Segmented filamentous bacteria-induced epithelial MHCII regulates cognate CD4+ IELs and epithelial turnover

. 2024 Jan 01 ; 221 (1) : . [epub] 20231030

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37902602

Intestinal epithelial cells have the capacity to upregulate MHCII molecules in response to certain epithelial-adhesive microbes, such as segmented filamentous bacteria (SFB). However, the mechanism regulating MHCII expression as well as the impact of epithelial MHCII-mediated antigen presentation on T cell responses targeting those microbes remains elusive. Here, we identify the cellular network that regulates MHCII expression on the intestinal epithelium in response to SFB. Since MHCII on the intestinal epithelium is dispensable for SFB-induced Th17 response, we explored other CD4+ T cell-based responses induced by SFB. We found that SFB drive the conversion of cognate CD4+ T cells to granzyme+ CD8α+ intraepithelial lymphocytes. These cells accumulate in small intestinal intraepithelial space in response to SFB. Yet, their accumulation is abrogated by the ablation of MHCII on the intestinal epithelium. Finally, we show that this mechanism is indispensable for the SFB-driven increase in the turnover of epithelial cells in the ileum. This study identifies a previously uncharacterized immune response to SFB, which is dependent on the epithelial MHCII function.

Erratum v

PubMed

Zobrazit více v PubMed

Al Nabhani, Z., Dulauroy S., Marques R., Cousu C., Al Bounny S., Déjardin F., Sparwasser T., Bérard M., Cerf-Bensussan N., and Eberl G.. 2019. A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. Immunity. 50:1276–1288.e5. 10.1016/j.immuni.2019.02.014 PubMed DOI

Arnaud-Battandier, F., Cerf-Bensussan N., Amsellem R., and Schmitz J.. 1986. Increased HLA-DR expression by enterocytes in children with celiac disease. Gastroenterology. 91:1206–1212. 10.1016/S0016-5085(86)80018-X PubMed DOI

Atarashi, K., Tanoue T., Ando M., Kamada N., Nagano Y., Narushima S., Suda W., Imaoka A., Setoyama H., Nagamori T., et al. . 2015. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell. 163:367–380. 10.1016/j.cell.2015.08.058 PubMed DOI PMC

Bevins, C.L., and Salzman N.H.. 2011. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat. Rev. Microbiol. 9:356–368. 10.1038/nrmicro2546 PubMed DOI

Beyaz, S., Chung C., Mou H., Bauer-Rowe K.E., Xifaras M.E., Ergin I., Dohnalova L., Biton M., Shekhar K., Eskiocak O., et al. . 2021. Dietary suppression of MHC class II expression in intestinal epithelial cells enhances intestinal tumorigenesis. Cell Stem Cell. 28:1922–1935.e5. 10.1016/j.stem.2021.08.007 PubMed DOI PMC

Bilate, A.M., Bousbaine D., Mesin L., Agudelo M., Leube J., Kratzert A., Dougan S.K., Victora G.D., and Ploegh H.L.. 2016. Tissue-specific emergence of regulatory and intraepithelial T cells from a clonal T cell precursor. Sci. Immunol. 1:eaaf7471. 10.1126/sciimmunol.aaf7471 PubMed DOI PMC

Bilate, A.M., London M., Castro T.B.R., Mesin L., Bortolatto J., Kongthong S., Harnagel A., Victora G.D., and Mucida D.. 2020. T cell receptor is required for differentiation, but not maintenance, of intestinal CD4+ intraepithelial lymphocytes. Immunity. 53:1001–1014.e20. 10.1016/j.immuni.2020.09.003 PubMed DOI PMC

Biton, M., Haber A.L., Rogel N., Burgin G., Beyaz S., Schnell A., Ashenberg O., Su C.W., Smillie C., Shekhar K., et al. . 2018. T helper cell cytokines modulate intestinal stem cell renewal and differentiation. Cell. 175:1307–1320.e22. 10.1016/j.cell.2018.10.008 PubMed DOI PMC

Blumershine, R.V., and Savage D.C.. 1977. Filamentous microbes indigenous to the murine small bowel: A scanning electron microscopic study of their morphology and attachment to the epithelium. Microb. Ecol. 4:95–103. 10.1007/BF02014280 PubMed DOI

Borst, K., Flindt S., Blank P., Larsen P.K., Chhatbar C., Skerra J., Spanier J., Hirche C., König M., Alanentalo T., et al. . 2020. Selective reconstitution of IFN-γ gene function in Ncr1+ NK cells is sufficient to control systemic vaccinia virus infection. PLoS Pathog. 16:e1008279. 10.1371/journal.ppat.1008279 PubMed DOI PMC

Bousbaine, D., Fisch L.I., London M., Bhagchandani P., Rezende de Castro T.B., Mimee M., Olesen S., Reis B.S., VanInsberghe D., Bortolatto J., et al. . 2022. A conserved Bacteroidetes antigen induces anti-inflammatory intestinal T lymphocytes. Science. 377:660–666. 10.1126/science.abg5645 PubMed DOI PMC

Cepek, K.L., Shaw S.K., Parker C.M., Russell G.J., Morrow J.S., Rimm D.L., and Brenner M.B.. 1994. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin. Nature. 372:190–193. 10.1038/372190a0 PubMed DOI

Cervantes-Barragan, L., Chai J.N., Tianero M.D., Di Luccia B., Ahern P.P., Merriman J., Cortez V.S., Caparon M.G., Donia M.S., Gilfillan S., et al. . 2017. Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells. Science. 357:806–810. 10.1126/science.aah5825 PubMed DOI PMC

Chardès, T., Buzoni-Gatel D., Lepage A., Bernard F., and Bout D.. 1994. Toxoplasma gondii oral infection induces specific cytotoxic CD8 alpha/beta+ Thy-1+ gut intraepithelial lymphocytes, lytic for parasite-infected enterocytes. J. Immunol. 153:4596–4603. 10.4049/jimmunol.153.10.4596 PubMed DOI

Cheroutre, H., Lambolez F., and Mucida D.. 2011. The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 11:445–456. 10.1038/nri3007 PubMed DOI PMC

Collins, J.W., Keeney K.M., Crepin V.F., Rathinam V.A.K., Fitzgerald K.A., Finlay B.B., and Frankel G.. 2014. Citrobacter rodentium: Infection, inflammation and the microbiota. Nat. Rev. Microbiol. 12:612–623. 10.1038/nrmicro3315 PubMed DOI

Cunningham, F., Achuthan P., Akanni W., Allen J., Amode M.R., Armean I.M., Bennett R., Bhai J., Billis K., Boddu S., et al. . 2019. Ensembl 2019. Nucleic Acids Res. 47:D745–D751. 10.1093/nar/gky1113 PubMed DOI PMC

Eckelhart, E., Warsch W., Zebedin E., Simma O., Stoiber D., Kolbe T., Rülicke T., Mueller M., Casanova E., and Sexl V.. 2011. A novel Ncr1-Cre mouse reveals the essential role of STAT5 for NK-cell survival and development. Blood. 117:1565–1573. 10.1182/blood-2010-06-291633 PubMed DOI

el Marjou, F., Janssen K.P., Chang B.H.J., Li M., Hindie V., Chan L., Louvard D., Chambon P., Metzger D., and Robine S.. 2004. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis. 39:186–193. 10.1002/gene.20042 PubMed DOI

Farkas, A.M., Panea C., Goto Y., Nakato G., Galan-Diez M., Narushima S., Honda K., and Ivanov I.I.. 2015. Induction of Th17 cells by segmented filamentous bacteria in the murine intestine. J. Immunol. Methods. 421:104–111. 10.1016/j.jim.2015.03.020 PubMed DOI PMC

Flannigan, K.L., Ngo V.L., Geem D., Harusato A., Hirota S.A., Parkos C.A., Lukacs N.W., Nusrat A., Gaboriau-Routhiau V., Cerf-Bensussan N., et al. . 2017. IL-17A-mediated neutrophil recruitment limits expansion of segmented filamentous bacteria. Mucosal Immunol. 10:673–684. 10.1038/mi.2016.80 PubMed DOI PMC

Gaboriau-Routhiau, V., Rakotobe S., Lécuyer E., Mulder I., Lan A., Bridonneau C., Rochet V., Pisi A., De Paepe M., Brandi G., et al. . 2009. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 31:677–689. 10.1016/j.immuni.2009.08.020 PubMed DOI

Glasner, A., Levi A., Enk J., Isaacson B., Viukov S., Orlanski S., Scope A., Neuman T., Enk C.D., Hanna J.H., et al. . 2018. NKp46 receptor-mediated interferon-γ production by natural killer cells increases fibronectin 1 to alter tumor architecture and control metastasis. Immunity. 48:107–119.e4. 10.1016/j.immuni.2017.12.007 PubMed DOI

Gorvel, J.P., Sarles J., Maroux S., Olive D., and Mawas C.. 1984. Cellular localization of class I (HLA-A, B, C) and class II (HLA-DR and DQ) MHC antigens on the epithelial cells of normal human jejunum. Biol. Cell. 52:249–252. 10.1111/j.1768-322X.1985.tb00343.x PubMed DOI

Goto, Y., Panea C., Nakato G., Cebula A., Lee C., Diez M.G., Laufer T.M., Ignatowicz L., and Ivanov I.I.. 2014. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity. 40:594–607. 10.1016/j.immuni.2014.03.005 PubMed DOI PMC

Haber, A.L., Biton M., Rogel N., Herbst R.H., Shekhar K., Smillie C., Burgin G., Delorey T.M., Howitt M.R., Katz Y., et al. . 2017. A single-cell survey of the small intestinal epithelium. Nature. 551:333–339. 10.1038/nature24489 PubMed DOI PMC

Hashimoto, K., Joshi S.K., and Koni P.A.. 2002. A conditional null allele of the major histocompatibility IA-beta chain gene. Genesis. 32:152–153. 10.1002/gene.10056 PubMed DOI

Hayday, A., Theodoridis E., Ramsburg E., and Shires J.. 2001. Intraepithelial lymphocytes: Exploring the third way in immunology. Nat. Immunol. 2:997–1003. 10.1038/ni1101-997 PubMed DOI

He, X., He X., Dave V.P., Zhang Y., Hua X., Nicolas E., Xu W., Roe B.A., and Kappes D.J.. 2005. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature. 433:826–833. 10.1038/nature03338 PubMed DOI

Heuberger, C.E., Janney A., Ilott N., Bertocchi A., Pott S., Gu Y., Pohin M., Friedrich M., Mann E.H., Pearson C., et al. . 2023. MHC class II antigen presentation by intestinal epithelial cells fine-tunes bacteria-reactive CD4 T cell responses. Mucosal Immunol.:S1933-0219(23)00032-6. 10.1016/j.mucimm.2023.05.001 PubMed DOI

Ivanov, I.I., Atarashi K., Manel N., Brodie E.L., Shima T., Karaoz U., Wei D., Goldfarb K.C., Santee C.A., Lynch S.V., et al. . 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 139:485–498. 10.1016/j.cell.2009.09.033 PubMed DOI PMC

Ivanov, I.I., Frutos R.d. L., Manel N., Yoshinaga K., Rifkin D.B., Sartor R.B., Finlay B.B., and Littman D.R.. 2008. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 4:337–349. 10.1016/j.chom.2008.09.009 PubMed DOI PMC

Ivanov, I.I., and Littman D.R.. 2010. Segmented filamentous bacteria take the stage. Mucosal Immunol. 3:209–212. 10.1038/mi.2010.3 PubMed DOI PMC

Jamwal, D.R., Laubitz D., Harrison C.A., Figliuolo da Paz V., Cox C.M., Wong R., Midura-Kiela M., Gurney M.A., Besselsen D.G., Setty P., et al. . 2020. Intestinal epithelial expression of MHCII determines severity of chemical, T-cell-induced, and infectious colitis in mice. Gastroenterology. 159:1342–1356.e6. 10.1053/j.gastro.2020.06.049 PubMed DOI PMC

Kilshaw, P.J., and Murant S.J.. 1990. A new surface antigen on intraepithelial lymphocytes in the intestine. Eur. J. Immunol. 20:2201–2207. 10.1002/eji.1830201008 PubMed DOI

Klaasen, H.L., Koopman J.P., Poelma F.G., and Beynen A.C.. 1992. Intestinal, segmented, filamentous bacteria. FEMS Microbiol. Rev. 8:165–180. 10.1111/j.1574-6968.1992.tb04986.x PubMed DOI

Koyama, M., Mukhopadhyay P., Schuster I.S., Henden A.S., Hülsdünker J., Varelias A., Vetizou M., Kuns R.D., Robb R.J., Zhang P., et al. . 2019. MHC class II antigen presentation by the intestinal epithelium initiates graft-versus-host disease and is influenced by the microbiota. Immunity. 51:885–898.e7. 10.1016/j.immuni.2019.08.011 PubMed DOI PMC

Kumar, P., Monin L., Castillo P., Elsegeiny W., Horne W., Eddens T., Vikram A., Good M., Schoenborn A.A., Bibby K., et al. . 2016. Intestinal interleukin-17 receptor signaling mediates reciprocal control of the gut microbiota and autoimmune inflammation. Immunity. 44:659–671. 10.1016/j.immuni.2016.02.007 PubMed DOI PMC

Ladinsky, M.S., Araujo L.P., Zhang X., Veltri J., Galan-Diez M., Soualhi S., Lee C., Irie K., Pinker E.Y., Narushima S., et al. . 2019. Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis. Science. 363:eaat4042. 10.1126/science.aat4042 PubMed DOI PMC

Lecuyer, E., Rakotobe S., Lengline-Garnier H., Lebreton C., Picard M., Juste C., Fritzen R., Eberl G., McCoy K.D., Macpherson A.J., et al. . 2014. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity. 40:608–620. 10.1016/j.immuni.2014.03.009 PubMed DOI

Lee, P.P., Fitzpatrick D.R., Beard C., Jessup H.K., Lehar S., Makar K.W., Pérez-Melgosa M., Sweetser M.T., Schlissel M.S., Nguyen S., et al. . 2001. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity. 15:763–774. 10.1016/S1074-7613(01)00227-8 PubMed DOI

Leishman, A.J., Naidenko O.V., Attinger A., Koning F., Lena C.J., Xiong Y., Chang H.C., Reinherz E., Kronenberg M., and Cheroutre H.. 2001. T cell responses modulated through interaction between CD8alphaalpha and the nonclassical MHC class I molecule, TL. Science. 294:1936–1939. 10.1126/science.1063564 PubMed DOI

Lepage, A.C., Buzoni-Gatel D., Bout D.T., and Kasper L.H.. 1998. Gut-derived intraepithelial lymphocytes induce long term immunity against Toxoplasma gondii. J. Immunol. 161:4902–4908. 10.4049/jimmunol.161.9.4902 PubMed DOI

Lockhart, A., Reed A., Rezende de Castro T., Herman C., Campos Canesso M.C., and Mucida D.. 2023. Dietary protein shapes the profile and repertoire of intestinal CD4+ T cells. J. Exp. Med. 220:e20221816. 10.1084/jem.20221816 PubMed DOI PMC

Maloy, K.J., and Powrie F.. 2011. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature. 474:298–306. 10.1038/nature10208 PubMed DOI

Masopust, D., Vezys V., Wherry E.J., Barber D.L., and Ahmed R.. 2006. Cutting edge: Gut microenvironment promotes differentiation of a unique memory CD8 T cell population. J. Immunol. 176:2079–2083. 10.4049/jimmunol.176.4.2079 PubMed DOI

Mombaerts, P., Arnoldi J., Russ F., Tonegawa S., and Kaufmann S.H.. 1993. Different roles of alpha beta and gamma delta T cells in immunity against an intracellular bacterial pathogen. Nature. 365:53–56. 10.1038/365053a0 PubMed DOI

Mombaerts, P., Iacomini J., Johnson R.S., Herrup K., Tonegawa S., and Papaioannou V.E.. 1992. RAG-1-deficient mice have no mature B and T lymphocytes. Cell. 68:869–877. 10.1016/0092-8674(92)90030-G PubMed DOI

Moon, S., Park Y., Hyeon S., Kim Y.M., Kim J.H., Kim H., Park S., Lee K.J., Koo B.K., Ha S.J., and Lee S.W.. 2021. Niche-specific MHC II and PD-L1 regulate CD4+CD8αα+ intraepithelial lymphocyte differentiation. J. Exp. Med. 218:e20201665. 10.1084/jem.20201665 PubMed DOI PMC

Mucida, D., Husain M.M., Muroi S., van Wijk F., Shinnakasu R., Naoe Y., Reis B.S., Huang Y., Lambolez F., Docherty M., et al. . 2013. Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat. Immunol. 14:281–289. 10.1038/ni.2523 PubMed DOI PMC

Muraro, M.J., Dharmadhikari G., Grün D., Groen N., Dielen T., Jansen E., van Gurp L., Engelse M.A., Carlotti F., de Koning E.J.P., and van Oudenaarden A.. 2016. A single-cell transcriptome atlas of the human pancreas. Cell Syst. 3:385–394.e3. 10.1016/j.cels.2016.09.002 PubMed DOI PMC

Müller, S., Bühler-Jungo M., and Mueller C.. 2000. Intestinal intraepithelial lymphocytes exert potent protective cytotoxic activity during an acute virus infection. J. Immunol. 164:1986–1994. 10.4049/jimmunol.164.4.1986 PubMed DOI

Parsa, R., London M., Rezende de Castro T.B., Reis B., Buissant des Amorie J., Smith J.G., and Mucida D.. 2022. Newly recruited intraepithelial Ly6A+CCR9+CD4+ T cells protect against enteric viral infection. Immunity. 55:1234–1249.e6. 10.1016/j.immuni.2022.05.001 PubMed DOI PMC

Pfaffl, M.W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:e45. 10.1093/nar/29.9.e45 PubMed DOI PMC

Pickert, G., Neufert C., Leppkes M., Zheng Y., Wittkopf N., Warntjen M., Lehr H.A., Hirth S., Weigmann B., Wirtz S., et al. . 2009. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J. Exp. Med. 206:1465–1472. 10.1084/jem.20082683 PubMed DOI PMC

Reis, B.S., Rogoz A., Costa-Pinto F.A., Taniuchi I., and Mucida D.. 2013. Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4⁺ T cell immunity. Nat. Immunol. 14:271–280. 10.1038/ni.2518 PubMed DOI PMC

Russler-Germain, E.V., Jung J., Miller A.T., Young S., Yi J., Wehmeier A., Fox L.E., Monte K.J., Chai J.N., Kulkarni D.H., et al. . 2021. Commensal Cryptosporidium colonization elicits a cDC1-dependent Th1 response that promotes intestinal homeostasis and limits other infections. Immunity. 54:2547–2564.e7. 10.1016/j.immuni.2021.10.002 PubMed DOI PMC

Sano, T., Huang W., Hall J.A., Yang Y., Chen A., Gavzy S.J., Lee J.Y., Ziel J.W., Miraldi E.R., Domingos A.I., et al. . 2015. An IL-23r/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell. 163:381–393. 10.1016/j.cell.2015.08.061 PubMed DOI PMC

Scott, H., Solheim B.G., Brandtzaeg P., and Thorsby E.. 1980. HLA-DR-like antigens in the epithelium of the human small intestine. Scand. J. Immunol. 12:77–82. 10.1111/j.1365-3083.1980.tb00043.x PubMed DOI

Shi, Z., Zou J., Zhang Z., Zhao X., Noriega J., Zhang B., Zhao C., Ingle H., Bittinger K., Mattei L.M., et al. . 2019. Segmented filamentous bacteria prevent and cure rotavirus infection. Cell. 179:644–658.e13. 10.1016/j.cell.2019.09.028 PubMed DOI PMC

Shih, V.F.S., Cox J., Kljavin N.M., Dengler H.S., Reichelt M., Kumar P., Rangell L., Kolls J.K., Diehl L., Ouyang W., and Ghilardi N.. 2014. Homeostatic IL-23 receptor signaling limits Th17 response through IL-22-mediated containment of commensal microbiota. Proc. Natl. Acad. Sci. USA. 111:13942–13947. 10.1073/pnas.1323852111 PubMed DOI PMC

Shires, J., Theodoridis E., and Hayday A.C.. 2001. Biological insights into TCRgammadelta+ and TCRalphabeta+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity. 15:419–434. 10.1016/S1074-7613(01)00192-3 PubMed DOI

Suzuki, K., Meek B., Doi Y., Muramatsu M., Chiba T., Honjo T., and Fagarasan S.. 2004. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc. Natl. Acad. Sci. USA. 101:1981–1986. 10.1073/pnas.0307317101 PubMed DOI PMC

Thelemann, C., Eren R.O., Coutaz M., Brasseit J., Bouzourene H., Rosa M., Duval A., Lavanchy C., Mack V., Mueller C., et al. . 2014. Interferon-γ induces expression of MHC class II on intestinal epithelial cells and protects mice from colitis. PLoS One. 9:e86844. 10.1371/journal.pone.0086844 PubMed DOI PMC

Thompson, C.L., Vier R., Mikaelyan A., Wienemann T., and Brune A.. 2012. ‘Candidatus arthromitus’ revised: Segmented filamentous bacteria in arthropod guts are members of lachnospiraceae. Environ. Microbiol. 14:1454–1465. 10.1111/j.1462-2920.2012.02731.x PubMed DOI

Tuganbaev, T., Mor U., Bashiardes S., Liwinski T., Nobs S.P., Leshem A., Dori-Bachash M., Thaiss C.A., Pinker E.Y., Ratiner K., et al. . 2020. Diet diurnally regulates small intestinal microbiome-epithelial-immune homeostasis and enteritis. Cell. 182:1441–1459.e21. 10.1016/j.cell.2020.08.027 PubMed DOI

Umesaki, Y., Okada Y., Matsumoto S., Imaoka A., and Setoyama H.. 1995. Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol. Immunol. 39:555–562. 10.1111/j.1348-0421.1995.tb02242.x PubMed DOI

Van Der Kraak, L.A., Schneider C., Dang V., Burr A.H.P., Weiss E.S., Varghese J.A., Yang L., Hand T.W., and Canna S.W.. 2021. Genetic and commensal induction of IL-18 drive intestinal epithelial MHCII via IFNγ. Mucosal Immunol. 14:1100–1112. 10.1038/s41385-021-00419-1 PubMed DOI PMC

Voehringer, D., Liang H.E., and Locksley R.M.. 2008. Homeostasis and effector function of lymphopenia-induced “memory-like” T cells in constitutively T cell-depleted mice. J. Immunol. 180:4742–4753. 10.4049/jimmunol.180.7.4742 PubMed DOI PMC

Wiles, S., Hanage W.P., Frankel G., and Robertson B.. 2006. Modelling infectious disease: Time to think outside the box? Nat. Rev. Microbiol. 4:307–312. 10.1038/nrmicro1386 PubMed DOI

Wohn, C., Le Guen V., Voluzan O., Fiore F., Henri S., and Malissen B.. 2020. Absence of MHC class II on cDC1 dendritic cells triggers fatal autoimmunity to a cross-presented self-antigen. Sci. Immunol. 5:eaba1896. 10.1126/sciimmunol.aba1896 PubMed DOI

Yang, Y., Torchinsky M.B., Gobert M., Xiong H., Xu M., Linehan J.L., Alonzo F., Ng C., Chen A., Lin X., et al. . 2014. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature. 510:152–156. 10.1038/nature13279 PubMed DOI PMC

Yin, Y., Wang Y., Zhu L., Liu W., Liao N., Jiang M., Zhu B., Yu H.D., Xiang C., and Wang X.. 2013. Comparative analysis of the distribution of segmented filamentous bacteria in humans, mice and chickens. ISME J. 7:615–621. 10.1038/ismej.2012.128 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...