MHC II-EGFP Knock-in Mouse Model
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
37934124
DOI
10.1002/cpz1.925
Knihovny.cz E-zdroje
- Klíčová slova
- APCs, MHC II-EGFP knock-in mouse, light-sheet fluorescence microscopy, lymphoid organs, quantitative immunology,
- MeSH
- antigen prezentující buňky * MeSH
- B-lymfocyty * MeSH
- buněčná membrána MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- zelené fluorescenční proteiny MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- enhanced green fluorescent protein MeSH Prohlížeč
- zelené fluorescenční proteiny MeSH
The MHC II-EGFP knock-in mouse model enables us to visualize and track MHC-II-expressing cells in vivo by expressing enhanced green fluorescent protein (EGFP) fused to the MHC class II molecule under the MHC II beta chain promoter. Using this model, we can easily identify MHC-II-expressing cells, including dendritic cells, B cells, macrophages, and ILC3s, which play a key role as antigen-presenting cells (APCs) for CD4+ T cells. In addition, we can also precisely identify and analyze APC-containing tissues and organs. Even after fixation, EGFP retains its fluorescence, so this model is suitable for immunofluorescence studies, facilitating an unbiased characterization of the histological context, especially with techniques such as light-sheet fluorescence microscopy. Furthermore, the MHC II-EGFP knock-in mouse model is valuable for studying the molecular mechanisms of MHC II gene regulation and expression by making it possible to correlate MHC II expression (MHC II-EGFP) with surface fraction through antibody detection, thereby shedding light on the intricate regulation of MHC II expression. Overall, this model is an essential asset for quantitative and systems immunological research, providing insights into immune cell dynamics and localization, with a tool for precise cell identification and with the ability to study MHC II gene regulation, thus furthering the understanding of immune responses and underlying mechanisms © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Characterization of antigen-specific MHC II loading compartment tubulation toward the immunological synapse Basic Protocol 2: Characterization of overall versus surface MHC II expression Basic Protocol 3: Identification and preparation of the lymphoid organs Basic Protocol 4: Quantification of APC content in lymphoid organs by fluorescence stereomicroscopy Basic Protocol 5: Quantification and measurement of intestinal lymphoid tissue by light-sheet fluorescence stereomicroscopy Basic Protocol 6: Visualization of corneal APCs Basic Protocol 7: Quantification of MHC II+ cells in maternal milk by flow cytometry Support Protocol 1: Cell surface staining and flow cytometry analysis of spleen mononuclear cells.
Zobrazit více v PubMed
Awade, A. C. (1996). On hen egg fractionation: Applications of liquid chromatography to the isolation and the purification of hen egg white and egg yolk proteins. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 202(1), 1-14. https://doi.org/10.1007/BF01229676
Bertho, N., Cerny, J., Kim, Y.-M., Fiebiger, E., Ploegh, H., & Boes, M. (2003). Requirements for T cell-polarized tubulation of class II+ compartments in dendritic cells. Journal of Immunology, 171(11), 5689-5696. https://doi.org/10.4049/jimmunol.171.11.5689
Boes, M., Cerny, J., Massol, R., Op Den Brouw, M., Kirchhausen, T., Chen, J., & Ploegh, H. L. (2002). T-cell engagement of dendritic cells rapidly rearranges MHC class II transport. Nature, 418(6901), 983-988. https://doi.org/10.1038/nature01004
Cristofalo, E. A., Schanler, R. J., Blanco, C. L., Sullivan, S., Trawoeger, R., Kiechl-Kohlendorfer, U., Dudell, G., Rechtman, D. J., Lee, M. L., Lucas, A., & Abrams, S. (2013). Randomized trial of exclusive human milk versus preterm formula diets in extremely premature infants. Journal of Pediatrics 163, 6, P1592-P1595.e1. https://doi.org/10.1016/j.jpeds.2013.07.011
Darby, M. G., Chetty, A., Mrjden, D., Rolot, M., Smith, K., MacKowiak, C., Sedda, D., Nyangahu, D., Jaspan, H., Toellner, K. M., Waisman, A., Quesniaux, V., Ryffel, B., Cunningham, A. F., Dewals, B. G., Brombacher, F., & Horsnell, W. G. C. (2019). Pre- conception maternal helminth infection transfers via nursing long-lasting cellular immunity against helminths to offspring. Science Advances, 5(5), 3058-3087. https://doi.org/10.1126/sciadv.aav3058
Depeters, E. J., & Hovey, R. C. (2009). Methods for collecting milk from mice. Journal of Mammary Gland Biology and Neoplasia, 14(4), 397-400. https://doi.org/10.1007/s10911-009-9158-0
Foulsham, W., Coco, G., Amouzegar, A., Chauhan, S. K., & Dana, R. (2018). When clarity is crucial: Regulating ocular surface immunity. Trends in Immunology, 39(4), 288-301. https://doi.org/10.1016/j.it.2017.11.007
Gama, L. A., Rocha Machado, M. P., Beckmann, A. P. S., Miranda, J. R., de, A., Corá, L. A., & Américo, M. F. (2020). Gastrointestinal motility and morphology in mice: Strain-dependent differences. Neurogastroenterology & Motility, 32(6), e13824. https://doi.org/10.1111/nmo.13824
Gómez-Gallego, C., Ilo, Jaakkola, U., Salminen, S., Periago, M. J., Ros, G., & Frias, R. (2014). A method to collect high volumes of milk from mice (Mus musculus). Anales de Veterinaria de Murcia, 29, 55-61.
Görs, S., Kucia, M., Langhammer, M., Junghans, P., & Metges, C. C. (2009). Technical note: Milk composition in mice-methodological aspects and effects of mouse strain and lactation day. Journal of Dairy Science, 92(2), 632-637. https://doi.org/10.3168/jds.2008-1563
Hassiotou, F., Geddes, D. T., & Hartmann, P. E. (2013). Cells in human milk: State of the science. Journal of Human Lactation, 29(2), 171-182. https://doi.org/10.1177/0890334413477242
Houston, S. A., Cerovic, V., Thomson, C., Brewer, J., Mowat, A. M., & Milling, S. (2015). The lymph nodes draining the small intestine and colon are anatomically separate and immunologically distinct. Mucosal Immunology, 9(2), 468-478. https://doi.org/10.1038/mi.2015.77
Jenness, R. (1979). The composition of human milk. Seminars in Perinatology, 3, 225-239.
Keller, T., Wengenroth, L., Smorra, D., Probst, K., Kurian, L., Kribs, A., & Brachvogel, B. (2019). Novel DRAQ5TM/SYTOX® blue based flow cytometric strategy to identify and characterize stem cells in human breast milk. Cytometry Part B - Clinical Cytometry, 96(6), 480-489. https://doi.org/10.1002/cyto.b.21748
Kernbauer, E., Ding, Y., & Cadwell, K. (2014). An enteric virus can replace the beneficial function of commensal bacteria. Nature, 516(7529), 94-98. https://doi.org/10.1038/nature13960
Knickelbein, J. E., Watkins, S. C., Mcmenamin, P. G., & Hendricks, R. L. (2009). Stratification of antigen-presenting cells within the normal cornea. Ophthalmology and Eye Diseases, 1, 45-54. https://doi.org/10.4137/oed.s2813
Laouar, A. (2020). Maternal leukocytes and infant immune programming during breastfeeding. Trends in Immunology, 41(3), 225-239. https://doi.org/10.1016/j.it.2020.01.005
Muranishi, Y., Parry, L., Averous, J., Terrisse, A., Maurin, A. C., Chaveroux, C., Mesclon, F., Carraro, V., Bruhat, A., Fafournoux, P., & Jousse, C. (2016). Method for collecting mouse milk without exogenous oxytocin stimulation. BioTechniques, 60(1), 47-49. https://doi.org/10.2144/000114373
Pačes, J., Knížková, K., Tušková, L., Grobárová, V., Zadražil, Z., Boes, M., & Černý, J. (2022). MHC II-EGFP knock-in mouse model is a suitable tool for systems and quantitative immunology. Immunology Letters, 251-252, 75-85. https://doi.org/10.1016/j.imlet.2022.10.007
Susaki, E. A., Tainaka, K., Perrin, D., Kishino, F., Tawara, T., Watanabe, T. M., Yokoyama, C., Onoe, H., Eguchi, M., Yamaguchi, S., Abe, T., Kiyonari, H., Shimizu, Y., Miyawaki, A., Yokota, H., & Ueda, H. R. (2014). Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell, 157(3), 726-739. https://doi.org/10.1016/j.cell.2014.03.042
Susaki, E. A., Tainaka, K., Perrin, D., Yukinaga, H., Kuno, A., & Ueda, H. R. (2015). Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nature Protocols, 10(11), 1709-1727. https://doi.org/10.1038/nprot.2015.085
van den Broeck, W., Derore, A., & Simoens, P. (2006). Anatomy and nomenclature of murine lymph nodes: Descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. Journal of Immunological Methods, 312(1-2), 12-19. https://doi.org/10.1016/j.jim.2006.01.022
Victora, C. G., Bahl, R., Barros, A. J. D., França, V. A., Horton, S., Krasevec, J., Murch, S., Sankar, M. J., Walker, N., & Rollins, N. C. (2016). Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet, 387, 475. https://doi.org/10.1016/S0140-6736(15)01024-7
Willingham, K., McNulty, E., Anderson, K., Hayes-Klug, J., Nalls, A., & Mathiason, C. (2014). Milk collection methods for mice and Reeves’ Muntjac deer. Journal of Visualized Experiments: JoVE, 89, 51007. https://doi.org/10.3791/51007
Witkowska-Zimny, M., & Kaminska-El-Hassan, E. (2017). Cells of human breast milk. In Cellular and Molecular Biology Letters, 22, 11. https://doi.org/10.1186/s11658-017-0042-4