Structural insights into light harvesting by antenna-containing rhodopsins in marine Asgard archaea
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
3131/20
Israel Science Foundation (ISF)
JPMXP1323015482
MEXT | Japan Society for the Promotion of Science (JSPS)
PubMed
40442502
PubMed Central
PMC12137139
DOI
10.1038/s41564-025-02016-5
PII: 10.1038/s41564-025-02016-5
Knihovny.cz E-zdroje
- MeSH
- Archaea * metabolismus genetika chemie MeSH
- archeální proteiny * metabolismus chemie genetika MeSH
- fylogeneze MeSH
- karotenoidy metabolismus chemie MeSH
- metagenom MeSH
- mořská voda mikrobiologie MeSH
- přenos energie MeSH
- rhodopsiny mikrobiální * chemie metabolismus MeSH
- rodopsin * chemie metabolismus MeSH
- světlo MeSH
- světlosběrné proteinové komplexy * chemie metabolismus MeSH
- vodní organismy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- archeální proteiny * MeSH
- karotenoidy MeSH
- rhodopsiny mikrobiální * MeSH
- rodopsin * MeSH
- světlosběrné proteinové komplexy * MeSH
Aquatic bacterial rhodopsin proton pumps harvest light energy for photoheterotrophic growth and are known to contain hydroxylated carotenoids that expand the wavelengths of light utilized, but these have not been characterized in marine archaea. Here, by combining a marine chromophore extract with purified archaeal rhodopsins identified in marine metagenomes, we show light energy transfer from diverse hydroxylated carotenoids to heimdallarchaeial rhodopsins (HeimdallRs) from uncultured marine planktonic members of 'Candidatus Kariarchaeaceae' ('Candidatus Asgardarchaeota'). These light-harvesting antennas absorb in the blue-light range and transfer energy to the green-light-absorbing retinal chromophore within HeimdallRs, enabling the use of light that is otherwise unavailable to the rhodopsin. Furthermore, we show elevated proton pumping by the antennas in HeimdallRs under white-light illumination, which better simulates the light conditions encountered by these archaea in their natural habitats. Our results indicate that light-harvesting antennas in microbial rhodopsins exist in families beyond xanthorhodopsins and proteorhodopsins and are present in both marine bacteria and archaea.
Centre Algatech Institute of Microbiology Czech Academy of Sciences Třeboň Czech Republic
Department of Biological Sciences Graduate School of Science The University of Tokyo Tokyo Japan
Department of Life Science and Applied Chemistry Nagoya Institute of Technology Nagoya Japan
Department of Physics Technische Universität Dortmund Germany
Faculty of Biology Technion Israel Institute of Technology Haifa Israel
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Environmental Engineering ETH Zurich Switzerland
OptoBioTechnology Research Center Nagoya Institute of Technology Nagoya Japan
Physical and Analytical Chemistry Department University of Jaén Jaén Spain
Research Center Chemical Sciences and Sustainability University Alliance Ruhr Bochum Germany
The Institute for Solid State Physics The University of Tokyo Kashiwa Japan
Zobrazit více v PubMed
Rozenberg, A., Inoue, K., Kandori, H. & Béjà, O. Microbial rhodopsins: the last two decades. Annu. Rev. Microbiol.75, 427–447 (2021). PubMed
Finkel, O. M., Béjà, O. & Belkin, S. Global abundance of microbial rhodopsins. ISME J.7, 448–451 (2013). PubMed PMC
DeLong, E. F. & Béjà, O. The light-driven proton pump proteorhodopsin enhances bacterial survival during tough times. PLoS Biol.8, e1000359 (2010). PubMed PMC
Munson-McGee, J. H. et al. Decoupling of respiration rates and abundance in marine prokaryoplankton. Nature612, 764–770 (2022). PubMed PMC
Balashov, S. P. et al. Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science309, 2061–2064 (2005). PubMed PMC
Imasheva, E. S., Balashov, S. P., Choi, A. R., Jung, K.-H. & Lanyi, J. K. Reconstitution of Gloeobacter violaceus rhodopsin with a light-harvesting carotenoid antenna. Biochemistry48, 10948–10955 (2009). PubMed PMC
Chazan, A. et al. Phototrophy by antenna-containing rhodopsin pumps in aquatic environments. Nature615, 535–540 (2023). PubMed
Luecke, H. et al. Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc. Natl Acad. Sci. USA105, 16561–16565 (2008). PubMed PMC
Kopejtka, K. et al. A bacterium from a mountain lake harvests light using both proton-pumping xanthorhodopsins and bacteriochlorophyll-based photosystems. Proc. Natl Acad. Sci. USA119, e2211018119 (2022). PubMed PMC
Rinke, C. et al. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). ISME J.13, 663–675 (2019). PubMed PMC
Frigaard, N.-U., Martinez, A., Mincer, T. J. & DeLong, E. F. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature439, 847–850 (2006). PubMed
Iverson, V. et al. Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota. Science335, 587–590 (2012). PubMed
Pinhassi, J., DeLong, E. F., Béjà, O., González, J. M. & Pedrós-Alió, C. Marine bacterial and archaeal ion-pumping rhodopsins: genetic diversity, physiology, and ecology. Microbiol. Mol. Biol. Rev.80, 929–954 (2016). PubMed PMC
Tully, B. J. Metabolic diversity within the globally abundant Marine Group II Euryarchaea offers insight into ecological patterns. Nat. Commun.10, 271 (2019). PubMed PMC
Bulzu, P.-A. et al. Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche. Nat. Microbiol.4, 1129–1137 (2019). PubMed
Inoue, K. et al. Schizorhodopsins: a family of rhodopsins from Asgard archaea that function as light-driven inward H+ pumps. Sci. Adv.6, eaaz2441 (2020). PubMed PMC
Eme, L. et al. Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature618, 992–999 (2023). PubMed PMC
Vosseberg, J. et al. The emerging view on the origin and early evolution of eukaryotic cells. Nature633, 295–305 (2024). PubMed
Liu, Y. et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature593, 553–557 (2021). PubMed PMC
Varghese, N. J. et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res.43, 6761–6771 (2015). PubMed PMC
Vernette, C. et al. The Ocean Gene Atlas v2.0: online exploration of the biogeography and phylogeny of plankton genes. Nucleic Acids Res.50, W516–W526 (2022). PubMed PMC
Ernst, O. P. et al. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev.114, 126–163 (2014). PubMed PMC
Kirk, J. T. O. in Primary Productivity and Biogeochemical Cycles in the Sea (eds Falkowski, P. G. et al.) 9–29 (Springer, 1992).
Hirschi, S., Kalbermatter, D., Ucurum, Z., Lemmin, T. & Fotiadis, D. Cryo-EM structure and dynamics of the green-light absorbing proteorhodopsin. Nat. Commun.12, 4107 (2021). PubMed PMC
Gushchin, I. et al. Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria. Proc. Natl Acad. Sci. USA110, 12631–12636 (2013). PubMed PMC
Balashov, S. P. et al. Breaking the carboxyl rule: lysine 96 facilitates reprotonation of the Schiff base in the photocycle of a retinal protein from Exiguobacterium sibiricum. J. Biol. Chem.288, 21254–21265 (2013). PubMed PMC
Field, M. J., Bash, P. A. & Karplus, M. A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J. Comput. Chem.11, 700–733 (1990).
Béjà, O., Spudich, E. N., Spudich, J. L., Leclerc, M. & DeLong, E. F. Proteorhodopsin phototrophy in the ocean. Nature411, 786–789 (2001). PubMed
Man, D. et al. Diversification and spectral tuning in marine proteorhodopsins. EMBO J.22, 1725–1731 (2003). PubMed PMC
Gómez-Consarnau, L. et al. Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature445, 210–213 (2007). PubMed
Liu, R. et al. Metagenomic insights into Heimdallarchaeia clades from the deep-sea cold seep and hydrothermal vent. Environ. Microbiome19, 43 (2024). PubMed PMC
Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data5, 170203 (2018). PubMed PMC
Rodriguez-R, L. M., Tsementzi, D., Luo, C. & Konstantinidis, K. T. Iterative subtractive binning of freshwater chronoseries metagenomes identifies over 400 novel species and their ecologic preferences. Environ. Microbiol.22, 3394–3412 (2020). PubMed
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods9, 357–359 (2012). PubMed PMC
Haro-Moreno, J. M. et al. Dysbiosis in marine aquaculture revealed through microbiome analysis: reverse ecology for environmental sustainability. FEMS Microbiol. Ecol.96, fiaa218 (2020). PubMed
Puente-Sánchez, F., Hoetzinger, M., Buck, M. & Bertilsson, S. Exploring environmental intra-species diversity through non-redundant pangenome assemblies. Mol. Ecol. Resour.23, 1724–1736 (2023). PubMed
Tatusova, T. et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res.44, 6614–6624 (2016). PubMed PMC
Nishimura, Y. & Yoshizawa, S. The OceanDNA MAG catalog contains over 50,000 prokaryotic genomes originated from various marine environments. Sci. Data9, 305 (2022). PubMed PMC
Paoli, L. et al. Biosynthetic potential of the global ocean microbiome. Nature607, 111–118 (2022). PubMed PMC
Parks, D. H. et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol.38, 1079–1086 (2020). PubMed
Asnicar, F. et al. Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nat. Commun.11, 2500 (2020). PubMed PMC
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics26, 2460–2461 (2010). PubMed
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol.30, 772–780 (2013). PubMed PMC
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics25, 1972–1973 (2009). PubMed PMC
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics30, 1312–1313 (2014). PubMed PMC
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics10, 421 (2009). PubMed PMC
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics27, 1164–1165 (2011). PubMed PMC
Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics11, 538 (2010). PubMed PMC
Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol.23, 254–267 (2006). PubMed
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature630, 493–500 (2024). PubMed PMC
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics28, 3150–3152 (2012). PubMed PMC
Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol.38, 3022–3027 (2021). PubMed PMC
Chen, I.-M. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res.47, D666–D677 (2019). PubMed PMC
Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol.35, 1026–1028 (2017). PubMed
Eddy, S. R. A new generation of homology search tools based on probabilistic inference. Genome Inform.23, 205–211 (2009). PubMed
Chikhi, R., Raffestin, B., Korobeynikov, A., Edgar, R. & Babaian, A. Logan: planetary-scale genome assembly surveys life’s diversity. Preprint at bioRxiv10.1101/2024.07.30.605881 (2024).
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics34, 3094–3100 (2018). PubMed PMC
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res.20, 1297–1303 (2010). PubMed PMC
Ahmed, F. et al. Profiling of carotenoids and antioxidant capacity of microalgae from subtropical coastal and brackish waters. Food Chem.165, 300–306 (2014). PubMed
Young, A. J., Orset, S. & Tsavalos, A. J. in Handbook of Photosynthesis (ed. Pessarakli, M.) 597–622 (Marcel Dekker, 1997).
Grote, A. et al. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res.33, W526–W531 (2005). PubMed PMC
Lakowicz, J. R. Principles of Fluorescence Spectroscopy (Springer, 2006).
Inoue, K. et al. A light-driven sodium ion pump in marine bacteria. Nat. Commun.4, 1678 (2013). PubMed
Wang, W.-W., Sineshchekov, O. A., Spudich, E. N. & Spudich, J. L. Spectroscopic and photochemical characterization of a deep ocean proteorhodopsin. J. Biol. Chem.278, 33985–33991 (2003). PubMed
Ihaka, R. & Gentleman, R. R: a language for data analysis and graphics. J. Comput. Graph. Stat.5, 299–314 (1996).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw.67, 1–48 (2015).
Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2019).
Shihoya, W. et al. Crystal structure of heliorhodopsin. Nature574, 132–136 (2019). PubMed
Hirata, K. et al. ZOO: an automatic data-collection system for high-throughput structure analysis in protein microcrystallography. Acta Crystallogr. D Struct. Biol.75, 138–150 (2019). PubMed PMC
Yamashita, K., Hirata, K. & Yamamoto, M. KAMO: towards automated data processing for microcrystals. Acta Crystallogr. D Struct. Biol.74, 441–449 (2018). PubMed PMC
Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr.66, 125–132 (2010). PubMed PMC
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr.40, 658–674 (2007). PubMed PMC
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature596, 583–589 (2021). PubMed PMC
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr.66, 486–501 (2010). PubMed PMC
Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr.68, 352–367 (2012). PubMed PMC
Bannwarth, C., Ehlert, S. & Grimme, S. GFN2-xTB—an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput.15, 1652–1671 (2019). PubMed
Maier, J. A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput.11, 3696–3713 (2015). PubMed PMC
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys.79, 926–935 (1983).
Steinbach, P. J. & Brooks, B. R. New spherical-cutoff methods for long-range forces in macromolecular simulation. J. Comput. Chem.15, 667–683 (1994).
Neese, F. Software update: the ORCA program system—version 5.0. WIREs Comput. Mol. Sci.12, e1606 (2022).
Hättig, C. in Advances in Quantum Chemistry Vol. 50 (ed. Jensen, H. J. Å.) 37–60 (Academic Press, 2005).
Dunning, T. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys.90, 1007–1023 (1989).
Furche, F. et al. Turbomole. WIREs Comput. Mol. Sci.4, 91–100 (2014).
Rozenberg, A. Structural insights into light harvesting by antenna-containing rhodopsins in marine Asgard archaea. Bioinformatic Data. figshare10.6084/m9.figshare.26906593 (2025). PubMed PMC
Matsui, Y. et al. Specific damage induced by X-ray radiation and structural changes in the primary photoreaction of bacteriorhodopsin. J. Mol. Biol.324, 469–481 (2002). PubMed
Po, H. N. & Senozan, N. M. The Henderson–Hasselbalch equation: its history and limitations. J. Chem. Educ.78, 1499 (2001).
Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics23, 2947–2948 (2007). PubMed
Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res.42, W320–W324 (2014). PubMed PMC
Structural insights into light harvesting by antenna-containing rhodopsins in marine Asgard archaea