Microbiota modulate immune cell populations and drive dynamic structural changes in gut-associated lymphoid tissue
Status In-Process Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40802565
PubMed Central
PMC12351735
DOI
10.1080/19490976.2025.2543908
Knihovny.cz E-zdroje
- Klíčová slova
- Germ-free and gnotobiotic models, Gut-associated lymphoid tissue (GALT), Lymphoid tissue morphogenesis, MHCII-EGFP knock-in mice, Microbiota-induced immunity, Phenotypic plasticity,
- Publikační typ
- časopisecké články MeSH
Inbred mouse strains provide phenotypic homogeneity between individual mice. However, stochastic morphogenetic events combined with epigenetic changes due to exposure to environmental factors and ontogenic experience result in variability among mice with virtually identical genotypes, reducing the reproducibility of experimental mouse models. Here we used microscopic and cytometric techniques to identify individual patterns in gut-associated lymphoid tissue (GALT) that are induced by exposure to microbiota. By comparing germ-free (GF), conventional (CV) and gnotobiotic mice colonized with a defined minimal mouse microbiota (oMM12) MHC II-EGFP knock-in mice we quantified antigen-presenting cells (APCs) in the lamina propria, cryptopatches (CP), isolated lymphoid follicles (ILFs), Peyer's patches (PPs) and specific sections of the mesenteric lymphoid complex. We found that GF mice had a significantly larger outer intestinal surface area compared to CV and oMM12-colonized mice, which partially compensated for their lower density of the villi in the distal ileum. GF mice also contained fewer APCs than oMM12 mice in the Iamina propria of the villi and had a significantly smaller volume of the solitary intestinal lymphoid tissue (SILT). In both GF and oMM12 mice, PP follicles were significantly smaller compared to CV mice, although number was similar. Concomitantly, the number of pDCs in PPs was significantly lower in GF mice than in CV mice. Moreover, the cecal patch was dispersed into small units in GF mice whereas it was compact in CV mice. Taken together, we here provide further evidence that microbiota regulates SILT differentiation, the size and morphology of PPs, the cellular composition of mesenteric lymph nodes (MLNs) and the morphology of cecal patch. As such, microbiota directly affect not only the functional configuration of the immune system but also the differentiation of lymphoid structures. These findings highlight how standardized microbiota, such as oMM12, can promote reproducibility in animal studies by enabling microbiologically controlled experiments across laboratories.
Zobrazit více v PubMed
Chung H, Kasper DL.. Microbiota-stimulated immune mechanisms to maintain gut homeostasis. Curr Opin Immunol. 2010;22(4):455–24. doi: 10.1016/j.coi.2010.06.008. PubMed DOI
Fung TC. The microbiota-immune axis as a central mediator of gut-brain communication. Neurobiol Dis. 2020;136:104714. doi: 10.1016/j.nbd.2019.104714. PubMed DOI
Kernbauer E, Ding Y, Cadwell K. An enteric virus can replace the beneficial function of commensal bacteria. Nat. 2014;516(7529):94–98. doi: 10.1038/nature13960. PubMed DOI PMC
Kanauchi O, Matsumoto Y, Matsumura M, Fukuoka M, Bamba T. The beneficial effects of microflora, especially obligate anaerobes, and their products on the colonic environment in inflammatory bowel disease. Curr Pharm Des. 2005;11(8):1047–1053. doi: 10.2174/1381612053381675. PubMed DOI
Maier E, Anderson RC, Roy NC. Understanding how commensal obligate anaerobic bacteria regulate immune functions in the large intestine. Nutr. 2015;7(1):45–73. doi: 10.3390/nu7010045. PubMed DOI PMC
Lubin JB, Green J, Maddux S, Denu L, Duranova T, Lanza M, Wynosky-Dolfi M, Flores JN, Grimes LP, Brodsky IE, et al. Arresting microbiome development limits immune system maturation and resistance to infection in mice. Cell Host Microbe. 2023;31(4):554–570.e7. doi: 10.1016/j.chom.2023.03.006. PubMed DOI PMC
Pabst O, Slack E. Iga and the intestinal microbiota: the importance of being specific. Mucosal Immunol. 2020;13(1):12–21. doi: 10.1038/s41385-019-0227-4. PubMed DOI PMC
Koshida K, Ito M, Yakabe K, Takahashi Y, Tai Y, Akasako R, Kimizuka T, Takano S, Sakamoto N, Haniuda K, et al. Dysfunction of Foxp3+ regulatory T cells induces dysbiosis of gut microbiota via aberrant binding of immunoglobulins to microbes in the intestinal lumen. Int J Mol Sci. 2023;24(10):8549. doi: 10.3390/ijms24108549. PubMed DOI PMC
Östman S, Rask C, Wold AE, Hultkrantz S, Telemo E. Impaired regulatory T cell function in germ-free mice. Eur J Immunol. 2006;36(9):2336–2346. doi: 10.1002/eji.200535244. PubMed DOI
Hrncir T, Stepankova R, Kozakova H, Hudcovic T, Tlaskalova-Hogenova H. Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: studies in germ-free mice. BMC Immunol. 2008;9(1):1–11. doi: 10.1186/1471-2172-9-65. PubMed DOI PMC
Zhang D, Chen G, Manwani D, Mortha A, Xu C, Faith JJ, Burk RD, Kunisaki Y, Jang J-E, Scheiermann C, et al. Neutrophil ageing is regulated by the microbiome. Nat. 2015;5257570(7570):528–532. doi: 10.1038/nature15367. PubMed DOI PMC
Kolypetri P, Liu S, Cox LM, Fujiwara M, Raheja R, Ghitza D, Song A, Daatselaar D, Willocq V, Weiner HL. Regulation of splenic monocyte homeostasis and function by gut microbial products. iScience. 2021;24(4):102356. doi: 10.1016/j.isci.2021.102356. PubMed DOI PMC
Hamada H, Hiroi T, Nishiyama Y, Takahashi H, Masunaga Y, Hachimura S, Kaminogawa S, Takahashi-Iwanaga H, Iwanaga T, Kiyono H, et al. Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol. 2002;168(1):57–64. doi: 10.4049/jimmunol.168.1.57. PubMed DOI
Bouskra D, Brézillon C, Bérard M, Werts C, Varona R, Boneca IG, Eberl G. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nat. 2008;456(7221):507–510. doi: 10.1038/nature07450. PubMed DOI
Bauer H, Horowitz RE, Levenson SM, Popper H. The response of the lymphatic tissue to the microbial flora. Studies on germfree mice. Am J Pathol. 1963;42(4):471. PubMed PMC
Thompson GR, Trexler PC. Gastrointestinal structure and function in germ-free or gnotobiotic animals. Gut. 1971;12(3):230. doi: 10.1136/gut.12.3.230. PubMed DOI PMC
Barman NN, Bianchi ATJ, Zwart RJ, Pabst R, Rothkötter HJ. Jejunal and ileal Peyer’s patches in pigs differ in their postnatal development. Anat Embryol (Berl). 1996;195(1):41–50. doi: 10.1007/s004290050023. PubMed DOI
Stepankova R, Šinkora J, Hudcovic T, Kozáková H, Tlaskalová-Hogenová H. Differences in development of lymphocyte subpopulations from gut-associated lymphatic tissue (GALT) of germfree and conventional rats: effect of aging. Folia Microbiol. (Praha). 1998;43(5):531–534. doi: 10.1007/BF02820814. PubMed DOI
Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D, Hermanova P, Martino ME, Balmand S, Hudcovic T, Heddi A. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science. 2016;351(6275):854–857. doi: 10.1126/science.aad8588. PubMed DOI
Schwarzer M, Hermanova P, Srutkova D, Golias J, Hudcovic T, Zwicker C, Sinkora M, Akgün J, Wiedermann U, Tuckova L, et al. Germ-free mice exhibit mast cells with impaired functionality and gut homing and do not develop food allergy. Front. Immunol. 2019;10:395249. doi: 10.3389/fimmu.2019.00205. PubMed DOI PMC
Troy EB. Beneficial effects of Bacteroides fragilis polysaccharides on the immune system. Front Biosci. 2010;15(1):25–34. doi: 10.2741/3603. PubMed DOI PMC
Brugiroux S, Beutler M, Pfann C, Garzetti D, Ruscheweyh H-J, Ring D, Diehl M, Herp S, Lötscher Y, Hussain S, et al. Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nat Microbiol. 2016;2(2):1–12. doi: 10.1038/nmicrobiol.2016.215. PubMed DOI
Romero R, Zarzycka A, Preussner M, Fischer F, Hain T, Herrmann J-P, Roth K, Keber CU, Suryamohan K, Raifer H, et al. Selected commensals educate the intestinal vascular and immune system for immunocompetence. Microbiome. 2022;10(1):158. doi: 10.1186/s40168-022-01353-5. PubMed DOI PMC
Afrizal A, Jennings SAV, Hitch TCA, Riedel T, Basic M, Panyot A, Treichel N, Hager FT, Wong EOY, Wolter B, et al. Enhanced cultured diversity of the mouse gut microbiota enables custom-made synthetic communities. Cell Host Microbe. 2022;30(11):1630–1645.e25. doi: 10.1016/j.chom.2022.09.011. PubMed DOI
Pačes J, Knížková K, Tušková L, Grobárová V, Zadražil Z, Boes M, Černý J. Mhc II – EGFP knock-in mouse model is a suitable tool for systems and quantitative immunology. Immunol Lett. 2022;251-252:75–85. doi: 10.1016/j.imlet.2022.10.007. PubMed DOI
Pačes J, Grobárová V, Zadražil Z, Knížková K, Malinská N, Tušková L, Boes M, Černý J. MHC II-EGFP knock-in mouse model. Curr. Protoc. 2023;3(11). doi: 10.1002/cpz1.925. PubMed DOI
Eberl C, Ring D, Münch PC, Beutler M, Basic M, Slack EC, Schwarzer M, Srutkova D, Lange A, Frick JS, et al. Reproducible colonization of germ-free mice with the oligo-mouse-microbiota in different animal facilities. Front Microbiol. 2020;10:488258. doi: 10.3389/fmicb.2019.02999. PubMed DOI PMC
Darnaud M, De Vadder F, Bogeat P, Boucinha L, Bulteau A-L, Bunescu A, Couturier C, Delgado A, Dugua H, Elie C, et al. A standardized gnotobiotic mouse model harboring a minimal 15-member mouse gut microbiota recapitulates SOPF/SPF phenotypes. Nat Commun. 2021;12(1):1–21. doi: 10.1038/s41467-021-26963-9. PubMed DOI PMC
Beutler M, Eberl C, Garzetti D, Herp S, Münch P, Ring D, Dolowschiak T, Brugiroux S, Schiller P, Hussain S, et al. Contribution of bacterial and host factors to pathogen “blooming” in a gnotobiotic mouse model for Salmonella enterica serovar Typhimurium-induced enterocolitis. Infect Immun. 2024;92(2). doi: 10.1128/iai.00318-23. PubMed DOI PMC
Houston SA, Cerovic V, Thomson C, Brewer J, Mowat AM, Milling S. The lymph nodes draining the small intestine and colon are anatomically separate and immunologically distinct. Mucosal Immunol. 2016;9(2):468–478. doi: 10.1038/mi.2015.77. PubMed DOI
Maeda Y, Noda S, Tanaka K, Sawamura SA, Aiba Y, Ishikawa H, Hasegawa H, Kawabe N, Miyasaka M, Koga Y. The failure of oral tolerance induction is functionally coupled to the absence of T cells in Peyer’s patches under germfree conditions. Immunobiology. 2001;204(4):442–457. doi: 10.1078/0171-2985-00054. PubMed DOI
Watanabe H, Numata K, Ito T, Takagi K, Matsukawa A. Innate immune response in Th1- and Th2-dominant mouse strains. Shock. 2004;22(5):460–466. doi: 10.1097/01.shk.0000142249.08135.e9. PubMed DOI
Juhr NC, Ladeburg M. Intestinal accumulation of urea in germ-free animals - a factor in caecal enlargement. Lab Anim. 1986;20(3):238–241. doi: 10.1258/002367786780865665. PubMed DOI
Koopman JP, Kennis HM, Mullink JWMA, Prins RA, Stadhouders AM, De Boer H, Hectors MP. ‘Normalization’ of germfree mice with anaerobically cultured caecal flora of ‘normal’ mice. Lab Anim. 1984;18(2):188–194. doi: 10.1258/002367784780891253. PubMed DOI
Loesche WJ. Effect of bacterial contamination on cecal size and cecal contents of gnotobiotic rodents. J Bacteriol. 1969;99(2):520–526. doi: 10.1128/jb.99.2.520-526.1969. PubMed DOI PMC
Guillaume J, Leufgen A, Hager FT, Pabst O, Cerovic V. Mhcii expression on gut macrophages supports T cell homeostasis and is regulated by microbiota and ontogeny. Sci Rep. 2023;13(1):1–13. doi: 10.1038/s41598-023-28554-8. PubMed DOI PMC
Matsumoto S, Setoyama H, Umesaki Y. Differential induction of major histocompatibility complex molecules on mouse intestine by bacterial colonization. Gastroenterology. 1992;103(6):1777–1782. doi: 10.1016/0016-5085(92)91434-6. PubMed DOI
Koyama M, Mukhopadhyay P, Schuster IS, Henden AS, Hülsdünker J, Varelias A, Vetizou M, Kuns RD, Robb RJ, Zhang P, et al. MHC class II antigen presentation by the intestinal epithelium initiates graft-versus-host disease and is influenced by the microbiota. Immunity. 2019;51(5):885–898.e7. doi: 10.1016/j.immuni.2019.08.011. PubMed DOI PMC
Baptista AP, Olivier BJ, Goverse G, Greuter M, Knippenberg M, Kusser K, Domingues RG, Veiga-Fernandes H, Luster AD, Lugering A, et al. Colonic patch and colonic SILT development are independent and differentially regulated events. Mucosal Immunol. 2013;6(3):511–521. doi: 10.1038/mi.2012.90. PubMed DOI PMC
Bird L. It starts with a nod. Nat Rev Immunol. 2008;8(12):909–909. doi: 10.1038/nri2461. DOI
Pabst O, Herbrand H, Friedrichsen M, Velaga S, Dorsch M, Berhardt G, Worbs T, Macpherson AJ, Forster R. Adaptation of solitary intestinal lymphoid tissue in response to microbiota and chemokine receptor CCR7 signaling. J Immunol. 2006;177(10):6824–6832. doi: 10.4049/jimmunol.177.10.6824. PubMed DOI
Repa A, Kozakova H, Hudcovic T, Stepankova R, Hrncir T, Tlaskalova-Hogenova H, Pollak A, Wiedermann U. Susceptibility to nasal and oral tolerance induction to the major birch pollen allergen Bet v 1 is not dependent on the presence of the microflora. Immunol Lett. 2008;117(1):50–56. doi: 10.1016/j.imlet.2007.11.025. PubMed DOI
Buettner M, Lochner M. Development and function of secondary and tertiary lymphoid organs in the small intestine and the colon. Front Immunol. 2016;7. doi: 10.3389/fimmu.2016.00342. PubMed DOI PMC
Moghaddami M, Cummins A, Mayrhofer G. Lymphocyte-filled villi: comparison with other lymphoid aggregations in the mucosa of the human small intestine. Gastroenterology. 1998;115(6):1414–1425. doi: 10.1016/S0016-5085(98)70020-4. PubMed DOI
Nowosad CR, Mesin L, Castro TBR, Wichmann C, Donaldson GP, Araki T, Schiepers A, Lockhart AAK, Bilate AM, Mucida D, et al. Tunable dynamics of B cell selection in gut germinal centres. Nature. 2020;588(7837):321–326. doi: 10.1038/s41586-020-2865-9. PubMed DOI PMC
Chen H, Zhang Y, Ye AY, Du Z, Xu M, Lee C-S, Hwang JK, Kyritsis N, Ba Z, Neuberg D, et al. BCR selection and affinity maturation in Peyer’s patch germinal centres. Nat. 2020;582(7812):421–425. doi: 10.1038/s41586-020-2262-4. PubMed DOI PMC
Queitsch C, Sangstert TA, Lindquist S. Hsp90 as a capacitor of phenotypic variation. Nat. 2002;417(6889):618–624. doi: 10.1038/nature749. PubMed DOI
Brabec T, Schwarzer M, Kováčová K, Dobešová M, Schierová D, Březina J, Pacáková I, Šrůtková D, Ben-Nun O, Goldfarb Y, et al. Segmented filamentous bacteria–induced epithelial MHCII regulates cognate CD4+ IELs and epithelial turnover. J Exp Med. 2024;221(1). doi: 10.1084/jem.2023019411132023c. PubMed DOI PMC
Hansen CHF, Nielsen DS, Kverka M, Zakostelska Z, Klimesova K, Hudcovic T, Tlaskalova-Hogenova H, Hansen AK. Patterns of early gut colonization shape future immune responses of the host. PLOS ONE. 2012;7(3):e34043. doi: 10.1371/journal.pone.0034043. PubMed DOI PMC
Al Nabhani Z, Dulauroy S, Marques R, Cousu C, Al Bounny S, Déjardin F, Sparwasser T, Bérard M, Cerf-Bensussan N, Eberl G. A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. Immunity. 2019;50(5):1276–1288.e5. doi: 10.1016/j.immuni.2019.02.014. PubMed DOI
Chang CCJ, Winn BJ. Perturbations of the ocular surface microbiome and their effect on host immune function. Curr Opin Ophthalmol. 2023;34(2):181–188. doi: 10.1097/ICU.0000000000000931. PubMed DOI PMC
Retuerto MA, Szczotka-Flynn L, Mukherjee PK, Debanne S, Iyengar SK, Richardson B, Cameron M, Ghannoum MA. Diversity of ocular surface bacterial microbiome adherent to worn contact lenses and bacterial communities associated with care solution use. Eye Contact Lens. 2019;45(5):331–339. doi: 10.1097/ICL.0000000000000578. PubMed DOI