.A., Yahya A.R.M., Sudesh K., Azizan M.N.M., Majid M.I.A. Biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by Cupriavidus sp. USMAA1020 isolated from Lake Kulim, Malaysia. Biores. Technol. 2008;99:4903–4909. PubMed
Rahayu A., Zaleha Z., Yahya A.R.M., Majid M.I.A., Amirul A. A Production of copolymer poly(3-hydroxybutyrate-co-4-hydroxybutyrate) through a one-step cultivation process. World J. Microbiol. Biotechnol. 2008;24:2403–2409. doi: 10.1007/s11274-008-9764-9. DOI
Lopar M., Špoljarić I.V., Cepanec N., Koller M., Braunegg G., Horvat P. Study of metabolic network of Cupriavidus necator DSM 545 growing on glycerol by applying elementary flux modes and yield space analysis. J. Ind. Microbiol. Biotechnol. 2014;41:913–930. doi: 10.1007/s10295-014-1439-y. PubMed DOI
Lindenkamp N., Peplinski K., Volodina E., Ehrenreich A., Steinbuchel A. Impact of multiple beta-ketothiolase deletion mutations in Ralstonia eutropha H16 on the composition of 3-mercaptopropionic acid-containing copolymers. Appl. Environ. Microbiol. 2010;76:5373–5382. doi: 10.1128/AEM.01058-10. PubMed DOI PMC
Fahima Azira T.M., Nursolehah A.A., Norhayati Y., Majid M.I.A., Amirul A.A. Biosynthesis of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) terpolymer by Cupriavidus sp. USMAA2-4 through two-step cultivation process. World J. Microbiol. Biotechnol. 2011;27:2287–2295. doi: 10.1007/s11274-011-0693-7. DOI